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We study a free boundary problem for a reaction diffusion equation modeling the spreading of a biological or chemical species.
In this model, the free boundary represents the spreading front of the species. We discuss the asymptotic behavior of bounded
solutions and obtain a trichotomy result: spreading (the free boundary tends to +∞ and the solution converges to a stationary
solution defined on [0 + ∞)), transition (the free boundary stays in a bounded interval and the solution converges to a stationary
solution with positive compact support), and vanishing (the free boundary converges to 0 and the solution tends to 0 within a finite
time).

1. Introduction

Consider the following free boundary problem:

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢) , 0 < 𝑥 < ℎ (𝑡) , 𝑡 > 0,

𝑢 (𝑡, 0) = 𝑢 (𝑡, ℎ (𝑡)) = 0, 𝑡 > 0,

ℎ
󸀠
(𝑡) = −𝜇𝑢

𝑥
(𝑡, ℎ (𝑡)) − 𝜇𝛼, 𝑡 > 0,

ℎ (0) = ℎ
0
, 𝑢 (0, 𝑥) = 𝑢

0
(𝑥) , 0 ≤ 𝑥 ≤ ℎ

0
,

(1)

where 𝑥 = ℎ(𝑡) is a moving boundary to be determined tog-
ether with 𝑢(𝑡, 𝑥) and 𝛼 > 0 is a given constant. The initial
function 𝑢

0
belongs toY(ℎ

0
) for some ℎ

0
> 0, where

Y (ℎ
0
) := {𝜙 ∈ 𝐶

2
([0, ℎ
0
]) : 𝜙 (0) = 𝜙 (ℎ

0
) = 0,

𝜙 (𝑥) ≥ ( ̸≡ ) 0 in (0, ℎ
0
)} .

(2)

Recently, problem (1) with 𝛼 = 0was studied by [1–3] and
so forth. They used this model to describe the spreading of
a new or invasive species; they used the free boundary ℎ(𝑡)
which represents the expanding front of the species whose
density is represented by 𝑢(𝑡, 𝑥). They obtained a spreading-
vanishing dichotomy result; namely, the species either
spreads to the whole environment and stabilizes at the

positive state 1 (i.e., 𝑢 → 1) or vanishes (i.e., 𝑢 → 0) as time
goes to infinity. Such a result shows that problem (1) with 𝛼 =
0 has advantages comparing with the Cauchy problems (the
Cauchy problems have hair-trigger effect: any positive solu-
tion which converges to a positive constant; cf. [4, 5]). In the
last two years, [6] also studied the corresponding problem of
(1) with 𝛼 = 0 in high dimension spaces.

In this paper, we mainly study problem (1) with 𝛼 > 0;
such a boundary condition represents that there is a spreading
resistant force at the front for some species. Intuitively, the
presence of 𝛼 > 0 makes the solution more difficult to
spread than the case where 𝛼 = 0. Indeed, ℎ󸀠(𝑡) > 0 only
if 𝑢
𝑥
(𝑡, ℎ(𝑡)) < −𝛼. This boundary condition is widely used in

many biological models. For example, it is often used in
protocell models (cf. [7, 8]).

We give the following theorem whose proof is similar to
that of [1, 2]. It suffices to repeat their arguments with obvious
modification.

Theorem 1. For any given 𝛾 ∈ (0, 1), there is a 𝑇 ∈ (0, +∞)

such that free boundary problem (1) has a solution

(𝑢, ℎ) ∈ 𝐶
((1+𝛾)/2),1+𝛾

(𝐷
𝑇
) × 𝐶
1+𝛾/2

([0, 𝑇]) , (3)
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where 𝐷
𝑇
:= {(𝑡, 𝑥) ∈ R2 : 𝑥 ∈ [0, ℎ(𝑡)], 𝑡 ∈ (0, 𝑇]}, and the

solution can be extended to some interval (0, 𝑇
0
)with𝑇

0
> 𝑇 as

long as inf
0<𝑡<𝑇

ℎ(𝑡) > 0.

Moreover, as in the proof of [9, Lemma 2.8], one can
show that ℎ

∞
:= lim

𝑡→𝑇
ℎ(𝑡) ∈ [0, +∞] exist.

Themain purpose of this paper is to study the asymptotic
behavior of bounded solutions of (1) and obtain trichotomy
result. We will prove that, for a solution (𝑢, ℎ) of (1), one has
either

(i) spreading: ℎ
∞
= +∞ and

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 𝑤 (𝑥) locally uniformly in (0, +∞) , (4)

where 𝑤 is the unique positive solution of

𝑞
󸀠󸀠
+ 𝑞 (1 − 𝑞) = 0, 𝑥 > 0,

𝑞 (0) = 0,

(5)

or

(ii) vanishing: lim
𝑡→𝑇

ℎ(𝑡) = 0 and

𝑇 < +∞, lim
𝑡→𝑇

max
0≤𝑥≤ℎ(𝑡)

𝑢 (𝑡, 𝑥) = 0 (6)

or

(iii) transition: 0 < ℎ
∞
< +∞ and

lim
𝑡→∞

𝑢 (𝑡, ⋅) = V (⋅) locally uniformly in (0, ℎ
∞
) , (7)

where V is the solution of

V󸀠󸀠 + V (1 − V) = 0, 𝑥 ∈ (0, ℎ
∞
) ,

V (0) = V (ℎ
∞
) = 0, −V󸀠 (ℎ

∞
) = 𝛼.

(8)

Remark 2. Comparing with the results in [1–3], the pheno-
menon (iii) is a new one, since it does not happen in case 𝛼 =
0.

Remark 3. (ii) shows that vanishing happens in a finite time
and the free boundary converges to the point 0; those phe-
nomena are also new and do not happen in case 𝛼 = 0.

2. Asymptotic Behavior of Solutions

In this section, we study the asymptotic behavior of solutions
and obtain trichotomy result when 𝛼 < √3/3; namely, the
solution of (1) is either vanishing (Theorem 6) or transition
(Theorem 7) or spreading (Theorem 10). Then, we prove that
only vanishing happens if 𝛼 ≥ √3/3 (Theorem 11) for the
completeness of the paper.

We first prepare the following comparison theorems
which can be proved similarly as in [2, Lemma 3.5].

Lemma 4. Suppose that 𝑇 ∈ (0,∞), ℎ ∈ 𝐶1([0, 𝑇]), and 𝑢 ∈
𝐶(𝐷
𝑇
) ∩𝐶
1,2
(𝐷
𝑇
) with𝐷

𝑇
= {(𝑡, 𝑥) ∈ R2 : 0 < 𝑡 ≤ 𝑇, 0 < 𝑥 <

ℎ(𝑡)} and

𝑢
𝑡
≥ 𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢) , 0 < 𝑡 ≤ 𝑇, 0 < 𝑥 < ℎ (𝑡) ,

𝑢 (𝑡, 0) ≥ 0, 𝑢 (𝑡, ℎ (𝑡)) = 0, 0 < 𝑡 ≤ 𝑇,

ℎ

󸀠

(𝑡) ≥ −𝜇𝑢 (𝑡, ℎ (𝑡)) − 𝜇𝛼, 0 < 𝑡 ≤ 𝑇.

(9)

If ℎ
0
≤ ℎ(0) and 𝑢

0
(𝑥) ≤ 𝑢(0, 𝑥) in [0, ℎ

0
] and if (𝑢, ℎ) is a

solution of (1), then

ℎ (𝑡) ≤ ℎ (𝑡) , 𝑢 (𝑥, 𝑡) ≤ 𝑢 (𝑥, 𝑡) for 𝑡 ∈ (0, 𝑇] ,

𝑥 ∈ (0, ℎ (𝑡)) .

(10)

Remark 5. The pair (𝑢, ℎ) is usually called an upper solution
of problem (1) and one can define a lower solution by revising
all the inequalities.

Theorem 6. Let (𝑢, ℎ) be a solution of (1) on [0, 𝑇
∗
). If

lim
𝑡→𝑇

∗ℎ(𝑡) = 0, then 𝑇∗ < +∞ and

lim
𝑡→𝑇

∗

max
0≤𝑥≤ℎ(𝑡)

𝑢 (𝑡, 𝑥) = 0. (11)

Proof. By [2, 10], one can prove that there exists a constant𝐶
1

such that 𝑢(𝑡, 𝑥) ≤ 𝐶
1
. In order to prove that 𝑢 converges to

0, we need to construct the function

𝑈 (𝑡, 𝑥) := 𝐶
1
[2𝑀 (ℎ (𝑡) − 𝑥) −𝑀

2
(ℎ (𝑡) − 𝑥)

2
] (12)

over the region

𝑄 := {(𝑡, 𝑥) : 0 < 𝑡 < 𝑇
∗
,max {ℎ (𝑡) − 𝑀−1, 0} < 𝑥 < ℎ (𝑡)} ,

(13)

where

𝑀 := max{𝛼 +
√𝛼
2
+ 2

2

,

4
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐶
1
([−ℎ
0
,ℎ
0
])

3𝐶
1

} . (14)

Clearly 0 ≤ 𝑈 ≤ 𝐶
1
in 𝑄. By the definitions of 𝑈 and𝑀,

we have

𝑈
𝑡
− 𝑈
𝑥𝑥
− 𝑈 (1 − 𝑈) ≥ 𝐶

1
(2𝑀
2
− 2𝑀𝛼 − 1) ≥ 0 in 𝑄.

(15)

Moreover,

𝑈 (𝑡, ℎ (𝑡)) = 𝑢 (𝑡, ℎ (𝑡)) = 0 for 𝑡 ∈ (0, 𝑇∗) ,

𝑈 (𝑡, 0) > 0 = 𝑢 (𝑡, 0) when ℎ (𝑡) < 𝑀
−1
.

(16)

Therefore, 𝑢(𝑡, 𝑥) ≤ 𝑈(𝑡, 𝑥) in 𝑄 by the comparison principle
Lemma 4. Note that lim

𝑡→𝑇
∗ℎ(𝑡) = 0; then there exists 𝑇

1
<

𝑇
∗ such that ℎ(𝑡) − 𝑀−1 < 0 for 𝑡 > 𝑇

1
. Therefore, 𝑢(𝑡, 𝑥) ≤

𝑈(𝑡, 𝑥) for 𝑡 > 𝑇
1
and 𝑥 ∈ [0, ℎ(𝑡)]. For such 𝑡 and 𝑥, we have

𝑈 (𝑡, 𝑥) ≤ 2𝑀𝐶
1
ℎ (𝑡) 󳨀→ 0 as 𝑡 󳨀→ 𝑇

∗
; (17)
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it follows that

‖𝑢 (𝑡, ⋅)‖
𝐿
∞
([0,ℎ(𝑡)])

󳨀→ 0 as 𝑡 󳨀→ 𝑇
∗
. (18)

We now prove that 𝑇∗ < +∞. By lim
𝑡→𝑇

∗ℎ(𝑡) = 0, there
is some 𝐿

∗
> 0 such that

ℎ (𝑡) ≤ 𝐿
∗

for 𝑡 ∈ [0, 𝑇∗) . (19)

Set 𝐿 := 2(1 + 𝐿
∗
) and

𝜉
0
(𝑥) :=

2𝜀

𝐿
2
(𝐿
2
− 𝑥
2
) , (20)

where 𝜀 > 0 is small such that

8 (𝛼 + √𝛼
2
+ 2) 𝜀 ≤ 𝛼, 32𝜀 ≤ 𝛼. (21)

Consider the problem

𝜉
𝑡
= 𝜉
𝑥𝑥
+ 2𝜉 (1 −

𝜉

2𝜀

) , 0 < 𝑥 < ℎ (𝑡) , 𝑡 > 0,

𝜉 (𝑡, 0) = 𝜉 (𝑡, ℎ (𝑡)) = 0, 𝑡 > 0,

ℎ

󸀠

(𝑡) = −𝜇𝜉
𝑥
(𝑡, ℎ (𝑡)) − 𝜇𝛼, 𝑡 > 0,

ℎ (0) = 𝐿, 𝜉 (0, 𝑥) = 𝜉
0
(𝑥) , 0 ≤ 𝑥 ≤ 𝐿.

(22)

It is obvious that 𝜉(𝑡, 𝑥) ≤ 2𝜀 for all 𝑡 ≥ 0. Construct a
function

𝑈
𝜀
(𝑡, 𝑥) := 2𝜀 [2𝑀(ℎ (𝑡) − 𝑥) −𝑀

2
(ℎ (𝑡) − 𝑥)

2

] (23)

over 𝑄 := {(𝑡, 𝑥) : 𝑡 > 0,max{0, ℎ(𝑡) − 𝑀−1} ≤ 𝑥 ≤ ℎ(𝑡)},
where𝑀 := max{𝛼 + √𝛼2 + 2, 4}. Then 𝑈𝜀(𝑡, 𝑥) is an upper
solution of (22) over 𝑄 and so

−𝜉
𝑥
(𝑡, ℎ (𝑡)) ≤ −𝑈

𝜀

𝑥
(𝑡, ℎ (𝑡)) = 4𝑀𝜀 ≤

𝛼

2

. (24)

Therefore, ℎ
󸀠

(𝑡) ≤ −𝛼𝜇/2. Thus, ℎ(𝑡) → 0 as 𝑡 → 𝑇

∗

≤

2𝐿/𝛼𝜇.
On the other hand, (18) implies that there exists some𝑇

0
∈

(0, 𝑇
∗
) such that 𝑢(𝑡, 𝑥) ≤ 𝜀 for all 𝑥 ∈ [0, ℎ(𝑡)] and 𝑡 > 𝑇

0
.

Clearly 𝜉
0
(𝑥) ≥ 𝑢(𝑇

0
, 𝑥) for 𝑥 ∈ [0, ℎ(𝑇

0
)]. By the comparison

principle, we have ℎ(𝑡 + 𝑇
0
) ≤ ℎ(𝑡), and so 𝑇∗ cannot be∞.

Theorem 7. Assume that 0 < 𝛼 < √3/3. Let (𝑢, ℎ) be a
solution of (1). If 0 < ℎ

∞
< +∞, then

ℎ
∞
= 𝐿
𝛼
,

lim
𝑡→∞

𝑢 (𝑡, ⋅) = V
𝛼
(⋅) locally uniformly in (0, ℎ

∞
) ,

(25)

where V
𝛼
is a unique positive solution of

V󸀠󸀠 + V (1 − V) = 0, 0 < 𝑥 < 𝐿
𝛼
,

V (0) = V (𝐿
𝛼
) = 0, V󸀠 (0) = −V󸀠 (𝐿

𝛼
) = 𝛼,

(26)

where

𝐿
𝛼
:= 2 ∫

𝐵

0

𝑑𝑟

√𝛼
2
− 𝑟
2
+ (2/3) 𝑟

3
(27)

with 𝐵 ∈ (0, 1) given by 𝛼2 = 2 ∫𝐵
0
𝑠(1 − 𝑠)𝑑𝑠.

Remark 8. This is a new phenomenon. It never happenswhen
𝛼 = 0. Moreover, by the phase plane method, one can prove
that V

𝛼
→ 0 and 𝐿

𝛼
→ 𝜋 as 𝛼 → 0. This conclusion gives

an explanation of Lemma 3.1 in [2]; that is, vanishing happens
if ℎ
∞
≤ 𝜋.

Remark 9. It is easily seen that (26) has no positive solution
when 𝛼 ≥ 2 ∫1

0
𝑠(1 − 𝑠)𝑑𝑠 = √3/3.

Proof of Theorem 7. For any 𝜀 > 0, there exists 𝑡∗ > 0 such
that ℎ

∞
−𝜀 < ℎ(𝑡) < ℎ

∞
+𝜀 for 𝑡 > 𝑡∗. Let 𝑢

0
(𝑥) be a function

defined on (0, ℎ
∞
+ 𝜀) and satisfies

𝑢
0
(𝑥) ≥ 𝑢 (𝑡

∗
, 𝑥) for 𝑥 ∈ (0, ℎ

∞
) ,

𝑢
0
(0) = 𝑢

0
(ℎ
∞
+ 𝜀) = 0.

(28)

By the comparison principle we have 𝑢(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥) in
(𝑡
∗
,∞) × (0, ℎ(𝑡)), where 𝑢(𝑡, 𝑥) is the solution of

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢) , 𝑡 > 𝑡

∗
, 0 < 𝑥 < ℎ

∞
+ 𝜀,

𝑢 (𝑡, 0) = 𝑢 (𝑡, ℎ
∞
+ 𝜀) = 0, 𝑡 > 𝑡

∗
,

𝑢 (𝑡
∗
, 𝑥) = 𝑢

0
(𝑥) , 0 < 𝑥 < ℎ

∞
+ 𝜀.

(29)

It is well known that

(i) 𝑢 → 0 as 𝑡 → ∞ if ℎ
∞
+ 𝜀 ≤ 𝜋; or

(ii) 𝑢 → 𝑢
∗

𝜀
as 𝑡 → ∞ if ℎ

∞
+ 𝜀 > 𝜋,

where 𝑢∗
𝜀
is a positive function.More precisely, when ℎ

∞
+𝜀 >

𝜋, it follows from [11, Corollary 3.4] that 𝑢∗
𝜀
is the unique pos-

itive solution of

(𝑢
∗

𝜀
)
󸀠󸀠

+ 𝑢
∗

𝜀
(1 − 𝑢

∗

𝜀
) = 0, 0 < 𝑥 < ℎ

∞
+ 𝜀,

𝑢
∗

𝜀
(ℎ
∞
+ 𝜀) = 𝑢

∗

𝜀
(0) = 0.

(30)

Hence,

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 0, or lim sup
𝑡→∞

𝑢 (𝑡, 𝑥) ≤ 𝑢
∗

𝜀
. (31)

Similarly,

lim inf
𝑡→∞

𝑢 (𝑡, 𝑥) ≥ 𝑢
∗

𝜀
(𝑥) when ℎ

∞
− 𝜀 > 𝜋, (32)

where 𝑢∗
𝜀
(𝑥) is a positive solution of

(𝑢
∗

𝜀
)
󸀠󸀠

+ 𝑢
∗

𝜀
(1 − 𝑢

∗

𝜀
) = 0, 0 < 𝑥 < ℎ

∞
− 𝜀,

𝑢
∗

𝜀
(ℎ
∞
− 𝜀) = 𝑢

∗

𝜀
(0) = 0.

(33)

We conclude from (31) and (32) that

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 0 if ℎ
∞
≤ 𝜋, (34)
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or when ℎ
∞
> 𝜋,

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 𝑢
∗
(𝑥) locally uniformly in (0, ℎ

∞
) ,

(35)

where 𝑢∗(𝑥) is the unique positive solution of

(𝑢
∗
)
󸀠󸀠

+ 𝑢
∗
(1 − 𝑢

∗
) = 0, 0 < 𝑥 < ℎ

∞
,

𝑢
∗
(ℎ
∞
) = 𝑢
∗
(0) = 0.

(36)

We now show that lim
𝑡→∞

𝑢(𝑡, 𝑥) = 0 is impossible when
ℎ
∞
> 0. Suppose that this does not hold; there exists 𝐿

0
such

that ℎ(𝑡) ≤ 𝐿
0
. Then using the approach of proving 𝑇∗ < +∞

inTheorem 7, we can show that lim
𝑡→𝑇

ℎ(𝑡) = 0 for some 0 <
𝑇 < +∞; this contradicts the assumption ℎ

∞
> 0. Hence,

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 𝑢
∗
(𝑥), locally uniformly in (0, ℎ

∞
); we next

prove that 𝑢∗(𝑥) = V
𝛼
(𝑥).

Make a change of the variable 𝑥 to reduce [0, ℎ(𝑡)] to the
fixed interval [0, ℎ

0
] and use 𝐿𝑝 estimates as well as Sobolev

embedding theorems on the reduced equation with Dirichlet
boundary conditions to conclude that
󵄩
󵄩
󵄩
󵄩
𝑢 (𝑡, ⋅) − 𝑢

∗
(⋅)
󵄩
󵄩
󵄩
󵄩𝐶
1+(𝛾/2) ([0, ℎ (𝑡)]) 󳨀→ 0 (𝑡 󳨀→ ∞)

(37)

for some 𝛾 > 0. It follows that ℎ󸀠(𝑡) = −𝜇𝑢
𝑥
(𝑡, ℎ(𝑡)) − 𝜇𝛼 →

−𝜇(𝑢
∗
)
󸀠
(ℎ
∞
)−𝜇𝛼 as 𝑡 → ∞. Hence, we conclude that (0, ℎ

∞
)

is not a finite interval unless −(𝑢∗)󸀠(ℎ
∞
) = 𝛼.

Theorem 10. Let (𝑢, ℎ) be a solution of (1). If ℎ
∞
= +∞, then

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 𝑤 (𝑥) locally uniformly in [0, +∞) ,

(38)

where 𝑤 is the unique positive solution of

𝑞
󸀠󸀠
+ 𝑞 (1 − 𝑞) = 0, 𝑥 > 0,

𝑞 (0) = 0.

(39)

Proof. Choose a bounded continuous function 𝑊
0
(𝑥) ≥

𝑢
0
(𝑥) for 𝑥 ∈ [0, ℎ

0
] and𝑊

0
≥ 0 for 𝑥 ∈ [0, +∞). Let𝑊(𝑡, 𝑥)

be the unique solution of

𝑊
𝑡
= 𝑊
𝑥𝑥
+𝑊(1 −𝑊) , 𝑡 > 0, 𝑥 > 0,

𝑊 (𝑡, 0) = 0, 𝑡 > 0,

𝑊 (0, 𝑥) = 𝑊
0
(𝑥) , 𝑥 > 0.

(40)

Then the comparison principle theorem shows that 𝑢(𝑡, 𝑥) ≤
𝑊(𝑡, 𝑥) for 𝑡 > 0, 𝑥 > 0. Using [11, Lemma 3.4], we see that

lim sup
𝑡→∞

𝑢 (𝑡, 𝑥) ≤ lim
𝑡→∞

𝑊(𝑡, 𝑥) = 𝑤 (𝑥) for 𝑥 ∈ [0, +∞) .

(41)

On the other hand, since ℎ
∞
= +∞, for any large 𝑙 > 𝜋,

there is 𝜏 > 0 such that ℎ(𝜏) = 𝑙 and ℎ(𝑡) ≥ 𝑙 for all 𝑡 > 𝜏. Let
𝑢
𝑙
(𝑡, 𝑥) be the solution of the following problem:

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢) , 𝑡 > 𝜏, 0 < 𝑥 < 𝑙,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝑙) = 0, 𝑡 > 𝜏,

𝑢 (0, 𝑥) = 𝜓 (𝑥) , 0 < 𝑥 < 𝑙,

(42)

where 𝜓 is a nonnegative continuous function satisfying
𝜓(𝑥) ≤ 𝑢(𝜏, 𝑥) for 0 < 𝑥 < 𝑙. The comparison principle
implies

𝑢
𝑙
(𝑡, 𝑥) ≤ 𝑢 (𝑡, 𝑥) for 𝑡 > 𝜏, 0 ≤ 𝑥 ≤ 𝑙. (43)

By [11], one can obtain

lim
𝑡→∞

𝑢
𝑙
(𝑡, 𝑥) = V

𝑙
(𝑥) uniformly in [0, 𝑙] , (44)

where V
𝑙
is the positive solution of

V󸀠󸀠 + V (1 − V) = 0, 0 < 𝑥 < 𝑙,

V (0) = V (𝑙) = 0,
(45)

It is well known that lim
𝑙→∞

V
𝑙
(𝑥) = 𝑤(𝑥). Combining this

with (43) and (44), we have

𝑤 (𝑥) ≤ lim inf
𝑡→∞

𝑢 (𝑡, 𝑥) . (46)

By (41) and (46), we have

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 𝑤 (𝑥) . (47)

Theorem 11. Suppose that 𝛼 ≥ √3/3 and (𝑢, ℎ) is a solution
of (1) defined on some maximal existence interval [0, 𝑇

∗
); then

𝑇
∗
< +∞, 𝑢 converges to 0 as 𝑡 → 𝑇

∗
, and lim

𝑡→𝑇
∗

ℎ(𝑡) = 0.

Proof. The proof of this theorem is similar to [10]; it suffices
to repeat their arguments with obvious modification.

3. Example

In this section, we give some sufficient conditions for vanish-
ing, spreading, and transition.

Example 1. Suppose that 𝛼 < √3/3. Let ℎ
0
> 0 and 𝑢

0
(𝑥) ∈

Y(ℎ
0
); then the following properties hold:

(i) vanishing happens when 𝑢
0
(𝑥) < V

𝛼
(𝑥);

(ii) spreading happens if 𝑢
0
(𝑥) > V

𝛼
(𝑥) for 𝑥 ∈ [0, ℎ

0
];

(iii) transition happens if 𝑢
0
(𝑥) ≡ V

𝛼
(𝑥) for 𝑥 ∈ [0, ℎ

0
].

Proof. (i) By [1], we see that V
𝛼
1

(𝑥) < V
𝛼
2

(𝑥) for 𝛼
1
< 𝛼
2
. Since

𝑢
0
(𝑥) < V

𝛼
(𝑥), there is 𝛽 < 𝛼 such that 𝑢

0
(𝑥) < V

𝛽
(𝑥), by the

comparison principle that 𝑢(𝑡, 𝑥) < V
𝛽
(𝑥), so ℎ

∞
̸= + ∞ and

ℎ
∞

̸= 𝐿
𝛼
. It then follows from Theorem 6 that vanishing

happens.
(ii) Let (𝑢, ℎ) be a solution of (1) with initial data 𝑢

0
(𝑥); by

the phase plane analysis, there is 𝛾 > 𝛼 such that 𝑢
0
(𝑥) >

V
𝛾
(𝑥). It then follows from the comparison principle that

𝑢(𝑡, 𝑥) > V
𝛾
(𝑥), so Theorem 10 implies that ℎ

∞
= +∞ and

spreading happens.
(iii) It follows from the comparison principle Lemma 4

that 𝑢(𝑡, 𝑥) ≡ V
𝛼
(𝑥) and ℎ(𝑡) ≡ 𝐿

𝛼
for all 𝑡 > 0.
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