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We study the existence of periodic solutions for the one-dimensional prescribed mean curvature delay equation
(𝑑/𝑑𝑡)(𝑥󸀠(𝑡)/√1 + (𝑥󸀠 (𝑡))

2

) + ∑
𝑛

𝑖=1
𝑎
𝑖
(𝑡) 𝑔 (𝑥 (𝑡 − 𝜏

𝑖
(𝑡))) = 𝑝 (𝑡). By using Mawhin’s continuation theorem, a new result is

obtained. Furthermore, the nonexistence of periodic solution for the equation is investigated as well.

1. Introduction

Prescribed mean curvature equation arises from some prob-
lems associated with differential geometry and physics such
as combustible gas dynamics [1–3]. In the past years, the one-
dimensional mean curvature equation of autonomous type

𝑑

𝑑𝑡
(

𝑥
󸀠
(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

) = 𝑔 (𝑥 (𝑡)) (1)

has been studied by many authors [4–14]. The interesting
thing is that most of them focus on the case in which the
nonlinearity 𝑔(𝑢) is chosen to be various power growth
functions. For example, Li and Liu in [4] studied the exact
number of solutions for the boundary value problem

−(
𝑢
󸀠

√1 + (𝑢󸀠)
2

)

󸀠

= 𝜆 (𝑢
𝑝

+ 𝑢
𝑞
) , 𝑢 > 0 in (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0.

(2)

Clearly, the powers of growth with respect to the variable
𝑢 of functions on the right side of above two equations
are not greater than max{𝑝, 𝑞}. Pan in [5] studied the
exact multiple solutions of boundary value problem for a

one-dimensional prescribed mean curvature equation with
exponential nonlinearity

𝑑

𝑑𝑡
(

𝑥
󸀠
(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

) = 𝜆𝑒
𝑥(𝑡)

, 0 < 𝑡 < 𝐿,

𝑥 (0) = 𝑥 (𝐿) = 0.

(3)

Equation (3) can be viewed as a variant of the one-
dimensional Liouville-Bratu-Gelfand problem. By using the
theory of time map, some results on the existence of multiple
solutions are obtained. At the same time, we notice that Pan
and Xing in [6] further studied the exact number of solutions
for the problem

𝑑

𝑑𝑡
(

𝑥
󸀠
(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

) = 𝜆𝑓 (𝑥 (𝑡)) , −𝐿 < 𝑡 < 𝐿,

(−𝐿) = 𝑥 (𝐿) = 0,

(4)

where 𝑓(𝑢) = 𝑒𝑢, 𝑓(𝑢) = (1 + 𝑢)
𝑝, and 𝑓(𝑢) = 𝑒𝑢 − 1,

respectively. For other recent developments and applications
on the study of mean curvature equation, we refer the
reader to [15–20], while the problem of periodic solution
for prescribed mean curvature equation has been rarely
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studied [21–24]. Considering the delay phenomenon which
exists generally in nature, Feng [22] studied the existence of
periodic solutions for the one-dimensional mean curvature
type equation in the following form:

𝑑

𝑑𝑡
(

𝑥
󸀠
(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

) + 𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡)

+ 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) = 𝑝 (𝑡) .

(5)

By imposing some conditions on functions𝑓 and𝑔 as follows.
(H) there are two constants 𝑙 > 0 and 𝛾 > 0 such that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥
1
) − 𝑔 (𝑡, 𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝑙

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 ∀ (𝑡, 𝑥) ∈ 𝑅
2
; (6)

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≥ 𝛾 ∀𝑥 ∈ 𝑅; (7)

the author obtained that (3) has at least one periodic solution
by using Mawhin’s continuation theorem. From [22], we see
that assumption (H) is crucial for estimating a priori bounds
of all possible 𝑇-periodic solutions.

In this paper, we consider the following prescribed mean
curvature equation with multiple delays:

𝑑

𝑑𝑡
(

𝑥
󸀠
(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

) +

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑥 (𝑡 − 𝜏

𝑖
(𝑡))) = 𝑝 (𝑡) ,

(8)

where 𝑔 ∈ 𝐶(𝑅, 𝑅) and 𝑝, 𝑎
𝑖
, and 𝜏

𝑖
are all continuous

𝑇-periodic functions, 𝑖 = 1, 2, . . . , 𝑛. By using Mawhin’s
continuation theorem, some new results are obtained; and
the problem of nonexistence of periodic solution for (8) is
investigated as well.

The significance of this paper lies in the following two
respects: firstly, we do not need assumption (7); secondly,
the conditions imposed on function 𝑔(𝑢) and the methods
to estimate a priori bounds of possible 𝑇-periodic solutions
for the equation 𝐿𝑥 = 𝜆𝑁𝑥 are all essentially different
from corresponding ones of [22]. For example, we do not
require that the function𝑔 satisfies global Lipschitz condition
(6). Especially, the function 𝑔 is allowed to be exponential
nonlinearity.

2. Preliminaries

In order to investigate the existence of periodic solutions for
(8), we give some definitions and lemmas in this section.

In this paper, unless otherwise specified, we use the
following notation. Let 𝑃

𝑇
= {𝜑 ∈ 𝐶(𝑅, 𝑅) : 𝜑(𝑡 + 𝑇) ≡ 𝜑(𝑡)}

with the norm defined by |𝜑|
∞

= max
𝑡∈[0,𝑇]

|𝜑(𝑡)|; 𝐶
𝑇

= {𝑥 =

(𝑥
1
, 𝑥
2
)
Τ

: 𝑥
𝑖

∈ 𝐶(𝑅, 𝑅), 𝑥
𝑖
(𝑡) ≡ 𝑥

𝑖
(𝑡 + 𝑇), 𝑖 = 1, 2} and

the norm defined by ‖𝑥‖ = max{|𝑥
1
|
∞

, |𝑥
2
|
∞

}. Clearly, 𝑃
𝑇

and 𝐶
𝑇
are two Banach spaces. Furthermore, define |𝜑|

𝑝
=

(∫
𝑇

0
|𝜑(𝑠)|𝑝𝑑𝑠)

1/𝑝 for all 𝜑 ∈ 𝑃
𝑇
, where 𝑝 > 1 is a constant.

Lemma 1 (see [25]). Suppose 𝜏 ∈ 𝑃
𝑇
and 𝜏󸀠(𝑡) < 1, ∀𝑡 ∈

[0, 𝑇]. Then the function 𝑡 − 𝜏(𝑡) has its inverse 𝜇(𝑡) satisfying

𝜇 ∈ 𝐶(𝑅, 𝑅) with 𝜇(𝑡 + 𝑇) ≡ 𝜇(𝑡) + 𝑇, ∀𝑡 ∈ 𝑅. Furthermore, if
𝛼, 𝛽 ∈ 𝑃

𝑇
, then

∫
𝑇

0

𝛼 (𝑡) 𝛽 (𝑡 − 𝜏 (𝑡)) 𝑑𝑡 = ∫
𝑇

0

𝛼 (𝜇 (𝑡))

1 − 𝜏󸀠 (𝜇 (𝑡))
𝛽 (𝑡) 𝑑𝑡, (9)

∫
𝑇

0

𝛼 (𝜇 (𝑡))

1 − 𝜏󸀠 (𝜇 (𝑡))
𝑑𝑡 = ∫

𝑇

0

𝛼 (𝑡) 𝑑𝑡. (10)

Now, let us recall Mawhin’s continuation theorem. Let 𝑋

and 𝑌 be real Banach spaces and let 𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑌

be a Fredholm operator with index zero; here 𝐷(𝐿) denotes
the domain of 𝐿. This means that Im 𝐿 is closed in 𝑌 and
dim ker 𝐿 = codim Im 𝐿 < +∞. If 𝐿 is a Fredholm operator
with index zero, then there exist continuous projectors 𝑃 :

𝑋 → 𝑋, 𝑄 : 𝑌 → 𝑌 such that Im𝑃 = ker 𝐿, Im 𝐿 = ker𝑄

and 𝐿
𝐷(𝐿)∩ker𝑃 : (𝐼 − 𝑃)𝑋 → Im 𝐿 is invertible. Denote by

𝐾
𝑝
the inverse of 𝐿

𝑃
.

LetΩ be an open bounded subset of𝑋; a continuousmap
𝑁 : Ω ⊂ 𝑋 → 𝑌 is said to be 𝐿-compact in Ω if 𝑄𝑁(Ω)

is bounded and the operator 𝐾
𝑝
(𝐼 − 𝑄)𝑁(Ω) is relatively

compact.

Lemma 2 (see [26]). Suppose that 𝑋 and 𝑌 are two Banach
spaces, and 𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑌 is a Fredholm operator with
index zero. Furthermore, Ω ⊂ 𝑋 is an open bounded set and
𝑁 : Ω → 𝑌 is 𝐿-compact on Ω. If all the following conditions
hold:

(1) 𝐿𝑥 ̸= 𝜆𝑁𝑥, ∀𝑥 ∈ 𝜕Ω ∩ 𝐷(𝐿), 𝜆 ∈ (0, 1),
(2) 𝑁𝑥 ∉ Im 𝐿, ∀𝑥 ∈ 𝜕Ω ∩ ker 𝐿,
(3) deg{𝐽𝑄𝑁, Ω ∩ ker 𝐿, 0} ̸= 0, where 𝐽 : Im𝑄 → ker 𝐿

is an isomorphism,

then equation 𝐿𝑥 = 𝑁𝑥 has a solution on Ω ∩ 𝐷(𝐿).

Throughout this paper, for each 𝑖 ∈ {1, 2, . . . , 𝑛}, besides
𝜏
𝑖

∈ 𝑃
𝑇
, we suppose in addition 𝜏

𝑖
∈ 𝐶1(𝑅, 𝑅) with 𝜏󸀠(𝑡) < 1,

∀𝑡 ∈ [0, 𝑇].

Remark 3. From above assumption, one can find from
Lemma 1 that, for each 𝑖 ∈ {1, 2, . . . , 𝑛}, the function 𝑡 − 𝜏

𝑖
(𝑡)

has its inverse denoted by 𝜇(𝑡). Define

Γ (𝑡) :=

𝑛

∑
𝑖=1

𝑎
𝑖
(𝜇
𝑖
(𝑡))

1 − 𝜏󸀠
𝑖
(𝜇
𝑖
(𝑡))

,

Γ
1

(𝑡) :=

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑖
(𝜇
𝑖
(𝑡))

1 − 𝜏󸀠
𝑖
(𝜇
𝑖
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(11)

Since 𝑎
𝑖
∈ 𝑃
𝑇
, it follows from Lemma 1 again that

∫
𝑇

0

Γ (𝑡) 𝑑𝑡 =

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑡) 𝑑𝑡, ∫

𝑇

0

Γ
1

(𝑡) 𝑑𝑡 =

𝑛

∑
𝑖=1

∫
𝑇

0

󵄨󵄨󵄨󵄨𝑎𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡.

(12)

For the sake of convenience, we list the following assump-
tions which will be used for us to study the existence of
periodic solutions to (8) in Section 3.
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(A1) The functions Γ, Γ
1
, and 𝑝 satisfy Γ(𝑡) > 0 for all

𝑡 ∈ [0, 𝑇] and

𝜎 :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
∫
𝑇

0

𝑝 (𝑠) 𝑑𝑠 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠 ∈ (0, 1) , (13)

where Γ and Γ
1
are all continuous functions determined by

Remark 3.
(A2) The function 𝑔 satisfies 𝑔(𝑥) > 0 for all 𝑥 ∈ 𝑅, and

there is a constant 𝑀 > 0 such that, for all 𝑥 ∈ (𝑀, +∞),

−𝑔 (𝑥) (

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑠) 𝑑𝑠) + ∫

𝑇

0

𝑝 (𝑠) 𝑑𝑠 < 0,

−𝑔 (−𝑥) (

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑠) 𝑑𝑠) + ∫

𝑇

0

𝑝 (𝑠) 𝑑𝑠 > 0.

(14)

Remark 4. Since (8) does not contain the term 𝑓(𝑥(𝑡))𝑥
󸀠
(𝑡),

condition (7) in assumption (H) of [22] does not hold.
Furthermore, in our paper, the function 𝑔 is not required to
satisfy the global Lipschitz condition (6). So the conditions
in our paper are all essentially different from corresponding
ones of [22].

Since the differential term of 𝑥
󸀠(𝑡)/√1 + (𝑥󸀠(𝑡))

2 is
nonlinear with respect to 𝑥(𝑡), the differential operator
𝐿 : (𝐿𝑥)(𝑡) = (𝑑/𝑑𝑡)(𝑥󸀠(𝑡)/√1 + (𝑥󸀠(𝑡))

2
) associated with

Mawhin’s continuationTheorem is not Fredholm type. So we
need to convert (8) to the following two-dimensional system:

𝑥
󸀠

1
(𝑡) =

𝑥
2

(𝑡)

√1 − (𝑥
2

(𝑡))
2

,

𝑥
󸀠

2
(𝑡) = −

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑥

1
(𝑡 − 𝜏
𝑖
(𝑡))) + 𝑝 (𝑡) .

(15)

Clearly, if (𝑥
1
(𝑡), 𝑥
2
(𝑡))
Τ is a 𝑇-periodic solution to (15), then

𝑥
1
(𝑡) must be a 𝑇-periodic solution to (8). From this, we

see that, in order to investigate the existence of 𝑇-periodic
solution for (8), it suffices for us to prove that (15) has a 𝑇-
periodic solution.

For using Mawhin’s continuation theorem, let

𝐿 : 𝐷 (𝐿) 󳨀→ 𝐶
𝑇
, [𝐿𝑥] (𝑡) = (𝑥

󸀠

1
(𝑡) , 𝑥
󸀠

2
(𝑡))
Τ

, 𝑡 ∈ 𝑅,

𝑁 : Σ ⊂ 𝐶
𝑇

󳨀→ 𝐶
𝑇
,

[𝑁𝑥] (𝑡) = (

𝜓 (𝑥
2

(𝑡))

−

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑥

1
(𝑡 − 𝜏
𝑖
(𝑡))) + 𝑝 (𝑡)

) , 𝑡 ∈ 𝑅,

(16)

where Σ = {𝑥 : 𝑥 = (𝑥
1
, 𝑥
2
)
Τ

∈ 𝐶
𝑇

with |𝑥
2
|
∞

<

𝛿, |𝑥
1
|
∞

< +∞}, where 𝛿 ∈ (𝜎, 1) is a constant and 𝜎 ∈ (0, 1)

is determined in assumption (A1).

3. Main Results

In this section, we will apply Lemma 2 to study the existence
of periodic solutions for (8).

Theorem 5. Suppose that assumptions (A1) and (A2) hold.
Then (8) possesses at least one 𝑇-periodic solution.

Proof. Suppose that 𝑢 ∈ 𝐶
𝑇
is an arbitrary solution to the

equation 𝐿𝑥 = 𝜆𝑁𝑥 for each 𝜆 ∈ (0, 1), where 𝐿 and 𝑁 are
defined by (16), respectively. This implies

𝑢
󸀠

1
(𝑡) =

𝜆𝑢
2

(𝑡)

√1 − (𝑢
2

(𝑡))
2

,

𝑢
󸀠

2
(𝑡) = −𝜆

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑢

1
(𝑡 − 𝜏
𝑖
(𝑡))) + 𝜆𝑝 (𝑡) ,

𝜆 ∈ (0, 1) .

(17)

From the first formula of (18), we see

𝑢
2

(𝑡) =
(1/𝜆) 𝑢󸀠

1
(𝑡)

√1 + (𝑢󸀠
2

(𝑡))
2

/𝜆2
, 𝜆 ∈ (0, 1) . (18)

Substituting (18) into the second formula of (17), we have

𝑑

𝑑𝑡
(

(1/𝜆) 𝑢
󸀠

1
(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2
)

= −𝜆

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑢

1
(𝑡 − 𝜏
𝑖
(𝑡))) + 𝜆𝑝 (𝑡) .

(19)

Integrating both sides of (19) on the interval [0, 𝑇], we obtain

∫
𝑇

0

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑢

1
(𝑡 − 𝜏
𝑖
(𝑡))) 𝑑𝑡 = ∫

𝑇

0

𝑝 (𝑡) 𝑑𝑡. (20)

Since 𝜏󸀠
𝑖
(𝑡) < 1 for all 𝑡 ∈ [0, 𝑇], by using Lemma 1, we see

that the function 𝑡 − 𝜏
𝑖
(𝑡) has its inverse 𝜇

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛).

So by applying (9) to (20), we have

∫
𝑇

0

Γ (𝑡) 𝑔 (𝑢
1

(𝑡)) 𝑑𝑡 = ∫
𝑇

0

𝑝 (𝑡) 𝑑𝑡, (21)

where Γ(𝑡) = ∑
𝑛

𝑖=1
(𝑎
𝑖
(𝜇
𝑖
(𝑡))/(1 − 𝜏󸀠

𝑖
(𝜇
𝑖
(𝑡)))) is determined by

Remark 3. Similarly, from (19), we have

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢󸀠

1
(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ 𝜆 ∫
𝑇

0

Γ
1

(𝑡)
󵄨󵄨󵄨󵄨𝑔 (𝑢
1

(𝑡))
󵄨󵄨󵄨󵄨 𝑑𝑡 + 𝜆 ∫

𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡,

(22)

which together with the condition of 𝑔(𝑥) > 0 for all 𝑥 ∈ 𝑅

in assumption (A2) yields that

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢󸀠

1
(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ ∫
𝑇

0

Γ
1

(𝑡) 𝑔 (𝑢
1

(𝑡)) 𝑑𝑡 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡.

(23)
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It follows from the condition of Γ(𝑡) > 0 for all 𝑡 ∈ [0, 𝑇] in
assumption (A1) that

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢󸀠

1
(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ ∫
𝑇

0

Γ
1

(𝑡)

Γ (𝑡)
Γ (𝑡) 𝑔 (𝑢

1
(𝑡)) 𝑑𝑡 + ∫

𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
∫
𝑇

0

Γ (𝑡) 𝑔 (𝑢
1

(𝑡)) 𝑑𝑡 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡.

(24)

Substituting (21) into the above formula, we obtain that

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢󸀠

1
(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
∫
𝑇

0

𝑝 (𝑡) 𝑑𝑡 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡.

(25)

On the other hand, since ∫
𝑇

0
𝑢󸀠
1
(𝑠)𝑑𝑠 = 𝑢

1
(𝑇) − 𝑢

1
(0) = 0,

there must be a point 𝑡∗ ∈ [0, 𝑇] such that 𝑢󸀠
1
(𝑡∗) = 0; that is,

(1/𝜆)𝑢󸀠
1
(𝑡∗)/√1 + (𝑢󸀠

1
(𝑡∗))
2
/𝜆2 = 0. So

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1/𝜆) 𝑢󸀠
1

(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝑡

𝑡
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢󸀠

1
(𝑠)

√1 + (𝑢󸀠
1

(𝑠))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

≤ ∫
𝑡
∗

+𝑇

𝑡
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢󸀠

1
(𝑠)

√1 + (𝑢󸀠
1

(𝑠))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

= ∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
(1/𝜆)𝑢

󸀠

1
(𝑠)

√1 + (𝑢󸀠
1

(𝑠))
2

/𝜆2
)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠,

𝑡 ∈ [𝑡
∗
, 𝑡
∗

+ 𝑇] .

(26)

This together with (25) implies that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1/𝜆) 𝑢󸀠
1

(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
∫
𝑇

0

𝑝 (𝑡) 𝑑𝑡 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡,

𝑡 ∈ [𝑡
∗
, 𝑡
∗

+ 𝑇] .

(27)

From assumption (A1), we know 𝜎 = |Γ
1
/Γ|
∞

∫
𝑇

0
𝑝(𝑡)𝑑𝑡 +

∫
𝑇

0
|𝑝(𝑡)|𝑑𝑡 < 1; it follows from (18) and (27) that

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨∞ = max
𝑡∈[𝑡
∗
,𝑡
∗
+𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1/𝜆) 𝑢󸀠
1

(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜎 < 1. (28)

Furthermore, from the fact of the function 𝑥/√1 + 𝑥2 being
strongly increasing for 𝑥 ∈ 𝑅, it follows from (27) that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢󸀠
1

(𝑡)

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝜎

√1 − 𝜎2
, 𝑡 ∈ [𝑡

∗
, 𝑡
∗

+ 𝑇] ; (29)

that is,
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1

󵄨󵄨󵄨󵄨󵄨∞
= max
𝑡∈[𝑡
∗
,𝑡
∗
+𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
≤

𝜆𝜎

√1 − 𝜎2
<

𝜎

√1 − 𝜎2
:= 𝑀
0
.

(30)

By using (28), we have

1

√1 + 𝑀2
0

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 =

1

√1 + 𝑀2
0

∫
𝑡
∗

+𝑇

𝑡
∗

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

< ∫
𝑡
∗

+𝑇

𝑡
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢󸀠
1

(𝑡)

√𝜆2 + (𝑢󸀠
1

(𝑡))
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

= ∫
𝑡
∗

+𝑇

𝑡
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1/𝜆) 𝑢
󸀠

1
(𝑡)

√1 + (𝑢󸀠
1

(𝑡))
2

/𝜆2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ 𝑇𝜎,

(31)

which implies

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 < 𝑇𝜎√1 + 𝑀2

0
. (32)

Furthermore, from (21) and the condition of Γ(𝑡) > 0 for all
𝑡 ∈ [0, 𝑇] in assumption (A1), we see that there must be a
point 𝑡

1
∈ [0, 𝑇] such that

𝑔 (𝑢
1

(𝑡
1
)) ∫
𝑇

0

Γ (𝑠) 𝑑𝑠 = ∫
𝑇

0

𝑝 (𝑠) 𝑑𝑠; (33)

that is,

𝑔 (𝑢
1

(𝑡
1
)) =

∫
𝑇

0
𝑝 (𝑠) 𝑑𝑠

∫
𝑇

0
Γ (𝑠) 𝑑𝑠

. (34)

By using the conclusion of ∫
𝑇

0
Γ(𝑠)𝑑𝑠 = ∑

𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠)𝑑𝑠 in

Remark 3, we have

𝑔 (𝑢
1

(𝑡
1
)) =

∫
𝑇

0
𝑝 (𝑠) 𝑑𝑠

∑
𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠) 𝑑𝑠

. (35)

So by using assumption (A2), we see
󵄨󵄨󵄨󵄨𝑢1 (𝑡1)

󵄨󵄨󵄨󵄨 ≤ 𝑀, (36)

which together with (32) yields that

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨∞ = max
𝑡∈[𝑡
1
,𝑡
1
+𝑇]

󵄨󵄨󵄨󵄨𝑢1 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑢1 (𝑡1)
󵄨󵄨󵄨󵄨 + ∫
𝑡
1
+𝑇

𝑡
1

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ 𝑀 + ∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 < 𝑀 + 𝑇𝜎√1 + 𝑀2

0

=: 𝑀
1
.

(37)
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If set Ω = {𝑥 ∈ 𝐶
𝑇

: |𝑥
1
|
∞

< 𝑀
1
, |𝑥
2
|
∞

< 𝜎}, then, from the
above proof, we see that 𝐿𝑢 ̸= 𝜆𝑁𝑢 for all (𝜆, 𝑢) ∈ (0, 1) × 𝜕Ω.
This means that condition (1) of Lemma 2 holds.

Now, suppose 𝑢 ∈ 𝜕Ω ∩ ker 𝐿; then 𝑢 = (𝑢
1
, 𝑢
2
) ∈ 𝑅2 is a

constant vector with |𝑢
1
| = 𝑀

1
or |𝑢
2
| = 𝜎. So

𝑄𝑁𝑢 =

{{{{{

{{{{{

{

𝜓 (𝑢
2
) =

𝑢
2

√1 − 𝑢2
2

−𝑔 (𝑢
1
) (

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑠) 𝑑𝑠) + ∫

𝑇

0

𝑝 (𝑠) 𝑑𝑠,

(38)

which together with assumption (A2) yields that

𝑄𝑁𝑢 ̸= 0, ∀𝑢 ∈ 𝜕 (Ω ∩ ker 𝐿) . (39)

From (30), (37), and (39), we see that conditions (1) and (2) in
Lemma 2 hold for Ω = {𝑥 ∈ 𝐶

𝑇
: ‖𝑥
1
‖
∞

< 𝑀
1
, ‖𝑥
2
‖
∞

< 𝜎}.
Below, we will show that condition (3) of Lemma 2 also

holds. In fact, let

𝐻 (𝜇, 𝑥) = 𝜇𝑥 + (1 − 𝜇) 𝐽𝑄𝑁𝑥, for (𝜇, 𝑥) ∈ [0, 1] × Ω,

(40)

where 𝐽(𝑥
1
, 𝑥
2
)
Τ

= (𝑥
1
, 𝑥
2
)
Τ. Clearly, if 𝑢

∗
(𝑡) = (𝑢

∗

1
(𝑡),

𝑢∗
2
(𝑡))
Τ

∈ Ω ∩ ker 𝐿 is the solution of equation 𝐻(𝜇, 𝑥) = 0

for some 𝜇 ∈ [0, 1], then (𝑢∗
1
(𝑡), 𝑢∗
2
(𝑡))
Τ is a constant vector.

So

𝜓 (𝑢
∗

2
) =

𝑢∗
2

√1 − (𝑢∗
2
)
2

= 0

−𝑔 (𝑢
∗

1
) (

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑠) 𝑑𝑠) + ∫

𝑇

0

𝑝 (𝑠) 𝑑𝑠 = 0.

(41)

This together with assumption (A2) results in 𝑢∗
2

= 0 and
|𝑢∗
1
| ≤ 𝑀. By (37), we see that 𝑀 < 𝑀

1
, and then 𝑢∗ ∉

𝜕(Ω ∩ ker 𝐿). From this, we conclude that 𝐻(𝜇, 𝑥) ̸= 0 for
all (𝜇, 𝑥) ∈ [0, 1] × 𝜕(Ω ∩ ker 𝐿), which together with the
property of homotopy invariance for Brouwer’s topological
degree gives that

deg {𝐽𝑄𝑁, Ω ∩ ker 𝐿, 0} = deg {𝐻 (0, ⋅) , Ω ∩ ker 𝐿, 0}

= deg {𝐻 (1, ⋅) , Ω ∩ ker 𝐿, 0}

= deg {𝐼, Ω ∩ ker 𝐿, 0}

= 1 ̸= 0.

(42)

This proves that condition (3) of Lemma 2 holds. Thus, by
using Lemma 2, we have that (15) possesses at least one 𝑇-
periodic solution 𝑢

0
(𝑡) = (𝑢

01
(𝑡), 𝑢
02

(𝑡))
Τ

∈ Ω = {𝑥 ∈ 𝐶
𝑇

:

|𝑥
1
|
∞

≤ 𝑀
1
, |𝑥
2
|
∞

≤ 𝜎}. Clearly, 𝑢
01

(𝑡) must be a 𝑇-periodic
solution to (8).

Remark 6. From the proof of Theorem 5, it is easy to see that
assumption (A2) can be replaced by the following:

(A2)󸀠 the function 𝑔 satisfies 𝑔(𝑥) > 0 for all 𝑥 ∈ 𝑅, and
there is a constant 𝑀 > 0 such that, for all 𝑥 ∈

(𝑀, +∞),

−𝑔 (𝑥) (

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑠) 𝑑𝑠) + ∫

𝑇

0

𝑝 (𝑠) 𝑑𝑠 > 0,

−𝑔 (−𝑥) (

𝑛

∑
𝑖=1

∫
𝑇

0

𝑎
𝑖
(𝑠) 𝑑𝑠) + ∫

𝑇

0

𝑝 (𝑠) 𝑑𝑠 < 0.

(43)

Theorem 7. Suppose that Γ(𝑡) ≥ 0 and Γ(𝑡) ̸≡ 0 for 𝑡 ∈ [0, 𝑇].
If

∫
𝑇

0
𝑝 (𝑠) 𝑑𝑠

∑
𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠) 𝑑𝑠

∉ 𝑔 (𝑅) := {𝑔 (𝑢) : 𝑢 ∈ 𝑅} , (44)

then (8) has no 𝑇-periodic solution.
Suppose that 𝑢

0
(𝑡) is a 𝑇-periodic solution to (8). Then

𝑑

𝑑𝑡
(

𝑢
󸀠

0
(𝑡)

√1 + (𝑢󸀠
0

(𝑡))
2

) +

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑡) 𝑔 (𝑢

0
(𝑡 − 𝜏
𝑖
(𝑡))) = 𝑝 (𝑡) .

(45)

Integrating both sides of (45) on [0, 𝑇], we have

∫
𝑇

0

Γ (𝑠) 𝑔 (𝑢
0

(𝑠)) 𝑑𝑠 = ∫
𝑇

0

𝑝 (𝑠) 𝑑𝑠. (46)

Since Γ(𝑡) ≥ 0 and Γ(𝑡) ̸≡ 0 for 𝑡 ∈ [0, 𝑇], it follows that there
is a 𝑡
0

∈ [0, 𝑇] such that 𝑔(𝑢
0
(𝑡
0
)) = ∫

𝑇

0
𝑝(𝑠)𝑑𝑠/ ∫

𝑇

0
Γ(𝑠)𝑑𝑠. In

view of the fact of ∫
𝑇

0
Γ(𝑠)𝑑𝑠 = ∑

𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠)𝑑𝑠 in Remark 3, we

see that

𝑔 (𝑢
0

(𝑡
0
)) =

∫
𝑇

0
𝑝 (𝑠) 𝑑𝑠

∑
𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠) 𝑑𝑠

. (47)

So

∫
𝑇

0
𝑝 (𝑠) 𝑑𝑠

∑
𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠) 𝑑𝑠

∈ 𝑔 (𝑅) , (48)

which contradicts the assumption of∫𝑇
0

𝑝(𝑠)𝑑𝑠/ ∑
𝑛

𝑖=1
∫
𝑇

0
𝑎
𝑖
(𝑠)𝑑𝑠

∉ 𝑔(𝑅).

For illustrating Theorem 5, we give the following exam-
ples.

Example 8. Consider the problem of existence of periodic
solution to the equation

(
𝑥󸀠(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

)

󸀠

+
1

4
(1 −

1

2
cos 𝑡) 𝑒

𝑥(𝑡−(1/2) sin 𝑡)

−
1

8
(1 +

1

2
sin 𝑡) 𝑒

𝑥(𝑡−(1/2) cos 𝑡)

=
1

5𝜋
sin2𝑡.

(49)
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Corresponding to (8), we see that 𝑔(𝑥) = 𝑒𝑥, 𝑎
1
(𝑡) = (1/4)(1−

(1/2) cos 𝑡), 𝑎
2
(𝑡) = −(1/8)(1 + (1/2) sin 𝑡), 𝜏

1
(𝑡) = (1/2) sin 𝑡,

𝜏
2
(𝑡) = (1/2) cos 𝑡, and 𝑝(𝑡) = (1/5𝜋)sin2𝑡. Let 𝜇

𝑖
(𝑡) be the

inverse of 𝑡 − 𝜏
𝑖
(𝑡), (𝑖 = 1, 2). Then

Γ (𝑡) =
𝑎
1

(𝜇
1

(𝑡))

1 − 𝜏󸀠
1

(𝜇
1

(𝑡))
+

𝑎
2

(𝜇
2

(𝑡))

1 − 𝜏󸀠
2

(𝜇
2

(𝑡))

=
1 − (1/2) cos 𝜇

1
(𝑡)

4 (1 − (1/2) cos 𝜇
1

(𝑡))
−

1 + (1/2) sin 𝜇
2

(𝑡)

8 (1 + (1/2) sin 𝜇
2

(𝑡))

=
1

8
> 0, ∀𝑡 ∈ [0, 2𝜋] ,

(50)

and |Γ
1
/Γ|
∞

= 3. So

𝜎 :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
∫
𝑇

0

𝑝 (𝑠) 𝑑𝑠 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

=
4

5𝜋
∫
2𝜋

0

sin2𝑠 𝑑𝑠 =
4

5
< 1,

(51)

which implies that assumption (A1) holds. Furthermore,
since 𝑔(𝑥) = 𝑒

𝑥, assumption (A2) also holds. Thus, by
usingTheorem 5, we have that (49) possesses at least one 2𝜋-
periodic solution.

Remark 9. Since 𝑔(𝑥) = 𝑒
𝑥, it is easy to see that the function

𝑔 does not satisfy the global Lipschitz condition (6). So the
result of Example 8 cannot be obtained by using the main
theorem of [22].

Example 10. Consider the problem of existence of periodic
solution to the equation

(
𝑥
󸀠(𝑡)

√1 + (𝑥󸀠 (𝑡))
2

)

󸀠

+
1

4
(1 −

1

2
cos 𝑡)

𝑒
𝑥(𝑡−(1/2) sin 𝑡)

1 + 𝑒𝑥(𝑡−(1/2) sin 𝑡)

+
1

8
(1 +

1

2
sin 𝑡)

𝑒
𝑥(𝑡−(1/2) cos 𝑡)

1 + 𝑒𝑥(𝑡−(1/2) cos 𝑡)

= 𝜃sin2𝑡,
(52)

where 𝜃 ∈ 𝑅 is a constant. Corresponding to (8), we have

Γ (𝑡) ≡
3

8
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
= 1,

𝑔 (𝑢) =
𝑒
𝑢

1 + 𝑒𝑢
,

∫
2𝜋

0
𝑝 (𝑠) 𝑑𝑠

∑
𝑛

𝑖=1
∫
2𝜋

0
𝑎
𝑖
(𝑠) 𝑑𝑠

=
4

3
𝜃.

(53)

Thus, if 𝜃 ∈ (0, 3/4), then there must be a constant 𝑀 > 0

such that

−
𝑒
𝑥

1 + 𝑒𝑥
∫
2𝜋

0

Γ (𝑠) 𝑑𝑠 + 𝜃 ∫
2𝜋

0

sin2𝑠 𝑑𝑠

= −
3𝜋𝑒𝑥

4 (1 + 𝑒𝑥)
+ 𝜃𝜋

< 0,

(54)

−
𝑒
−𝑥

1 + 𝑒−𝑥
∫
2𝜋

0

Γ (𝑠) 𝑑𝑠 + 𝜃 ∫
2𝜋

0

sin2𝑠 𝑑𝑠

= −
3𝜋𝑒−𝑥

4 (1 + 𝑒−𝑥)
+ 𝜃𝜋

> 0

(55)

for 𝑥 > 𝑀, and if 𝜃 ∈ (0, 1/2𝜋), then

𝜎 :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ
1

Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞
∫
𝑇

0

𝑝 (𝑠) 𝑑𝑠 + ∫
𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

= 2𝜃 ∫
2𝜋

0

sin2𝑠 𝑑𝑠 = 2𝜃𝜋

< 1.

(56)

Furthermore, since 𝑔(𝑅) = (0, 1), it follows that ∫
2𝜋

0
𝑝(𝑠)𝑑𝑠/

∑
𝑛

𝑖=1
∫
2𝜋

0
𝑎
𝑖
(𝑠)𝑑𝑠 = (4/3)𝜃 ∉ 𝑔(𝑅) for 𝜃 ∈ (−∞, 0]∪[3/4, +∞).

Therefore, by usingTheorems 5 and 7, we obtain the following
results:

(1) if 𝜃 ∈ (0, 1/2𝜋), then (52) has at least one 2𝜋-periodic
solution;

(2) if 𝜃 ∈ (−∞, 0] ∪ [3/4, +∞), (52) has no 2𝜋-periodic
solution.
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