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The root extraction problem over quaternion rings modulo an RSA integer is defined, and the intractability of the problem is
examined. A signature scheme is constructed based on the root extraction problem. It is proven that an adversary can forge a
signature on a message if and only if he can extract the roots for some quaternion integers. The performance and other security
related issues are also discussed.

1. Introduction

Cryptographic algorithms are important tools to resolve the
security issues in open networks, amongst which the public
key cryptographic schemes [1]may be themost powerful tool.
In a public key cryptosystem, two separate keys are deployed.
One key is kept secret and can be used to decrypt ciphertexts
or sign messages, and the other key can be published and
is used for encrypting plaintexts or verifying signatures. It
requires that it should be computationally infeasible to derive
the secret key from the public key. In public key cryptography,
three categories of algorithms are widely used in network
and information security engineering according to their
functionalities, namely, key exchange protocols [2], public
key encryption schemes [3], and digital signature schemes
[4]. The key exchange protocols are used to establish the
shared keys between two communication parties. The public
key encryption algorithm allows the encryption key to be
published without compromising the security of the decryp-
tion key and hence does not require securely initializing a
shared key between the communication sender and receiver.
A digital signature scheme is used to create a digital signature
on a message by using the secret key, so a signature scheme

allows the authenticity of a message or a document by using
the public key to verify the validity of the signature.

It is striking to note that most of the widely used unbro-
ken public key cryptosystems are based on some number-
theoretic intractability assumptions such as the integer fac-
torization problem, the discrete logarithm problem defined
over finite fields, and the elliptic curve discrete logarithm
problem [1]. However, we have a strong desire to enrich
the public key cryptographic toolkits to avoid putting all
application-oriented eggs in one cryptographic basket. So
tremendous efforts had been made to develop public key
cryptosystems from other problems. In particular, it seems
a nice idea to introduce some noncommutative algebraic
structures [5–13] in the design of public key ciphers to destroy
the commutativity property commonly shared in the widely
used public key cryptosystems.

In the realm of noncommutative public key cryptography,
some key exchange protocols and public key encryption
schemes were developed, amongst which are the notable
AAG commutator key exchange protocol [14] and its vari-
ants [15–17], the MOR encryption algorithm [18], the MST
cryptosystems [19, 20], and the braid public key encryption
schemes [21] and their instantiations on other generalized
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noncommutative groups [7, 11–13]. On the one hand, many
of the previous proposals were shown vulnerable to some
attacks [22–34]. On the other hand, very few secure signature
schemes were known in the literature of noncommuta-
tive public key cryptography [35–41]. The known signature
schemes may have at least one of the flaws listed below.

(i) The security of the signature schemes cannot bemath-
ematically proven [35–38]. Only the three schemes in
[39–41] satisfy the provable security goals.

(ii) Some signature schemes [39–41] utilized some non-
standard intractability assumptions. These newly
defined mathematical problems were not fully stud-
ied, so if the underlying intractability was not true,
these schemes would be insecure.

(iii) The intractability problems were not tightly used in
the construction of the signature schemes [35], which
makes it possible for an adversary to forge a signature
on a message just by solving an easy problem but
not necessarily the underlying intractable problem
[42, 43].

In this paper, we propose a novel signature scheme from
the root extraction problem defined on the quaternion ring
modulo an RSA integer. Our proposal overcomes the flaws
existing in the known signature schemes.

(i) The security is based on the root extraction problem
over quaternions, which can be seen as the gen-
eralizations of the standard RSA problem and the
quadratic residue problem modulo an RSA modulus.
So the intractability assumption of our proposal is
well established.

(ii) The security of the proposed signature scheme is
tightly dependent on the root extraction problem
over quaternion rings. Any adversary must solve
the underlying intractability problem in order to
successfully recover the secret key or forge a signature.

(iii) The proposal is provably secure. We prove that an
adversary can forge a signature for a given message
if and only if he can extract the 𝑒-th root for a given
quaternion number.

We also provide a thorough security scrutiny on the
proposed signature scheme with respect to key recovery
attacks and partial key exposure attacks. Performance anal-
ysis demonstrates that the proposal is efficient and practical.

The rest of the paper is organized as follows. In Section 2,
we provide some preliminaries about the quaternion algebra,
discuss the related root extraction problem, and provide the
signature scheme. In Section 3, we analyze the proposal with
respect to performance and security. Finally, we conclude the
work in Section 4.

2. Proposal

We first review some definitions about quaternion algebra
and then elaborate on the proposed signature scheme.

2.1. Notations. Throughout this paper, we use R to denote
the field of real numbers and use the symbol Z to denote
the ring of integers. For a positive integer 𝑁 ∈ Z, the
modular reduction of an integer 𝑎 ∈ Z modulo 𝑁 means
the unique nonnegative least remainder 𝑏 ∈ Z of 𝑎 divided
by 𝑁 such that 𝑏 ∈ Z

𝑁
= {0, 1, . . . , 𝑁 − 1}, and we denote

𝑏 = 𝑎(mod𝑁). The greatest common divisor of two integers
𝑎 and 𝑏 is denoted by gcd(𝑎, 𝑏). We use Z∗

𝑁
to denote the set

{𝑎 ∈ Z
𝑁
: gcd(𝑎,𝑁) = 1}. For any integer 𝑎 ∈ Z∗

𝑁
there

exists a unique integer 𝑏 ∈ Z∗
𝑁
called the modular inverse

of 𝑎 modulo 𝑁 such that 𝑎𝑏 = 1(mod𝑁), and we denote
𝑏 = 𝑎
−1(mod𝑁).

2.2. Arithmetic Operations on Quaternions. The number sys-
tem of quaternions is the extension of the number system of
complex numbers. Formally, we denote the set of quaternions
as

H = {a = 𝑎
1
+ 𝑎
2
i + 𝑎
3
j + 𝑎
4
k : 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
∈ R} . (1)

We define three operations on quaternions, namely, addition,
scalar multiplication, and quaternion multiplication. For two
quaternions a = 𝑎

1
+𝑎
2
i+𝑎
3
j+𝑎
4
k and b = 𝑏

1
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k with
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for 1 ≤ 𝑖 ≤ 4. We define the scalar multiplication

of a = 𝑎
1
+ 𝑎
2
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3
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4
k ∈ H and 𝑎 ∈ R as 𝑎a = 𝑎𝑎

1
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2
i +
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3
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4
k.The quaternionmultiplication is somewhat more

complicated to define. We first define i2 = j2 = k2 = ijk = −1
and then we can derive the following relations:

ij = k, ji = −k, jk = i,

kj = −i, ki = j, ik = −j,
(2)

from which we can easily see that quaternion multiplication
is noncommutative. So the product of a = 𝑎

1
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2
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3
j+ 𝑎
4
k

and b = 𝑏
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4
k can be easily computed via
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(3)

The norm and conjugate of a = 𝑎
1
+𝑎
2
i+𝑎
3
j+𝑎
4
k are defined

as ‖a‖ = √𝑎2
1
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respectively. It is easy to verify that ‖a‖ = √aa∗ = √a∗a.
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For a positive integer 𝑁 ∈ Z and a quaternion a = 𝑎
1
+

𝑎
2
i + 𝑎
3
j + 𝑎
4
k, we define amodulo𝑁 as

a (mod𝑁) = 𝑎1 (mod𝑁) + 𝑎2 (mod𝑁) i

+ 𝑎
3 (
mod𝑁) j + 𝑎4 (mod𝑁) k.

(4)

Thus, we can define the set H
𝑁
= {a(mod𝑁): a ∈ H}. We

call a quaternion a invertible modulo 𝑁 if and only if there
exists a quaternion b such that ab = ba = 1(mod𝑁), and we
denote b = a−1(mod𝑁). We use the symbol H∗

𝑁
to denote

the set consisting of all the invertible quaternions in H
𝑁
. It

is easy to verify that a quaternion a ∈ H
𝑁

is invertible if
and only if gcd(‖a‖,𝑁) = 1. When gcd(‖a‖,𝑁) = 1, the
inverse of a modulo 𝑁 is easy to compute; namely, a−1 =
‖a‖−2a∗(mod𝑁), where ‖a‖−1 denotes themodular inverse of
‖a‖modulo𝑁.

2.3. Root Extraction ProblemoverH
𝑁
. Wedefine the 𝑒-th root

extraction problem over H
𝑁
.

Definition 1 (the 𝑒-th root extraction problem over H
𝑁
).

Given two positive integers 𝑁 ∈ Z and 2 ≤ 𝑒 ∈ Z and a
quaternion a ∈ H

𝑁
, the 𝑒-th root extraction problem over

H
𝑁
is defined as finding a quaternion b ∈ H

𝑁
if any such that

b𝑒 = a(mod𝑁). In particular, when 𝑒 = 2, the problem is
called the quadratic root extraction problem over H

𝑁
.

In this paper, we consider the case of 𝑁 being an RSA
modulus, namely, 𝑁 = 𝑝𝑞 being the product of two distinct
large primes 𝑝 and 𝑞. From the above definitions, we can see
that when 𝑒 is relatively prime to 𝜙(𝑁) = (𝑝 − 1)(𝑞 − 1), the
𝑒-th root extraction problem over H

𝑁
is a generalization of

the RSA problem, which asks for the 𝑒-th root 𝑏 for a given
integer 𝑎 ∈ Z

𝑁
; namely, 𝑎 = 𝑏

𝑒(mod𝑁). The quadratic
root extraction problem over H

𝑁
is a generalization of the

quadratic residue problem, which is defined as finding an
integer 𝑏 ∈ Z

𝑁
such that 𝑎 = 𝑏

2(mod𝑁) for the given
integer 𝑎 ∈ Z

𝑁
.Thequadratic residue problem is proven to be

equivalent to the problem of factoring the modulus𝑁 in the
construction of the Rabin public key cryptosystem [44]. We
note that the RSA problem and the quadratic residue problem
are widely believed as intractable and had been widely used
in the design of public key cryptographic primitives. So we
conjecture that the 𝑒-th root extraction problem over H

𝑁
is

also intractable.

2.4. Quaternion Signature Scheme. Quaternion algebra had
been used to design a signature scheme [35]. However, the
signature scheme was soon broken [42, 43] by solving a
quadratic congruence 𝑥2 +𝑦2 = 𝑚(mod𝑁) with the Pollard-
Schnorr algorithm [45].

We develop a new quaternion signature scheme in the
sequel. To beginwith, we first define three systemparameters:
the binary length 𝑛 ∈ Z of the modulus𝑁, the binary length
𝑘 ∈ Z of the hashed value of a message 𝑚 ∈ {0, 1}

∗, and
2 ≤ 𝑒 ∈ Z. Typically, we set 𝑛 = 1024, 𝑘 = 160, and 𝑒 = 3.
We also define a hash function 𝐻 which maps a message
bit string with an arbitrary length into a 𝑘-bit-long string;

namely,𝐻 : {0, 1}∗ → {0, 1}
𝑘. In this paper, wewrite a binary

number as a string of symbols.

2.4.1. Key Generation. The key generation algorithm runs
as follows. Firstly, the signer randomly chooses two distinct
𝑛/2-bit-long primes 𝑝 and 𝑞 and computes their product
𝑁 = 𝑝𝑞. Then, the signer randomly and uniformly chooses
two quaternions b ∈ H

𝑁
and r ∈ H∗

𝑁
and computes a =

rb𝑒r−1(mod𝑁). Finally, the signer publishes the public key
as (a, 𝑁,𝐻, 𝑒) and keeps the secret key as (b, r−1).

2.4.2. Signature. To sign a message 𝑚, the signer firstly
computes the hashed value of𝑚; namely, ℎ = 𝐻(𝑚).Then, the
signer randomly and uniformly chooses a quaternion s ∈ H∗

𝑁

and computes t = sr−1(mod𝑁) and u = sbℎs−1(mod𝑁).
Finally, the signer sends (t, u) to the verifier as the signature
on the message𝑚.

2.4.3. Verification. Upon receiving the signature (t, u), the
verifier firstly computes ℎ = 𝐻(𝑚) and k = aℎ(mod𝑁).
Then, the verifier decides whether or not the equation u𝑒 =
tkt−1(mod𝑁) is satisfied. If the equation is satisfied, the
verifier accepts (t, u) as a valid signature on the message
𝑚. Otherwise, the verifier refuses to accept (t, u) as a valid
signature on𝑚.

2.4.4. Why Verification Works. We explain why a valid
signature (t, u) on the message 𝑚 can pass the verification
equation u𝑒 = tkt−1(mod𝑁). Note that

tkt−1 = (sr−1) aℎ(sr−1)
−1

= sr−1(rb𝑒r−1)
ℎ

rs−1

= sb𝑒ℎs−1 = (sbℎs−1)
𝑒

= u𝑒 (mod𝑁) .
(5)

So a valid signature (t, u) on the message 𝑚 can pass the
verification process.

3. Analysis

3.1. Security. We analyze the security of the proposed quater-
nion signature scheme.

3.1.1. Key Security. The secret key of the proposed signature
scheme consists of b ∈ H

𝑁
and r ∈ H∗

𝑁
.We have the following

result with respect to the key security.

Theorem 2. Any adversary can recover the secret key (b, r)
from the public key (a, 𝑁,𝐻, 𝑒) if and only if he can extract
the 𝑒-th root for a ∈ H

𝑁
.

Proof. We first prove the sufficiency of the theorem. Assume
that the adversary can extract the 𝑒-th root for a ∈ H

𝑁
, and

we denote it as c ∈ H
𝑁
; namely, c𝑒 = a(mod𝑁). Then, we

randomly choose r ∈ H∗
𝑁
and compute b = r−1cr(mod𝑁).

Then, (b, r) can serve as the secret key of the proposed
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signature scheme; namely, b and r satisfy a = rb𝑒r−1(mod𝑁).
This is because

rb𝑒r−1 = r(r−1cr)
𝑒

r−1 = rr−1c𝑒rr−1 = c𝑒 = a (mod𝑁) . (6)

Then, we prove the necessity of the theorem. We assume
that the adversary recovers the secret key (b, r). So b and
r satisfy a = rb𝑒r−1(mod𝑁); namely, a = rb𝑒r−1 =

(rbr−1)𝑒(mod𝑁), from which we immediately derive an 𝑒-th
root rbr−1(mod𝑁)∈ H

𝑁
for a ∈ H

𝑁
.

Theorem 3. Assume that there exists a polynomial-time algo-
rithm A to break the key security of the proposed quaternion
signature scheme. For any quaternion a ∈ H

𝑁
such that a

has an 𝑒-th root in H
𝑁
, then there exists a polynomial-time

algorithmB to determine the 𝑒-root of a.

Proof. Wewant to construct a polynomial-time algorithmB
such that given the input (a, 𝑁, 𝑒), the algorithm B outputs
the 𝑒-th root for a ∈ H

𝑁
. To do this, we just need to show that

we can derive a public key from (a, 𝑁, 𝑒) and then access the
algorithmA to recover the corresponding secret key.

We denote the 𝑒-th root of a ∈ H
𝑁
as c ∈ H

𝑁
; namely,

c𝑒 = a(mod𝑁) and𝐻 is a hash function. Thus, we randomly
choose r ∈ H∗

𝑁
, and from the proof of Theorem 2 we know

that b = r−1cr(mod𝑁) and r can serve as the secret key
of the signature scheme with the corresponding public key
(a, 𝑁,𝐻, 𝑒). So the algorithm B runs as follows. Firstly, B
defines a hash function 𝐻; then the algorithm B feeds the
public key (a, 𝑁,𝐻, 𝑒) into the algorithm A to obtain the
output (b, r) by the algorithm A. Finally, the algorithm B

computes and outputs rbr−1(mod𝑁)∈ H
𝑁
. It can be easily

verified that rbr−1(mod𝑁) is an 𝑒-root of a and that the
algorithmB can be carried out in polynomial time.

The above theorems say that if the adversary can break the
key security of the proposed signature scheme, the adversary
can also solve a random instance of the 𝑒-th root extraction
problem over H

𝑁
, which seems computationally intractable.

3.1.2. Partial Key Exposure Attacks. We discuss the attacks
assuming that the adversary knows the quaternion b or r.
If the adversary knows the quaternion r, the adversary can
get b𝑒 = r−1ar(mod𝑁). So the adversary needs to compute
the 𝑒-root of the quaternion r−1ar ∈ H

𝑁
to derive b,

which seems computationally impossible. We also have the
following result.

Theorem 4. There exist at least 𝜙(𝑁) = (𝑝 − 1)(𝑞 − 1)

quaternions r ∈ H∗
𝑁

such that a = rb𝑒r−1(mod𝑁). If the
adversary knows b ∈ H

𝑁
, there exists an algorithm A to

compute such an r at the cost of O(log3
2
𝑁) bit operations.

Proof. Note that the secret keys b and r satisfy a =

rb𝑒r−1(mod𝑁). So we have gcd(‖r‖,𝑁) = 1. Then, for an
integer 𝛼 ∈ Z∗

𝑁
, if we denote r

𝛼
= 𝛼r(mod𝑁), we must

have gcd(‖𝛼r‖,𝑁) = gcd(𝛼‖r‖,𝑁) = 1. So r
𝛼
∈ H∗
𝑁
satisfies

r
𝛼
b𝑒r−1
𝛼
= 𝛼rb𝑒(𝛼r)−1 = 𝛼rb𝑒𝛼−1r−1 = rb𝑒r−1 = a(mod𝑁).

Note that Z∗
𝑁
have 𝜙(𝑁) = (𝑝 − 1)(𝑞 − 1) distinct integers,

so we conclude that there exist at least 𝜙(𝑁) = (𝑝 − 1)(𝑞 − 1)
quaternions r ∈ H∗

𝑁
such that a = rb𝑒r−1(mod𝑁).

If the adversary knows b, we know that ar = rb𝑒(mod
𝑁), from which the adversary can obtain four linear congru-
ences modulo 𝑁 by associating the constants and the coef-
ficients of i, j, and k. Thus, we solve the linear congruences
by using, for example, the Gaussian elimination algorithm to
obtain the coefficients of the quaternion r, which only costs
O(log3

2
𝑁) bit operations.

The above theorem says that we must keep b secret.
Otherwise, the adversary can retrieve the whole secret key in
polynomial time.

3.1.3. Signature Forgery Attacks. Given a message 𝑚, we
discuss the difficulty for the adversary to forge a signature
(u, t) on the message𝑚 such that the signature (u, t) can pass
the verification equation u𝑒 = tkt−1(mod𝑁).

Theorem 5. An adversary can produce a signature (u, t) on a
given message 𝑚 if and only if he can extract the 𝑒-th root for
k = aℎ = a𝐻(𝑚)(mod𝑁).

Proof. We first prove the sufficiency. We assume that the
adversary can extract the 𝑒-th root denoted as w ∈ H

𝑁
for

k = aℎ = a𝐻(𝑚)(mod𝑁); namely, k = aℎ = w𝑒(mod𝑁).
The adversary randomly chooses a quaternion t ∈ H∗

𝑁
and

computes u = twt−1(mod𝑁). Note that

u𝑒 = (twt−1)
𝑒

= tw𝑒t−1 = tkt−1 (mod𝑁) . (7)

So (u, t) can pass the verification equation u𝑒 =

tkt−1(mod𝑁); namely, a valid signature (u, t) on the
message𝑚 is forged.

Then, we prove the necessity. If the adversary forges
a signature (u, t) on a given message 𝑚 satisfying u𝑒 =
tkt−1(mod𝑁), so k = t−1u𝑒t = (t−1ut)𝑒(mod𝑁). Thus, an
𝑒-th root t−1ut(mod𝑁) is determined for the quaternion k ∈
H
𝑁
.

The above theorem says that there is only one way for the
adversary to forge a signature (u, t) for a given message 𝑚,
that is, to extract the 𝑒-th root for the quaternion k = aℎ =
a𝐻(𝑚)(mod𝑁). However, the 𝑒-th root extraction problem
overH

𝑁
is assumed to be intractable. So it is computationally

infeasible to forge a signature for a given message.

3.2. Performance. We analyze the performance of related
issues.

3.3. Quaternion Modular Exponentiation Operation. In the
proposed signature scheme, quaternionmodular exponentia-
tions are often used. For example, in the signature generation
algorithm, we need to compute bℎ(mod𝑁), and in the verifi-
cation algorithm we also need to compute k = aℎ(mod𝑁).
The quaternion modular exponentiation can be performed
via a square-and-multiply approach. To illustrate, we let the
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binary representation of ℎ be ℎ = ℎ
𝑘−1
⋅ ⋅ ⋅ ℎ
1
ℎ
0
= ∑
𝑘−1

𝑖=0
ℎ
𝑖
2
𝑖

with ℎ
𝑖
= 0 or 1. Given b ∈ H

𝑁
, we firstly set b

0
= b and

compute b
𝑖
= b2
𝑖−1
= b2

𝑖

(mod𝑁) for 𝑖 = 1, . . . , 𝑘 − 1. Then,
we compute

bℎ =
𝑘−1

∏

𝑖=0

bℎ𝑖
𝑖
= ∏

ℎ𝑖=1

b
𝑖 (
mod𝑁) . (8)

This is because

bℎ = b∑
𝑘−1

𝑖=0
ℎ𝑖2
𝑖

=

𝑛−1

∏

𝑖=0

bℎ𝑖2
𝑖

=

𝑛−1

∏

𝑖=0

(b2
𝑖

)

ℎ𝑖

=

𝑘−1

∏

𝑖=0

bℎ𝑖
𝑖
(mod𝑁) .

(9)

Therefore, to compute bℎ(mod𝑁) we firstly need to do (𝑘 −
1) quaternion modular multiplications to compute b

𝑖
and

then on average 𝑘/2 quaternion modular multiplications to
compute ∏

ℎ𝑖=1
b
𝑖
(mod𝑁). The quaternion modular expo-

nentiation bℎ(mod𝑁) needs about 3𝑘/2 quaternionmodular
multiplications.

3.4. Computational Costs. We consider the computational
costs for signing a message and verifying a signature.

In the signature generation phase, we need to do the com-
putations t = sr−1(mod 𝑁) and u = sbℎs−1(mod𝑁) (here
we ignore the computational inexpensive hash operations),
which are equivalent to 3 quaternionmodularmultiplications
and one quaternion modular exponentiation. According to
the aforementioned analysis, the total computations are
equivalent about 3 + 3𝑘/2 quaternion modular multiplica-
tions. We recall the quaternion modular multiplicative oper-
ation in Section 2.2. One quaternion modular multiplication
costs about 16 modular multiplications. However, we note
that modular multiplication modulo 𝑁 achieves a quadratic
complexity; namely,O(log2

2
𝑁) = O(𝑛2). So the computational

complexity for the signature scheme is given as O(𝑘𝑛2).
In the verification process, we need to compute

k = aℎ(mod𝑁) (a quaternion modular exponentiation),
u𝑒(mod𝑁) (two quaternion modular multiplications
according to the square-and-multiply approach; namely,
u
1
= u2(mod𝑁) and u𝑒 = u3 = u

1
u(mod𝑁)), and

tkt−1(mod𝑁) (two quaternion modular multiplications).
So the computational costs are about 4 + 3𝑘/2 quaternion
modular multiplications. Therefore, the computational
complexity for the verification algorithm is also O(𝑘𝑛2).

4. Conclusion

In this paper, a quaternion signature scheme was proposed
based on the root extraction problemdefined over quaternion
algebraic structures. The signature scheme only performs
O(𝑘𝑛2) bit operations to sign a message and to verify a
signature, and hence the proposal is practical.We showed that
the key security is equivalent to a random instance of the 𝑒-th
root extraction problem defined over H

𝑁
, and the signature

forgery security is equivalent to extracting the 𝑒-th root for
the quaternion k = aℎ = a𝐻(𝑚)(mod𝑁). Hence, our proposal
satisfies some provable security goals.
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