
Research Article
On the Connectivity of Wireless Network Systems and
an Application in Teacher-Student Interactive Platforms

Xun Ge

School of Mathematical Sciences, Soochow University, Suzhou 215006, China

Correspondence should be addressed to Xun Ge; zhugexun@163.com

Received 3 April 2014; Revised 5 June 2014; Accepted 6 June 2014; Published 18 June 2014

Academic Editor: Chong Lin

Copyright © 2014 Xun Ge. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A wireless network system is a pair (𝑈;B), where B is a family of some base stations and 𝑈 is a set of their users. To investigate
the connectivity of wireless network systems, this paper takes covering approximation spaces as mathematical models of wireless
network systems. With the help of covering approximation operators, this paper characterizes the connectivity of covering
approximation spaces by their definable subsets. Furthermore, it is obtained that a wireless network system is connected if and
only if the relevant covering approximation space has no nonempty definable proper subset. As an application of this result, the
connectivity of a teacher-student interactive platform is discussed, which is established in the School of Mathematical Sciences of
Soochow University.This application further demonstrates the usefulness of rough set theory in pedagogy and makes it possible to
research education by logical methods and mathematical methods.

1. Introduction

In this paper, we discuss the wireless network system (𝑈;B)

(see Definition 1), where𝑈 denotes the set of all users andB
denotes the family of all stations (or servers). For the wireless
network system (𝑈;B), how can we guarantee that any pair
of users 𝑢, V in 𝑈 can receive and send information from and
to each other? It is an interesting question. Note that a pair of
users 𝑢, V in𝑈 can receive and send information from and to
each other if there is a base station𝐵 ∈ B such that not only 𝑢
and 𝐵 but also V and 𝐵 are connected. Thus, the connectivity
for wireless network systems (see Definition 2) is worthy to
be considered. How can we investigate the connectivity of
a wireless network system (𝑈;B)? It is necessary to analyze
data collected from (𝑈;B). Just as stated by Zhu and Wang
in [1], “Across a wide variety of fields, data are being collected
and accumulated at a dramatic pace, especially in the age
of the Internet. There is much useful information hidden
in the accumulated voluminous data, but it is very hard
for us to obtain it. Thus, there is an urgent need for a
new generation of computational theories and tools to assist
humans in extracting knowledge from the rapidly growing
volumes of digital data; otherwise, these huge data are useless
for us.” In order to extract and analyze useful information

hidden in voluminous data, many methods in addition to
classical logic and classical mathematics have been proposed.
Rough set theory, which was proposed by Pawlak in [2],
plays an important role in applications of these methods.
Their usefulness has been demonstrated by many successful
applications in information sciences and computer sciences
(see, e.g., [2–12]). In particular, rough set theory can handle
some information systems with voluminous data.This makes
it possible to analyze and compute voluminous data by
computer technology. In the past years, with development of
information sciences and computer sciences, applications of
rough set theory have been extended from Pawlak approxi-
mation spaces to covering approximation spaces (see, e.g., [1,
13–23]). It leads us to investigate the connectivity of wireless
network systems by covering approximation spaces.

In this paper, we establish some relations between wire-
less network systems and covering approximation spaces.
By these relations, we take covering approximation spaces
as mathematical models of wireless network systems and
convert investigations of the connectivity from wireless
network systems to covering approximation spaces. With
the help of covering approximation operators, we charac-
terize the connectivity of covering approximation spaces by
their definable subsets. Furthermore, we obtain that awireless
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network system is connected if and only if the relevant cover-
ing approximation space has no nonempty definable proper
subset. As an application of this result, the connectivity of
a teacher-student interactive platform is discussed, which
is established in the School of Mathematical Sciences of
Soochow University. This application further demonstrates
the usefulness of rough set theory in pedagogy and makes
it possible to research education by logical methods and
mathematical methods.

2. Preliminaries

At first, we describe a wireless network system and its
connectivity as follows.

Definition 1. LetB be a family of some base stations and let𝑈
be a set of their users.Then the pair (𝑈;B) is called a wireless
network system if the following conditions are satisfied.

(1) For each user 𝑢 in 𝑈, there is a base station 𝐵 in B
such that 𝑢 and 𝐵 are connected.

(2) For each base station 𝐵 in B, there is a user 𝑢 in 𝑈

such that 𝑢 and 𝐵 are connected.

Here, 𝑢 and 𝐵 are connected if they can receive and send
information from and to each other.

The wireless network system (𝑈;B) stated as above is
different from some existing network systems. For example,
Soochow University network consists of a central network
station𝐵 and some users accesses, which ismore complicated
in structure. All users, who contact each other by the
Soochow University network, must connect users accesses
with the central network station 𝐵. However, the wireless
network system (𝑈;B) can make users contact each other by
connecting users accesses with some simple base stations. In
addition, the wireless network system (𝑈;B) can show some
advantages on network security. That is, the wireless network
system (𝑈;B) has some 𝑆

𝑖
-securities (see, e.g., [14]).

Definition 2. Let (𝑈;B) be a wireless network system.

(1) For two users 𝑢, V ∈ 𝑈, 𝑢 and V are called to have a
contact if there are some users 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
∈ 𝑈 and

some base stations 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛−1
∈ B such that, for

each 𝑖 = 1, 2, . . . , 𝑛−1, not only 𝑢
𝑖
and 𝐵

𝑖
but also 𝑢

𝑖+1

and 𝐵
𝑖
are connected, where 𝑢

1
= 𝑢 and 𝑢

𝑛
= V.

(2) (𝑈;B) is called connected if 𝑢 and V have a contact
for all users 𝑢, V ∈ 𝑈.

Definition 3 (see [13]). Let 𝑈, the universe of discourse, be a
finite set and letC be a family of nonempty subsets of 𝑈.

(1) C is called a cover of 𝑈 if⋃{𝐾 : 𝐾 ∈ C} = 𝑈.
(2) The pair (𝑈;C) is called a covering approximation

space ifC is a cover of 𝑈.

The following covering approximation spaces will play an
important role in our discussion.

Remark 4. (1) A covering approximation space (𝑈;C) is a
Pawlak approximation space if C is a partition on 𝑈; that is,
elements ofC are mutually disjoint.

(2) A covering approximation space (𝑈;C) is a general-
ized topological space if 0 ∈ C and C is closed with respect
to the union of elements ofC [24], and (𝑈;C) is a topological
space if 0 ∈ C andC is closed with respect to both the union
and the finite intersection of elements ofC [25].

Proposition 5. Let (𝑈;B) be a wireless network system. For
each base station𝐵 inB, let𝐾

𝐵
be a set of some users in𝑈 such

that 𝑢 is a user in 𝐾
𝐵
if and only if 𝑢 and 𝐵 are connected. Put

C = {𝐾
𝐵
: 𝐵 ∈ B}. Then (𝑈;C) is a covering approximation

space.

Proof. It suffices to prove thatC is a cover of𝑈. Let𝑢 ∈ 𝑈; that
is, 𝑢 is a user in 𝑈. By Definition 1(1), there is a base station
𝐵 inB such that 𝑢 and 𝐵 are connected. So 𝑢 is a user in𝐾

𝐵
;

that is, 𝑢 ∈ 𝐾
𝐵
. This proves thatC is a cover of 𝑈.

Definition 6. Let (𝑈;B) be a wireless network system, and
let (𝑈;C) be a covering approximation space described as in
Proposition 5. Then (𝑈;C) is called to be induced by (𝑈;B).

In order to convert investigations of the connectivity from
wireless network systems to covering approximation spaces,
the following “chain” in covering approximation spaces is
introduced, the idea of which comes from topology [25].

Definition 7. Let (𝑈;C) be a covering approximation space
and let 𝑢, V ∈ 𝑈.

(1) A subfamily {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
} of C is called a chain

between 𝑢 and V if 𝑢 ∈ 𝐾
1
, V ∈ 𝐾

𝑛
, and 𝐾

𝑖
⋂𝐾
𝑖+1

̸= 0

for each 𝑖 = 1, 2, . . . , 𝑛 − 1.

(2) 𝑢 is called to be chain connected to V if there is a chain
between 𝑢 and V.

Remark 8. Let (𝑈;C) be a covering approximation space.
Then the relation for “chain connected” is an equivalent
relation; that is, the following hold for all 𝑢, V, 𝑤 ∈ 𝑈.

(1) 𝑢 is chain connected to 𝑢.

(2) 𝑢 is chain connected to V, which implies that V is chain
connected to 𝑢.

(3) 𝑢 is chain connected to V and V is chain connected to
𝑤, which implies that 𝑢 is chain connected to 𝑤.

Proof. Obviously, (1) and (2) hold. Let 𝑢 be chain connected
to V, and let V be chain connected to 𝑤. Then there are
𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
∈ C such that 𝑢 ∈ 𝐾

1
, V ∈ 𝐾

𝑛
, and

𝐾
𝑖
⋂𝐾
𝑖+1

̸= 0 for each 𝑖 = 1, 2, . . . , 𝑛 − 1; and there are
𝐾
𝑛+1

, 𝐾
𝑛+2

, . . . , 𝐾
𝑛+𝑚

∈ C such that V ∈ 𝐾
𝑛+1

, 𝑤 ∈ 𝐾
𝑛+𝑚

, and
𝐾
𝑛+𝑖

⋂𝐾
𝑛+𝑖+1

̸= 0 for each 𝑖 = 1, 2, . . . , 𝑚 − 1. Consequently,
there are 𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛
, 𝐾
𝑛+1

,𝐾
𝑛+2

, . . . , 𝐾
𝑛+𝑚

∈ C such that
𝑢 ∈ 𝐾

1
, 𝑤 ∈ 𝐾

𝑛+𝑚
, and𝐾

𝑖
⋂𝐾
𝑖+1

̸= 0 for each 𝑖 = 1, 2, . . . , 𝑛 +

𝑚 − 1. This proves that 𝑢 is chain connected to 𝑤. So (3)
holds.
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We give the connectivity of covering approximation
spaces.

Definition 9. Let (𝑈;C) be a covering approximation space.
(𝑈;C) is called connected if, for each pair 𝑢, V ∈ 𝑈, there is a
chain between 𝑢 and V.

Lemma 10. Let (𝑈;B) be a wireless network system, and let
(𝑈;C) be a covering approximation space induced by (𝑈;B).
Then the following are equivalent for all 𝑢, V ∈ 𝑈.

(1) 𝑢 and V have a contact.
(2) There is a chain between 𝑢 and V.

Proof. (1) ⇒ (2): let 𝑢 and V have a contact. Then there
are some users 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
∈ 𝑈 and some base stations

𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛−1
∈ B such that, for each 𝑖 = 1, 2, . . . , 𝑛 − 1,

not only 𝑢
𝑖
and 𝐵

𝑖
but also 𝑢

𝑖+1
and 𝐵

𝑖
are connected, where

𝑢
1

= 𝑢 and 𝑢
𝑛

= V. Since (𝑈;C) is induced by (𝑈;B),
for each 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝐾

𝐵𝑖
∈ C, put 𝐾

𝑖
= 𝐾
𝐵𝑖
. Then

𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛−1
∈ C, and, for each 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑢
𝑖
, 𝑢
𝑖+1

∈ 𝐾
𝑖
. It follows that 𝑢 = 𝑢

1
∈ 𝐾
1
, V = 𝑢

𝑛
∈ 𝐾
𝑛−1

,
and, for each 𝑖 = 1, 2, . . . , 𝑛 − 2, 𝑢

𝑖+1
∈ 𝐾
𝑖
⋂𝐾
𝑖+1

̸= 0. This
shows that𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛−1
is a chain between 𝑢 and V.

(2) ⇒ (1): let 𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
be a chain between 𝑢 and

V, that is, 𝑢 ∈ 𝐾
1
and V ∈ 𝐾

𝑛
, and 𝐾

𝑖
⋂𝐾
𝑖+1

̸= 0 for each
𝑖 = 1, 2, . . . , 𝑛 − 1. Put 𝑢

1
= 𝑢, 𝑢

𝑛+1
= V, and, for each

𝑖 = 1, 2, . . . , 𝑛 − 1, choose 𝑢
𝑖+1

∈ 𝐾
𝑖
⋂𝐾
𝑖+1

. It follows that
𝑢
𝑖
, 𝑢
𝑖+1

∈ 𝐾
𝑖
for each 𝑖 = 1, 2, . . . , 𝑛. Since (𝑈;C) is induced

by (𝑈;B), there are base stations𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
∈ B such that

𝐾
𝑖
= 𝐾
𝐵𝑖
for each 𝑖 = 1, 2, . . . , 𝑛. Thus, for each 𝑖 = 1, 2, . . . , 𝑛,

𝑢
𝑖
, 𝑢
𝑖+1

∈ 𝐾
𝐵𝑖
; that is, not only 𝑢

𝑖
and 𝐵

𝑖
but also 𝑢

𝑖+1
and 𝐵

𝑖

are connected. This proves that 𝑢 and V have a contact.

By Lemma 10, we obtain the following theorem immedi-
ately, which shows that the connectivity of wireless network
systems and the connectivity of covering approximation
spaces are equivalent.

Theorem 11. Let (𝑈;B) be a wireless network system, and let
(𝑈;C) be a covering approximation space induced by (𝑈;B).
Then the following are equivalent.

(1) (𝑈;B) is connected.
(2) (𝑈;C) is connected.

We give a simple example to illustrate an application of
Theorem 11.

Example 12. Let B = {𝐵
1
, 𝐵
2
, 𝐵
3
} be the family of three

base stations and let 𝑈 = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} be the set

of some users, where 𝑢
1
(resp., 𝑢

2
) and 𝐵

1
are connected,

𝑢
2
(resp., 𝑢

3
, 𝑢
4
) and 𝐵

2
are connected, and 𝑢

3
(resp., 𝑢

5
,

𝑢
6
) and 𝐵

3
are connected. Then (𝑈;B) is a wireless network

system. Put 𝐾
1

= {𝑢
1
, 𝑢
2
}, 𝐾
2

= {𝑢
2
, 𝑢
3
, 𝑢
4
}, 𝐾
3

=

{𝑢
3
, 𝑢
5
, 𝑢
6
}, and C = {𝐾

1
, 𝐾
2
, 𝐾
3
}. It is clear that (𝑈;C) is

a covering approximation space induced by (𝑈;B). For each
pair 𝑢

𝑖
, 𝑢
𝑗
∈ 𝑈, it is not difficult to check that 𝑢

𝑖
and 𝑢

𝑗
are

connected in (𝑈;C). So (𝑈;C) is connected. By Theorem 11,
(𝑈;B) is connected.

3. The Connectivity of Covering
Approximation Spaces

As a classical result in topology, a topological space (𝑋,T)

is connected if and only if (𝑋,T) has no nonempty clopen
(i.e., both open and closed) proper subset. How can we char-
acterize the connectivity of covering approximation spaces?
This is an interesting question, which is still open. Note that
there are no concepts for open subset and closed subset in
covering approximation spaces. This shows that we need to
find some subsets of covering approximation spaces to char-
acterize the connectivity of covering approximation spaces.
Similar to open subsets, closed subsets, and clopen subsets
in topological spaces, there are three concepts generated by
Pawlak approximation operators in Pawlak’s models, which
are definable subsets, inner definable subsets, and outer defin-
able subsets (see, e.g., [26]). This leads us to generalize these
concepts by covering approximation operators from Pawlak’s
models to covering approximation spaces and to characterize
the connectivity of covering approximation spaces by these
subsets. It is known that there are many covering approxima-
tion operators on covering approximation spaces (see, e.g.,
[19]). However, our discussion will be around the following
covering upper approximation operator and covering lower
approximation operator, which are important and effective
in study for covering approximation spaces and were used
frequently in discussions for covering approximation spaces
(see, e.g., [1, 9, 15, 22]).

Definition 13. Let (𝑈;C) be a covering approximation space.
For each𝑋 ⊆ 𝑈, put

𝐶 (𝑋) = {𝑥 ∈ 𝑈 : ∀𝐾 ∈ C (𝑥 ∈ 𝐾 ⇒ 𝐾 ⊆ 𝑋)} ;

𝐶 (𝑋) = ⋃{𝐾 : 𝐾 ∈ C⋀𝐾⋂𝑋 ̸= 0} .
(1)

(1) 𝐶 : 2𝑈 → 2𝑈 is called covering lower approximation
operator, and 𝐶(𝑋) is called a covering lower approx-
imation of𝑋.

(2) 𝐶 : 2𝑈 → 2𝑈 is called covering upper approximation
operator, and𝐶(𝑋) is called a covering upper approx-
imation of𝑋.

The following lemma comes from [9].

Lemma 14. Let (𝑈;C) be a covering approximation space and
𝑋 ⊆ 𝑈. Then 𝐶(𝑋) ⊆ 𝑋 ⊆ 𝐶(𝑋).

Definition 15. Let (𝑈;C) be a covering approximation space
and𝑋 ⊆ 𝑈.

(1) 𝑋 is called a definable subset of (𝑈;C) if 𝐶(𝑋) =

𝐶(𝑋).
(2) 𝑋 is called an inner definable subset of (𝑈;C) if

𝐶(𝑋) = 𝑋.
(3) 𝑋 is called an outer definable subset of (𝑈;C) if

𝐶(𝑋) = 𝑋.
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Let 𝑋 be a subset of a covering approximation space
(𝑈;C). By Lemma 14,𝑋 is a definable subset of (𝑈;C) if and
only if 𝑋 is both an inner definable and an outer definable
subset of (𝑈;C). In fact, we have the better result.

Proposition 16. Let (𝑈;C) be a covering approximation space
and 𝑋 ⊆ 𝑈. Then the following are equivalent.

(1) 𝑋 is a definable subset of (𝑈;C).
(2) 𝑋 is an inner definable subset of (𝑈;C).
(3) 𝑋 is an outer definable subset of (𝑈;C).

Proof. (1)⇒ (2): it holds from Lemma 14.
(2) ⇒ (3): let 𝑋 be an inner definable subset of (𝑈;C),

that is, 𝐶(𝑋) = 𝑋. It suffices to prove that 𝐶(𝑋) = 𝑋. By
Lemma 14, we only need to prove that 𝐶(𝑋) ⊆ 𝑋. Let 𝑢 ∈

𝐶(𝑋).Then there is𝐾
𝑢
∈ C such that 𝑢 ∈ 𝐾

𝑢
and𝐾

𝑢
⋂𝑋 ̸= 0.

Pick V ∈ 𝐾
𝑢
⋂𝑋; then V ∈ 𝑋 = 𝐶(𝑋) = {𝑤 ∈ 𝑈 : ∀𝐾 ∈

C(𝑤 ∈ 𝐾 ⇒ 𝐾 ⊆ 𝑋)}. Since V ∈ 𝐾
𝑢
, 𝐾
𝑢
⊆ 𝑋, and, hence,

𝑢 ∈ 𝐾
𝑢
⊆ 𝑋. This proves that 𝐶(𝑋) ⊆ 𝑋.

(3) ⇒ (1): let 𝑋 be an outer definable subset of (𝑈;C),
that is, 𝐶(𝑋) = 𝑋. It suffices to prove that 𝐶(𝑋) = 𝑋. By
Lemma 14, we only need to prove that 𝑋 ⊆ 𝐶(𝑋). Let 𝑢 ∈ 𝑋.
For each 𝐾 ∈ C, if 𝑢 ∈ 𝐾, then 𝑢 ∈ 𝐾⋂𝑋 ̸= 0, and hence
𝐾 ⊆ 𝐶(𝑋) = 𝑋. It follows that 𝑢 ∈ 𝐶(𝑋). This proves that
𝑋 ⊆ 𝐶(𝑋).

Lemma 17. Let (𝑈;C) be a covering approximation space and
let 𝑢 ∈ 𝑈. Put 𝑋 = {𝑠 ∈ 𝑈 : 𝑢 𝑖𝑠 𝑐ℎ𝑎𝑖𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑠}. If
𝑋 = 𝑈, then (𝑈;C) is connected.

Proof. Let 𝑋 = 𝑈. Whenever V, 𝑤 ∈ 𝑈 = 𝑋, then 𝑢 is chain
connected to V and 𝑢 is chain connected to 𝑤. By Remark 8,
V is chain connected to 𝑤. So (𝑈;C) is connected.

Now we give the main theorem, which characterizes
the connectivity of covering approximation spaces by their
definable subsets.

Theorem 18. Let (𝑈;C) be a covering approximation space.
Then the following are equivalent.

(1) (𝑈;C) is connected.
(2) (𝑈;C) has no nonempty definable proper subset.

Proof. (1)⇒ (2). Suppose that (𝑈;C) is connected. Let𝑋 be a
nonempty definable subset of (𝑈;C). By Lemma 14, 𝐶(𝑋) =

𝐶(𝑋) = 𝑋 ̸= 0. We only need to prove that 𝑋 is not a proper
subset of 𝑈. Let 𝑢 ∈ 𝑈. Pick V ∈ 𝑋; then V is chain connected
to 𝑢; that is, there are 𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛
∈ C such that V ∈ 𝐾

1
,

𝑢 ∈ 𝐾
𝑛
, and 𝐾

𝑖
⋂𝐾
𝑖+1

̸= 0 for each 𝑖 = 1, 2, . . . , 𝑛 − 1. Since
V ∈ 𝐾

1
⋂𝑋 ̸= 0, 𝐾

1
⊆ 𝐶(𝑋) = 𝑋. Furthermore, 𝐾

2
⋂𝑋 ⊃

𝐾
2
⋂𝐾
1

̸= 0, so 𝐾
2
⊆ 𝐶(𝑋) = 𝑋. In the same way, we can

obtain that 𝐾
𝑛
⊆ 𝐶(𝑋) = 𝑋. Thus, 𝑢 ∈ 𝐾

𝑛
⊆ 𝑋. This proves

that 𝑈 = 𝑋. So𝑋 is not a proper subset of 𝑈.
(2)⇒ (1). Suppose that (𝑈;C) has no nonempty definable

proper subset. Let 𝑢 ∈ 𝑈. Put 𝑋 = {𝑠 ∈ 𝑈 :

𝑢 is chain connected to 𝑠}. Then 𝑢 ∈ 𝑋 ̸= 0 by Remark 8(1).
Whenever V ∈ 𝐶(𝑋), there is 𝐾 ∈ C such that 𝐾⋂𝑋 ̸= 0

and V ∈ 𝐾. Pick 𝑤 ∈ 𝐾⋂𝑋. Then 𝑢 is chain connected to
𝑤, and 𝑤 is chain connected to V. So 𝑢 is chain connected
to V by Remark 8(3). It follows that V ∈ 𝑋. This proves that
𝐶(𝑋) ⊆ 𝑋. On the other hand, 𝑋 ⊆ 𝐶(𝑋) from Lemma 14,
and hence 𝐶(𝑋) = 𝑋. Thus, 𝑋 is an outer definable subset of
(𝑈;C). By Proposition 16,𝑋 is a definable subset of (𝑈;C). It
follows that𝑋 = 𝑈. By Lemma 17, (𝑈;C) is connected.

We give a simple example to illustrate an application of
Theorem 18.

Example 19. Let 𝑈 = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} be the universe

of discourse. Put 𝐾
1

= {𝑢
1
, 𝑢
2
, 𝑢
5
}, 𝐾
2

= {𝑢
3
, 𝑢
4
}, 𝐾
3

=

{𝑢
3
, 𝑢
6
}, and C = {𝐾

1
, 𝐾
2
, 𝐾
3
}. Then (𝑈;C) is a covering

approximation space. Put 𝑋 = {𝑢
3
, 𝑢
4
, 𝑢
6
}. Then 𝐶(𝑋) =

⋃{𝐾 : 𝐾 ∈ C⋀𝐾⋂𝑋 ̸= 0} = {𝑢
3
, 𝑢
4
}⋃{𝑢
3
, 𝑢
6
} =

{𝑢
3
, 𝑢
4
, 𝑢
6
} = 𝑋. So 𝑋 is a nonempty outer definable

proper subset of (𝑈;C). By Proposition 16, 𝑋 is a nonempty
definable proper subset of (𝑈;C). It follows that (𝑈;B) is not
connected byTheorem 18.

4. An Application

In this section, we give an application to show that our
approach does work. This work is to assess the connectivity
of a teacher-student interactive platform.

(1) The Teacher-Student Interactive Platform (𝑈;B). The
teacher-student interactive platform (𝑈;B) is established in
the School of Mathematical Sciences of Soochow University,
which creates a new environment for the current students in
the School of Mathematical Sciences of Soochow University
and would promote the interaction among these students.

(1.1) 𝑈 is the set of twelve information points, which is
denoted by 𝑈 = {𝑢

𝑖
: 𝑖 = 1, 2, . . . , 12}.

(1.2) B is the family of six information stations, which is
denoted byB = {𝐵

𝑎
, 𝐵
𝑏
, 𝐵
𝑐
, 𝐵
𝑑
, 𝐵
𝑒
, 𝐵
𝑓
}.

(1.3) We call that an information point 𝑢 in 𝑈 and an
information station 𝐵 in B are connected if 𝑢 and 𝐵

can receive and send information from and to each
other. By restrictions of campus network for Soochow
University, we can not make 𝑢 and 𝐵 connected
for each information point 𝑢 in 𝑈 and for each
information station 𝐵 in B. However, the following
are satisfied.

(1.3.1) 𝑢
1
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑎, 𝑐, 𝑑}.

(1.3.2) 𝑢
2
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑏, 𝑐, 𝑓}.

(1.3.3) 𝑢
3
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑏, 𝑑, 𝑒}.

(1.3.4) 𝑢
4
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑑, 𝑒, 𝑓}.

(1.3.5) 𝑢
5
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑎, 𝑏, 𝑓}.

(1.3.6) 𝑢
6
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑎, 𝑒, 𝑓}.

(1.3.7) 𝑢
7
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑎, 𝑐, 𝑒}.

(1.3.8) 𝑢
8
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑎, 𝑏, 𝑒}.

(1.3.9) 𝑢
9
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑐, 𝑑, 𝑒}.
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Table 1: The teacher-student interactive platform (𝑈;B).

𝑢
1

𝑢
2

𝑢
3

𝑢
4

𝑢
5

𝑢
6

𝑢
7

𝑢
8

𝑢
9

𝑢
10

𝑢
11

𝑢
12

𝐵
𝑎

1 0 0 0 1 1 1 1 0 0 1 0
𝐵
𝑏

0 1 1 0 1 0 0 1 0 1 0 1
𝐵
𝑐

1 1 0 0 0 0 1 0 1 0 1 1
𝐵
𝑑

1 0 1 1 0 0 0 0 1 1 0 1
𝐵
𝑒

0 0 1 1 0 1 1 1 1 0 0 0
𝐵
𝑓

0 1 0 1 1 1 0 0 0 1 1 0

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

u
9

u
10

u
11

u
12

B
a

B
b

B
c

K
d

K
e

K
f

Figure 1

(1.3.10) 𝑢
10
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑏, 𝑑, 𝑓}.

(1.3.11) 𝑢
11
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑎, 𝑐, 𝑓}.

(1.3.12) 𝑢
12
and 𝐵

𝛼
are connected for 𝛼 ∈ {𝑏, 𝑐, 𝑑}.

The above connectivity can also be described as shown in
Figure 1.

(1.4) By Definition 1, it is not difficult to check that the
teacher-student interactive platform (𝑈;B) forms a
wireless network system, which can be described as
in Table 1. Here, 𝑈 = {𝑢

𝑖
: 𝑖 = 1, 2, . . . , 12},

B = {𝐵
𝑎
, 𝐵
𝑏
, 𝐵
𝑐
, 𝐵
𝑑
, 𝐵
𝑒
, 𝐵
𝑓
}, and the number, which

lies in the cross of the row labeled by 𝐵 (𝐵 =

𝐵
𝑎
, 𝐵
𝑏
, 𝐵
𝑐
, 𝐵
𝑑
, 𝐵
𝑒
, 𝐵
𝑓
) and the column labeled by 𝑥

(𝑥 = 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
, 𝑢
9
, 𝑢
10
, 𝑢
11
, 𝑢
12
), is 1

or 0 by 𝑥 and 𝐵 are connected or 𝑥 and 𝐵 are not
connected.

(1.5) If the teacher-student interactive platform (𝑈;B) is
connected, then students can communicate easily
with each other by using (𝑈;B).

(2) The Covering Approximation Space (𝑈;C)

Induced by (𝑈;B)

(2.1) For each 𝛼 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, let 𝐾
𝛼
be a set of some

information points in𝑈 such that 𝑢 is an information
point in 𝐾

𝛼
if and only if 𝑢 and 𝐵

𝛼
are connected:

(2.1.1) 𝐾
𝑎
= {𝑢
1
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
, 𝑢
11
},

(2.1.2) 𝐾
𝑏
= {𝑢
2
, 𝑢
3
, 𝑢
5
, 𝑢
8
, 𝑢
10
, 𝑢
12
},

(2.1.3) 𝐾
𝑐
= {𝑢
1
, 𝑢
2
, 𝑢
7
, 𝑢
9
, 𝑢
11
, 𝑢
12
},

(2.1.4) 𝐾
𝑑
= {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
9
, 𝑢
10
, 𝑢
12
},

(2.1.5) 𝐾
𝑒
= {𝑢
3
, 𝑢
4
, 𝑢
6
, 𝑢
7
, 𝑢
8
, 𝑢
9
},

(2.1.6) 𝐾
𝑓
= {𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
10
, 𝑢
11
}.

(2.2) PutC = {𝐾
𝑎
, 𝐾
𝑏
, 𝐾
𝑐
, 𝐾
𝑑
, 𝐾
𝑒
, 𝐾
𝑓
}.

(2.3) It is clear that C is a cover of 𝑈. By Proposition 5
and Definition 6, (𝑈;C) is a covering approximation
space induced by (𝑈;B).

(3) The Connectivity of (𝑈;C). By a simple algorithm, it can
be obtained that if 𝑋 is a nonempty outer definable subset
of (𝑈;C), then 𝑋 = 𝑈. In fact, let 𝑋 be an outer definable
subset of (𝑈;C) and 𝑋 ̸= 0. Then there is 𝑢

𝑖
∈ 𝑋 for some 𝑖 ∈

{1, 2, . . . , 12}. If 𝑢
1
∈ 𝑋, then𝐾

𝛼
⋂𝑋 ̸= 0 for 𝛼 = 𝑎, 𝑐, 𝑑. Thus,

= 𝐶(𝑋) = ⋃{𝐾 : 𝐾 ∈ C⋀𝐾⋂𝑋 ̸= 0} ⊇ 𝐾
𝑎
⋃𝐾
𝑐
⋃𝐾
𝑑
=

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
, 𝑢
9
, 𝑢
10
, 𝑢
11
,𝑢
12
} = 𝑈. It follows

that 𝑋 = 𝑈. By the same method, we can obtain that if
𝑢
𝑖
∈ 𝑋 for any 𝑖 ∈ {2, 3, . . . , 12}, then 𝑋 = 𝑈. This shows

that (𝑈;C) has no nonempty outer definable proper subset.
By Proposition 16, (𝑈;C) has no nonempty definable proper
subset. It follows that (𝑈;C) is connected fromTheorem 18.

(4) The Connectivity of (𝑈;B). By Theorem 11, (𝑈;B) is
connected.

By (1.5), the students can communicate easily with
each other by using the teacher-student interactive platform
(𝑈;B).
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Remark 20. By teacher-student interactive platforms, we give
a further application of rough set theory in pedagogy, which
makes it possible to research education by logical methods
and mathematical methods.

5. Conclusions

In this paper, we introduce wireless network systems and take
covering approximation spaces as mathematical models of
wireless network systems. We prove that a wireless network
system is connected if and only if the relevant covering
approximation space is connected. With the help of covering
approximation operators 𝐶 and 𝐶, we characterize the con-
nectivity of covering approximation spaces by their definable
subsets. Then, it is obtained that a wireless network system is
connected if and only if the relevant covering approximation
space has no nonempty definable proper subset. As a concrete
application of covering approximation spaces in wireless
network systems, we discuss the connectivity of teacher-
student interactive platforms, which further demonstrates
the usefulness of rough set theory in pedagogy and makes
it possible to research education by logical methods and
mathematical methods.
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