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In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help
clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-
based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric
varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-
based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the
resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical
example are presented for illustration.

1. Introduction

To balance model flexibility and specificity, a variety of
semiparametric models have been proposed in survival
analysis. For example, Huang [1] studied partially linear Cox
models and Cai et al. [2] and Fan et al. [3] studied the
Cox proportional hazard model with varying coefficients.
Tian et al. [4] proposed an estimation procedure for the
Cox model with time-varying coefficients. Perhaps the most
appropriate model is the semiparametric varying-coefficient
model; its merit includes easy interpretation, flexible struc-
ture, potential interaction between covariates, and dimension
reduction of nonparametric components models. Recently,
a lot of effort has been made in this direction. Cai et al.
[2] considered the Cox proportional hazard model with a
semiparametric varying-coefficient structure. Yin et al. [5]
proposed the semiparametric additive hazard model with
varying coefficients.

In biomedical research and clinical trials, one major
objective is to identify risk factors and study their risk
impacts, as this identification can help clinicians to properly

make a decision and increase efficiency of treatment and
resource allocation. This is essentially a variable selection
procedure in spirit. When the outcomes are censored, selec-
tion of significant risk factors becomes more complicated
and challenging than with the case where all outcomes are
complete. However, important progress has been made in
recent literature. For instance, Fan and Li [6] extended the
nonconcave penalized likelihood approach proposed by Fan
and Li [7] to theCox proportional hazardsmodel and theCox
proportional hazards frailty model. Johnson et al. [8, 9] pro-
posed procedures for selecting variables in semiparametric
linear regression models for censored data. However, these
papers did not consider variable selection with functional
coefficients; while Wang et al. [10] extended the application
of penalized likelihood to the varying-coefficient setting and
studied the asymptotic distributions of the estimators, they
only focused on the SCAD penalty for completely observed
data. Du et al. [11] proposed a penalized variable selection
procedure for Cox models with a semiparametric relative
risk.
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In this paper, we study variable selection for both regres-
sion parameters and varying coefficients in the semiparamet-
ric varying-coefficient additive hazards model:

𝜆 (𝑡 | 𝑍, 𝑉,𝑊)

= 𝜆
0 (𝑡) + 𝛽

T
(𝑊 (𝑡)) 𝑍 (𝑡) + 𝛼

T
𝑉 (𝑡) + 𝑔 (𝑊 (𝑡)) ,

(1)

where 𝑉(𝑡) is a vector of covariates with a linear effect on
the logarithm of the hazard function 𝜆(𝑡), 𝑊(𝑡) is the main
exposure variable of interest whose effect on the logarithm of
the hazard might be nonlinear, and 𝑍(⋅) = (𝑍

1
(⋅), . . . , 𝑍

𝑝
(⋅))

T

is a vector of covariates that may interact with the exposure
covariate 𝑊(⋅). 𝜆

0
(⋅) is the baseline hazard ratio function

and 𝑔(⋅) is an unspecified smooth function. 𝛼 is a 𝑑-vector
of constant parameters. Let 𝑔(0) = 0 to assure that the
model is identifiable. This model covers generally used basic
semiparametric model settings. For instance, if 𝛽(⋅) ≡ 0

and 𝑔(⋅) ≡ 0, model (1) reduces to Lin and Ying’s additive
hazard model [12] and Aalen’s additive hazard model when
the baseline hazard function 𝜆

0
(𝑡) also equals to zero [13, 14].

Furthermore, when the exposure covariate 𝑊(⋅) is time 𝑡,
then model (1) reduces to the partly parametric additive
hazard model if 𝜆

0
(𝑡) ≡ 𝑔(𝑡) ≡ 0 [15, 16] and reduces to the

time-varying coefficient additive hazard model [17].
To select significant elements of 𝛼 and coefficient func-

tions 𝛽(⋅), we require an estimation procedure for the regres-
sion parameters 𝛼 and 𝛽(⋅). However, this poses a challenge
because it is impossible to simultaneously get the root-𝑛
consistent penalized estimators for the nonzero components
of𝛼 by penalizing𝛽(⋅) and𝛼. To achieve this goal, we propose
the following two-step estimation procedure for selecting the
relevant variables. In Step 1, we estimate 𝛼 by using the profile
penalized least square function after locally approximating
the nonparametric functions𝛽(⋅) and𝑔(⋅). In Step 2, given the
penalized estimator of𝛼 in Step 1, we develop a penalized least
square function for 𝛽(⋅) by using the basis expansion.We will
demonstrate that the proposed estimation procedures have
oracle properties, and all penalized estimators of nonzero
components can achieve their optimal convergence rate.

This paper is organized as follows. Section 2 introduces
the SCAD-based variable selection procedure for the para-
metric components and establishes the asymptotic normality
for the resulting penalized estimators. Section 3 discusses
a variable selection procedure for the coefficient functions
by approximating these functions by using the B-spline
approach. The simulation studies and an application of the
proposed methods in a real data example are included in
Sections 4 and 5, respectively. The technical lemmas and
proofs of the main results are given in the appendix.

2. Penalized Least Squares Based Variable
Selection for Parametric Components

Let 𝑇
𝑖
denote the potential failure time, let 𝐶

𝑖
denote the

potential censoring time, and let 𝑋
𝑖
= min(𝑇

𝑖
, 𝐶

𝑖
) denote

the observed time for the 𝑖th individual, 𝑖 = 1, . . . , 𝑛. Let
Δ

𝑖
be an indicator which equals 1 if 𝑋

𝑖
is a failure time and

0 otherwise. Let F
𝑡,𝑖

represent the failure, censoring, and

covariate information up to time 𝑡 for the 𝑖th individual.
The observed data structure is {𝑋

𝑖
, Δ

𝑖
, 𝑍

𝑖
(𝑡), 𝑉

𝑖
(𝑡),𝑊

𝑖
(𝑡), 𝑖 =

1, . . . , 𝑛}. Assume that𝑇 and𝐶 are conditionally independent
given covariates and that the observation period is [0, 𝜏],
where 𝜏 is a constant denoting the time for the end of the
study.

Let 𝑁
𝑖
(𝑡) = 𝐼(𝑋

𝑖
≤ 𝑡, Δ

𝑖
= 1) denote the counting

process corresponding to 𝑇
𝑖
and let 𝑌

𝑖
(𝑡) = 𝐼(𝑋

𝑖
≥ 𝑡). Let

the filtration {F
𝑡
: 𝑡 ∈ [0, 𝜏]} be the history up to time 𝑡; that

is,F
𝑡
= 𝜎{𝑋

𝑖
≤ 𝑢, 𝑍

𝑖
(𝑢), 𝑉

𝑖
(𝑢),𝑊

𝑖
(𝑢), 𝑌

𝑖
(𝑢), Δ

𝑖
, 0 ≤ 𝑢 ≤ 𝑡, 𝑖 =

1, . . . , 𝑛}.Write𝑀
𝑖
(𝑡) = 𝑁

𝑖
(𝑡)−∫

T
0
𝑌
𝑖
(𝑢)𝜆

𝑖
(𝑢)𝑑𝑢.Then𝑀

𝑖
(𝑡) is

a martingale with respect toF
𝑡
. For ease of presentation, we

drop the dependence of covariates on time.Themethods and
proofs in this paper are applicable to external time-dependent
covariates [18].

Here we use the techniques of local linear fitting [19].
Suppose that 𝛽(⋅) and 𝑔(⋅) are smooth enough to allow
Taylor’s expansion as follows: for each 𝑤

0
∈ W which is the

support of𝑊 and for 𝑤 in a neighborhood of 𝑤
0
,

𝛽 (𝑤) ≈ 𝛽 (𝑤
0
) + 𝛽


(𝑤

0
) (𝑤 − 𝑤

0
) ,

𝑔 (𝑤) ≈ 𝑔 (𝑤
0
) + 𝑔


(𝑤

0
) (𝑤

0
− 𝑤) .

(2)

Then we can approximate the hazard ratio function given in
(1) by

𝜆 (𝑡 | 𝑍
𝑖
, 𝑉

𝑖
,𝑊

𝑖
) ≈ 𝜆

∗

0
(𝑡, 𝑤

0
) + 𝜂

T
(𝑤

0
) 𝑍

∗

𝑖
(𝑤

0
) + 𝛼

T
𝑉
𝑖
, (3)

where 𝜂(𝑤
0
) = (𝛽T(𝑤

0
), (𝛽(𝑤

0
))
T
, 𝑔


(𝑤

0
))
T, 𝑍∗

𝑖
(𝑤

0
) = (𝑍

T
𝑖
,

𝑍
T
𝑖
(𝑊

𝑖
− 𝑤

0
), (𝑊

𝑖
− 𝑤

0
))
T, and 𝜆∗

0
(𝑡, 𝑤

0
) = 𝜆

0
(𝑡) + 𝑔(𝑤

0
).

LetH be a 2𝑝+1 diagonal matrix with the first 𝑝 diagonal
elements 1 and the rest ℎ. If 𝛼 is given, then by using the
counting-process notation, similarly to [5], we can obtain an
estimator of 𝜂(𝑤

0
) at each 𝑤

0
∈ W by solving the estimating

equations whose objective function is given as follows:

𝑈
𝑛
(𝜂, 𝑤

0
)

=

𝑛

∑

𝑖=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑖
− 𝑤

0
)H−1

{𝑍
∗

𝑖
(𝑤

0
) − 𝑍 (𝑡, 𝑤

0
)}

× [𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡)

× {𝜂
T
(𝑤

0
) 𝑍

∗

𝑖
(𝑤

0
) + 𝛼

T
𝑉
𝑖
} 𝑑𝑢] ,

(4)

where

𝑍 (𝑡, 𝑤
0
) =

∑
𝑛

𝑖=1
𝐾

ℎ
(𝑊

𝑖
− 𝑤

0
) 𝑌

𝑖
(𝑡) 𝑍

∗

𝑖
(𝑤

0
)

∑
𝑛

𝑖=1
𝐾

ℎ
(𝑊

𝑖
− 𝑤

0
) 𝑌

𝑖 (𝑡)
, (5)

𝐾
ℎ
(⋅) = 𝐾(⋅/ℎ)/ℎ with 𝐾(⋅) being a kernel function and ℎ

being a bandwidth, and 𝜏 = ∞. To avoid the technicality
of tail problems, only data up to a finite time point 𝜏 are
frequently used.
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Denote the solution of 𝑈
𝑛
(𝜂, 𝑤

0
) = 0 by �̂�(𝑤

0
,𝛼), which

can be expressed as follows:

�̂� (𝑤
0
,𝛼)

= [
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑖
− 𝑤

0
)H−1

× {𝑍
∗

𝑖
(𝑤

0
) − 𝑍 (𝑡, 𝑤

0
)}

⊗2

𝑌
𝑖
(𝑡) 𝑑𝑡]

−1

× [
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑖
− 𝑤

0
)H−1

× {𝑍
∗

𝑖
(𝑤

0
) − 𝑍 (𝑡, 𝑤

0
)} {𝑑𝑁

𝑖
(𝑡) − 𝑌

𝑖
(𝑡) 𝑉

T
𝑖
𝛼 𝑑𝑡} ]

def
= 𝑀

−1

𝑛1
(𝑤

0
) {𝑆

𝑛1
(𝑤

0
) − 𝑆

𝑛2
(𝑤

0
)𝛼} .

(6)

Here and below, a⊗𝑘 = 1, a, aaT for any vector a and for 𝑘 =
0, 1, 2.

As a consequence, we can estimate 𝛽(⋅) and 𝑔(⋅) presum-
ing that 𝛼 is known:

�̂� (𝑊
𝑖
,𝛼)

= (𝐼
𝑝
, 0

𝑝×𝑝
, 0

𝑝
)𝑀

−1

𝑛1
(𝑊

𝑖
) {𝑆

𝑛1
(𝑊

𝑖
) − 𝑆

𝑛2
(𝑊

𝑖
)𝛼}

≡ 𝑇
𝑛1
(𝑊

𝑖
) − 𝑇

𝑛2
(𝑊

𝑖
)𝛼,

𝑔 (𝑊
𝑖
,𝛼)

= ∫

𝑊𝑖

0

(0
𝑝×𝑝

, 0
𝑝×𝑝

, 1
𝑝
)𝑀

−1

𝑛1
(𝑤

0
)

× {𝑆
𝑛1
(𝑤

0
) − 𝑆

𝑛2
(𝑤

0
)𝛼} 𝑑𝑤

0

≡ 𝑇
𝑛3
(𝑊

𝑖
) − 𝑇

𝑛4
(𝑊

𝑖
)𝛼.

(7)

2.1. Variable Selection. Notice that if 𝛼 is given, then from (7)
we can estimate Λ

0
(𝑡,𝑊

𝑖
) = ∫

T
0
𝜆
0
(𝑢,𝑊

𝑖
)𝑑𝑢 by

Λ̂
0
(𝑡,𝑊

𝑖
,𝛼)

=

𝑛

∑

𝑖=1

∫

𝑡

0

[𝑑𝑁
𝑖 (𝑢) − 𝑌𝑖 (𝑢) {𝑍

T
𝑖
𝑇
𝑛1
(𝑊

𝑖
) + 𝑇

𝑛3
(𝑊

𝑖
)} 𝑑𝑢]

∑
𝑛

𝑖=1
𝑌
𝑖
(𝑢)

−

𝑛

∑

𝑖=1

∫

𝑡

0

𝑌
𝑖
(𝑢) [𝑉

T
𝑖
− 𝑍

T
𝑖
𝑇
𝑛2
(𝑊

𝑖
) − 𝑇

𝑛4
(𝑊

𝑖
)]𝛼 𝑑𝑢

∑
𝑛

𝑖=1
𝑌
𝑖 (𝑢)

def
=

𝑛

∑

𝑖=1

∫

𝑡

0

∑
𝑛

𝑖=1
[𝑑𝑁

𝑖
(𝑢) − 𝑌

𝑖
(𝑢) {𝐺

𝑛𝑖
+ 𝑉

∗

𝑖
(𝑊

𝑖
)𝛼} 𝑑𝑢]

∑
𝑛

𝑖=1
𝑌
𝑖
(𝑢)

.

(8)

Given the observed data and based on (7) and (8), 𝛽(⋅),
𝑔(⋅), and the cumulative functionΛ

0
(⋅) can be approximately

expressed as functions of 𝛼. These expressions inspire us to
estimate 𝛼 by minimizing the following objective function
subject to 𝛼:

𝐿
𝑛
(𝛼) =

1

2

𝑛

∑

𝑖=1

(∫

𝜏

0

[𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡) 𝑑Λ̂

0
(𝑡,𝑊

𝑖
,𝛼)

− 𝑌
𝑖
(𝑡) {𝑍

T
𝑖
�̂� (𝑊

𝑖
,𝛼) + 𝑔 (𝑊

𝑖
,𝛼)

+𝑉
T
𝑖
𝛼} 𝑑𝑡] )

2

.

(9)

Accordingly, our penalized objective function is defined as
follows:

𝐿
∗

𝑛
(𝛼) = 𝐿

𝑛
(𝛼) + 𝑛

𝑑

∑

𝑗=1

𝑝
𝜆
(

𝛼
𝑗


) . (10)

Thus, minimizing 𝐿
∗

𝑛
(𝛼) with respect to 𝛼 results in a

penalized least squares estimator of 𝛼.
Let 𝑎

𝑛
= max{𝑝

𝜆𝑛
(|𝛼

0𝑗
|) : 𝛼

0𝑗
̸= 0} and 𝑏

𝑛
=

max{𝑝

𝜆𝑛
(|𝛼

0𝑗
|) : 𝛼

0𝑗
̸= 0}. Now we establish the oracle

properties for the resulting estimators. Let 𝛼
0
= (𝛼T

10
,𝛼T

20
)
T

be the true value of 𝛼, the first subvector 𝛼T
10

of length 𝑠,
containing all nonzero elements of 𝛼 and 𝛼T

20
= 0

𝑑−𝑠
.

We introduce an additional notation as follows. Let 𝑍 =

(𝑍
T
, 0

T
𝑝
, 0)

T. For 𝑘 = 0, 1, let 𝜇
𝑘
= ∫𝑥

𝑘
𝐾(𝑥)𝑑𝑥, ]

𝑘
=

∫𝑥
𝑘
𝐾

2
(𝑥)𝑑𝑥, 𝜌

𝑘
(𝑢, 𝑧, V, 𝑤

0
) = 𝑃(𝑋 ≥ 𝑢 | 𝑍 = 𝑧, 𝑉 = V,𝑊 =

𝑤
0
)𝜆

𝑘
(𝑡 | 𝑧, V, 𝑤

0
). Denote

𝜑
𝑘,𝑙
(𝑡, 𝑤

0
)

= 𝑓 (𝑤
0
) 𝐸 {𝜌

0
(𝑡, 𝑍, V, 𝑤

0
) 𝑍

⊗𝑘

(𝑉
⊗𝑙
)
T
| 𝑊 = 𝑤

0
} ,

𝑘 = 0, 1, 𝑙 = 0, 1,

𝜑
2,0
(𝑡, 𝑤

0
)

= 𝑓 (𝑤
0
) 𝐸

{{

{{

{

𝜌
0
(𝑡, 𝑍, V, 𝑤

0
)

× (

𝑍
⊗2

0
𝑝×𝑝

0
𝑝

0
𝑝×𝑝

𝜇
2
𝑍

⊗2
𝑍𝜇

2

0
T
𝑝

𝑍
T
𝜇
2

𝜇
2

) | 𝑊 = 𝑤
0

}}

}}

}

,

(11)

where 𝑓(⋅) is the density of 𝑊. Denote 𝑡
1
(𝑤) = (𝐼

𝑝
, 0

𝑝×𝑝
,

0
𝑝
)𝑚

−1

1
(𝑤)𝑚

2
(𝑤) and 𝑡

2
(𝑤) = (0

𝑝×𝑝
, 0

𝑝×𝑝
, 1

𝑝
) ∫

𝑤

0
𝑚

−1

1
(𝑤

0
)

𝑚
2
(𝑤

0
)𝑑𝑤

0
, where

𝑚
1
(𝑤

0
) = ∫

𝜏

0

{𝜑
2,0
(𝑡, 𝑤

0
) −

𝜑
⊗2

1,0
(𝑡, 𝑤

0
)

𝜑
0,0
(𝑡, 𝑤

0
)
} 𝑑𝑡,

𝑚
2
(𝑤

0
) = ∫

𝜏

0

{𝜑
1,1
(𝑡, 𝑤

0
) −

𝜑
1,0
(𝑡, 𝑤

0
)

𝜑
0,0
(𝑡, 𝑤

0
)
𝜑
0,1
(𝑡, 𝑤

0
)} 𝑑𝑡.

(12)
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For 𝑘 = 0, 1, 2, 𝑙 = 0, 1, let 𝜅
𝑘,𝑙
(𝑡) = 𝐸[𝜌

𝑙
(𝑡, 𝑍, 𝑉,𝑊){𝑉 −

𝑍𝑡
T
1
(𝑊)−𝑡

T
2
(𝑊)}

⊗𝑘
], and �̃�

𝑖
(𝑊

𝑖
) = 𝑉

T
𝑖
−𝑍

T
𝑖
𝑡
1
(𝑊

𝑖
)−𝑡

2
(𝑊

𝑖
), 𝑖 =

1, . . . , 𝑛. ‖a‖ = (aTa)1/2 for any vector a.

Theorem 1. If Assumptions (A.i)–(A.vi) are satisfied and
𝑏
𝑛
→ 0 as 𝑛 → ∞, then there exist local minimizers �̂� of

𝐿
∗

𝑛
(𝛼) such that ‖�̂� − 𝛼

0
‖ = 𝑂

𝑝
(𝑛

−1/2
+ 𝑎

𝑛
).

Remark 2. Theorem 1 indicates that by choosing a proper 𝜆
𝑛
,

which leads to 𝑎
𝑛
= 𝑂(𝑛

−1/2
), there exists a root-𝑛 consistent

penalized least squares estimator of 𝛼.

Theorem 3. Assume that

∞ > lim inf
𝑛→∞

lim inf
𝜃→0

+

𝑝


𝜆𝑛
(𝜃)

𝜆
𝑛

> 0. (13)

Under Assumptions (A.i)–(A.vi), if 𝜆
𝑛
→ 0 and√𝑛𝜆

𝑛
→ ∞

as 𝑛 → ∞, then the local root-n consistent local minimizer
�̂� = (�̂� T

1
, �̂� T

2
)
T in Theorem 1 with probability tending to 1

satisfies

(1) �̂�
2
= 0; and

(2) asymptotic normality

√𝑛 (I
1 (𝜏) + Γ)

× {�̂�
1
− 𝛼

10
− (I

1
(𝜏) + Γ)

−1b} 𝐷

→ 𝑁(0,Σ
1
(𝜏)) ,

(14)

where I
1
(𝜏) and Σ

1
(𝜏) are the first 𝑠 × 𝑠 submatrix of I(𝜏)n and

Σ(𝜏), respectively, and

b = (𝑝

𝜆𝑛
(
𝛼10

) sgn (𝛼10) , . . . , 𝑝


𝜆𝑛
(
𝛼𝑠0

) sgn (𝛼𝑠0))
T
,

Γ = diag (𝑝

𝜆𝑛
(
𝛼10

) , . . . , 𝑝


𝜆𝑛
(
𝛼𝑠0

)) .

(15)

3. Variable Selection for
the Varying Coefficients

When some variables of 𝑍 are not relevant in the addi-
tive hazard regression model, the corresponding functional
coefficients are zero. In this section, by using basis function
expansion techniques, we try to estimate those zero func-
tional coefficients as identically zero via nonconcave penalty
functions.

For a simplified expression, we denote 𝑔(⋅) as 𝛽
0
(⋅) and

𝑍
0
≡ 1. Hence, we can rewrite the additive hazard regression

model (1) as

𝜆 (𝑡 | 𝑍
∗

𝑖
, 𝑉

𝑖
,𝑊

𝑖
) = 𝜆

0
(𝑡) + 𝛽

∗T
(𝑊

𝑖
) 𝑍

∗

𝑖
(𝑡) + 𝛼

T
𝑉
𝑖
(𝑡) ,

(16)

where 𝑍∗

𝑖
= (1, 𝑍

T
𝑖
)
T and 𝛽∗(𝑊

𝑖
) = (𝛽

0
(𝑊

𝑖
),𝛽T(𝑊

𝑖
))
T.

Assume 𝛼∗ is a given root-𝑛 consistent estimator of 𝛼. From
the arguments in Section 2, such an 𝛼∗ is available.

3.1. Penalized Function. We approximate each element of
𝛽∗(𝑤) by the basis expansion; that is, 𝛽

𝑘
(𝑤) ≈ ∑

𝐿𝑘

𝑙=1
𝛾
𝑘𝑙
𝐵
𝑘𝑙
(𝑤)

for 𝑘 = 0, 1, . . . , 𝑝. This approximation indicates that the
hazard function given in (16) can be approximated as follows:

𝜆 (𝑡 | 𝑍
∗

𝑖
, 𝑉

𝑖
,𝑊

𝑖
)

≈ 𝜆
0
(𝑡) 𝜆 +

𝑝

∑

𝑘=0

𝑍
𝑖𝑘
{

𝐿𝑘

∑

𝑙=1

𝛾
𝑘𝑙
𝐵
𝑘𝑙
(𝑤)} + 𝛼

T
𝑉
𝑖
.

(17)

Let 𝛾
𝑘
= (𝛾

𝑘1
, . . . , 𝛾

𝑘𝑙𝑘
)
T and 𝛾 = (𝛾T

0
, 𝛾T

1
, . . . , 𝛾T

𝑝
)
T. Write

B (𝑊
𝑖
) =

(
(

(

𝐵
01
(𝑊

𝑖
) ⋅ ⋅ ⋅ 𝐵

0𝐿0
(𝑊

𝑖
) 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 𝐵
11
(𝑊

𝑖
) ⋅ ⋅ ⋅ 𝐵

1𝐿1
(𝑊

𝑖
)

... 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝐵

𝑝1
(𝑊

𝑖
) ⋅ ⋅ ⋅ 𝐵

𝑝𝐿𝑝
(𝑊

𝑖
)

)
)

)

, (18)

andU
𝑖
(𝑊

𝑖
) = 𝑍

∗T
𝑖
B(𝑊

𝑖
).Then, by using similar arguments as

in Section 2, we estimate the basic hazard function Λ
0
(𝑡) by

Λ̃
0 (𝑡) =

𝑛

∑

𝑖=1

∫

T

0

𝑑𝑁
𝑖
(𝑢) − 𝑌

𝑖
(𝑢) {U

𝑖
(𝑊

𝑖
) 𝛾 + 𝛼∗T𝑉

𝑖
} 𝑑𝑢

∑
𝑛

𝑖=1
𝑌
𝑖
(𝑢)

(19)

and estimate 𝛾 by minimizing the following least square
function with respect to 𝛾:

�̃�
𝑛
(𝛾)

=
1

2

𝑛

∑

𝑖=1

∫

𝜏

0

[𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡)

× {�̃�
0
(𝑡) + U

𝑖
(𝑊

𝑖
) 𝛾 + 𝛼

∗T
𝑉
𝑖
} 𝑑𝑡]

2

.

(20)

Suppose that 𝛽
𝑘
= 0, 𝑘 = 𝑞 + 1, . . . , 𝑝, as mentioned before.

We are trying to correctly identify these zero functional
coefficients via nonconcave penalty functions, that is, via
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minimizing the following penalized least square function
with respect to 𝛾:

𝑃𝐿
𝑛
(𝛾) = �̃�

𝑛
(𝛾) + 𝑛

𝑝

∑

𝑘=0

𝑝
𝜆
(
𝛾𝑘

𝑘) , (21)

where ‖𝛾
𝑘
‖
2

𝑘
= 𝛾T

𝑘
R
𝑘
𝛾
𝑘
and R

𝑘
= (𝑟

𝑘𝑖𝑗
)
𝐿𝑘×𝐿𝑘

with 𝑟
𝑘𝑖𝑗

= ∫𝐵
𝑘𝑖

(𝑤)𝐵
𝑘𝑗
(𝑤)𝑑𝑤.

Let �̂� be the minimizer of penalized least square function
(21) and define �̂�

∗

(𝑤) = B(𝑤)�̂�.

Remark 4. Various basis systems, including Fourier basis,
polynomial basis, and B-spline basis, can be used in the
basis expansion. We focus on the B-spline basis and examine
asymptotic properties of �̂�

∗

(𝑤).

3.2. Asymptotic Properties. Define U(𝑡) = ∑
𝑛

𝑖=1
𝑌
𝑖
(𝑡)U

𝑖
(𝑊

𝑖
)

/∑
𝑛

𝑖=1
𝑌
𝑖
(𝑡) and let �̃� be theminimizer of �̃�

𝑛
(𝛾) in (20). Hence,

we can obtain �̃� by resolving

𝑈
𝑛
(𝛾)

=

𝑛

∑

𝑖=1

∫

𝜏

0

{U
𝑖
(𝑊

𝑖
) − U (𝑡)}

× [𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡) {UT

𝑖
(𝑊

𝑖
) 𝛾 + 𝛼

∗T
𝑉
𝑖
}] 𝑑𝑡 = 0.

(22)

𝑈
𝑛
(𝛾) is the derivative of �̃�

𝑛
(𝛾) with respect to 𝛾, the usual

score function of 𝛾 without the penalty.
For any square integrable functions 𝑏(𝑤) and 𝑐(𝑤) onW,

let ‖𝑏(𝑤)‖
𝐿2

denote the 𝐿
2
norm of 𝑏(𝑤) on W, and define

‖𝑏(𝑤) − 𝑐(𝑤)‖
𝐿∞

= sup
𝑤∈W|𝑏(𝑤) − 𝑐(𝑤)| as the 𝐿∞

distance
between 𝑏(𝑤) and 𝑐(𝑤). LetG

𝑘
denote all functions that have

the form ∑
𝐿𝑘

𝑙=1
𝛾
𝑘𝑙
𝐵
𝑘𝑙
(𝑤), 𝑘 = 0, 1, . . . , 𝑝 for B-spline base.

𝐿max = max
0≤𝑘≤𝑝

𝐿
𝑘
and 𝜌

𝑛
= max

0≤𝑘≤𝑝
inf

𝑐∈G𝑘
‖𝛽

𝑘
− 𝑐‖

𝐿∞
.

Denote �̃�
∗

(𝑤) = B(𝑤)�̃�.
Let 𝑎∗

𝑛
= max{𝑝

𝜆𝑛
(‖𝛽

𝑘
‖
𝐿2
) : ‖𝛽

𝑘
‖
𝐿2

̸= 0} and 𝑏
∗

𝑛
=

max{𝑝

𝜆𝑛
(‖𝛽

𝑘
‖
𝐿2
) : ‖𝛽

𝑘
‖
𝐿2

̸= 0}.

Theorem 5. Suppose that (13) and Assumptions (A.i)
and (A.vii)–(A.iv) hold. If 𝜆

𝑛
→ 0 and 𝜆

𝑛
/max{𝜌

𝑛
,

𝑎
∗

𝑛
, (𝐿max/𝑛)

1/2
} → ∞ as 𝑛 → ∞, then one has

(a) 𝛽
𝑘
= 0, 𝑘 = 𝑞 + 1, . . . , 𝑝, with probability approaching

1; and
(b) ‖𝛽

𝑘
− 𝛽

𝑘
‖
𝐿2

= 𝑂
𝑝
(max{𝜌

𝑛
, 𝑎

∗

𝑛
, (𝐿max/𝑛)

1/2
}), 𝑘 =

0, . . . , 𝑞.

Remark 6. Let G
𝑘
be a space of splines with a degree no

less than 1 and with 𝐿
𝑘
equally spaced interior knots, where

𝐿
𝑘
≍ 𝑛

1/5, 𝑘 = 0, 1, . . . , 𝑝. Note that 𝜌
𝑛
= 𝑂(𝐿

−2

max) [20,
Theorem 6.21]. Hence, if 𝑎∗

𝑛
= 𝑜

𝑝
(𝜌

𝑛
), Theorem 5 implies that

‖𝛽
𝑘
− 𝛽

𝑘
‖
𝐿2
= 𝑂

𝑝
(𝑛

−2/5
), 𝑘 = 0, . . . , 𝑞.

Remark 7. Suppose that 𝐿
𝑘
≍ 𝑛

1/5, 𝑘 = 0, 1, . . . , 𝑝. Because
𝑎
∗

𝑛
= max{𝑝

𝜆𝑛
(‖𝛽

𝑘
‖) : ‖𝛽

𝑘
‖ ̸= 0}, which implies that

for the hard thresholding and SCAD penalty function, the
convergent rate of penalized least square estimator is 𝑛−2/5.
This is the optimal rate for nonparametric regression [21] if
𝜆
𝑛

→ 0. However, for the 𝐿
1
penalty, 𝑎∗

𝑛
= 𝜆

𝑛
; hence

𝜆
𝑛
= 𝑜

𝑝
(𝜌

𝑛
) is required to lead to the optimal rate. On

the other hand, the oracle property in part (b) of Theorem 5
requires 𝜆

𝑛
/𝜌

𝑛
→ ∞, which contradicts 𝜆

𝑛
= 𝑜

𝑝
(𝜌

𝑛
). As a

consequence, for the 𝐿
1
penalty, the oracle property does not

hold.

Next, we demonstrate the asymptotic normality of �̂�
∗

.
First, we analyze �̂�

(1)

= (𝛽
0
, . . . , 𝛽

𝑞
)
T, that is, the penalized

estimator of 𝛽(1) = (𝛽
0
, . . . , 𝛽

𝑞
)
T. Let 𝑍(1)

𝑖
, U(1)

𝑖
, and U(1)

denote the selected columns of 𝑍∗

𝑖
, U

𝑖
, and U, respectively,

corresponding to 𝛽(1). Similarly, let B(1)
(𝑊

𝑖
) denote selected

diagonal blocks of B(𝑊
𝑖
), 𝑖 = 1, . . . , 𝑛. Define 𝛾(1) =

(𝛾T
0
, 𝛾T

1
, . . . , 𝛾T

𝑞
)
T and �̂�(1) = (�̂�T

0
, �̂�T

1
, . . . , �̂�T

𝑞
)
T. Then by part

(a) of Theorem 5 and (21), �̂�(1) is the local solution of

𝑃𝑈
∗

𝑛
(𝛾

(1)
)

= −
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

(U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡))

T

× [𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡)

× {U(1)

𝑖
(𝑊

𝑖
) 𝛾

(1)
+ 𝛼

∗T
𝑉
𝑖
}] 𝑑𝑡

+

𝑞

∑

𝑘=0

𝜕𝑝
𝜆
(
𝛾𝑘

𝑘)

𝜕𝛾(1)
.

(23)

Recall that 𝛼∗ is root-𝑛 consistent. It follows from (23) that

0 =
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡)}

T
𝑑𝑀

𝑖
(𝑡)

× (1 + 𝑂
𝑝
(𝑛

−1/2
)) −

𝑞

∑

𝑘=0

𝜕𝑝
𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)

−
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡)}

T
𝑌
𝑖
(𝑡)

× {U(1)

𝑖
(𝑊

𝑖
) �̂�

(1)
− 𝑍

(1)T
𝑖
𝛽
(1)
(𝑊

𝑖
)} 𝑑𝑡

=
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡)}

T
𝑑𝑀

𝑖
(𝑡)

× (1 + 𝑂
𝑝
(𝑛

−1/2
)) −

𝑞

∑

𝑘=0

𝜕𝑝
𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)

−
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡)}

T
𝑍

(1)T
𝑖

𝑌
𝑖 (𝑡)

× {�̂�
(1)

(𝑊
𝑖
) − 𝛽

(1)
(𝑊

𝑖
)} 𝑑𝑡.

(24)
Thus we can obtain the following theorem.
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Theorem 8. Suppose Assumptions (A.i) and (A.vii)–(A.iv)
hold, lim

𝑛→∞
𝜌
𝑛

= 0, if 𝜆
𝑛

→ 0 and 𝜆
𝑛
/max{𝜌

𝑛
, 𝑎

∗

𝑛
,

(𝐿max/𝑛)
1/2
} → ∞ as 𝑛 → ∞. For any 𝑤 ∈ W, let 𝛾(1)

and𝛽 (1)
(𝑤) be the conditional means of 𝛾(1) and �̂�

(1)

(𝑤) given
{𝑍

𝑖
, 𝑉

𝑖
,𝑊

𝑖
, 𝑖 = 1, 2, . . . , 𝑛}. We then have

√𝑛𝐿−1max{B
(1)
(𝑤) (Ξ

1
+ Γ

∗
)
−1

Ω
∗
(Ξ

1
+ Γ

∗
)
−1

{B(1)
(𝑤)}

T
}

−1/2

× {�̂�
(1)

(𝑤) − 𝛽
(1)

(𝑤)}
𝐿

→ 𝑁(0, I
𝑞+1
) ,

(25)

where Γ∗ = diag((𝐿max/2)(𝑝


𝜆
(‖𝛽

𝑘
‖
𝐿2
)/‖𝛽

𝑘
‖
𝐿2
)R

𝑘
)
0≤𝑘≤𝑞

, Ξ
1
=

lim
𝑛→∞

(𝐿max/𝑛)∑
𝑛

𝑖=1
∫
𝜏

0
{U(1)

𝑖
(𝑤) −U(1)

(𝑡)}
⊗2
𝑌
𝑖
(𝑡)𝑑𝑡, andΩ∗

= lim
𝑛→∞

(𝐿max/𝑛) ∑
𝑛

𝑖=1
∫
𝜏

0
U(1)

𝑖
(𝑊

𝑖
)−𝑈

(1)

(𝑡)}
⊗2
𝑌
𝑖
(𝑡)𝜆

𝑖
(𝑡)𝑑𝑡.

4. Simulation Studies

We carried out two sets of simulation studies to examine
the finite-sample properties of the proposed methods. 𝑤 was
generated from a uniform distribution over [0, 3] and 𝜆

𝑛
was

selected via cross-validation [7]. We set 𝑎 = 2 + √3 and
reported sampling properties based on 200 replications. We
consider two scenarios: (I) the performance of the regression
coefficient estimates. Without loss of generality, we set 𝑝 = 1.
We generated failure times from the partially linear additive
hazards model (1) with 𝛽(𝑤) = 1.2 + sin(2𝑤), 𝛼 =

(1.5, 0, 1, 0, 0)
T, 𝑔(𝑤) = 0.3𝑤

2, and 𝜆
0
(𝑡) = 0.5. Covariate

𝑍 was generated from a uniform distribution over [0, 1],
𝑉
1
was a Bernoulli random variable taking a value of 0

or 1 with a probability of 0.5, 𝑉
2
, 𝑉

3
were generated from

uniform distributions over [0, 1] and [0, 2], respectively, and
(𝑉

4
, 𝑉

5
)
T was generated from a normal distribution with

mean zero, variance 0.25, and covariance 0.25. We generated
the censoring time 𝐶 from a uniform distribution over
[𝑐𝑐/2, 3𝑐𝑐/2]. We took 𝑐𝑐 = 0.86 to yield an approximate
censoring rate of CR = 20% and 𝑐𝑐 = 0.35 to yield an
approximate censoring rate of CR = 30%. We used sample
size 𝑛 = 200.We selected the optimal bandwidth ℎ̂opt by using
the method of [22] and found that the value is approximately
0.203. We present the average number of zero coefficients
in Table 1, in which the column labeled “correct” presents
the average restricted only to the true zero coefficients,
while the column labeled “incorrect” depicts the average of
coefficients erroneously set to 0. We also report the standard
deviations (SD), the average standard errors (SE), and the
coverage probability (CP) of the 95% confidence interval for
the nonzero parameters in Table 2.

As shown in Tables 1 and 2, SCAD, HARD, and 𝐿
1

perform well and select about the same correct number of
significant variables. The coverage probability (CP) based on
SCAD and HARD, however, is better than that based on 𝐿

1
.

In scenario (II), we focused on functional coefficients
𝛽(⋅). We set 𝑑 = 1, 𝑔(𝑤) = 0.3𝑤

2, and 𝛼 = 1. We
generated failure times from the partially linear additive
hazards model (1) with 𝛽

1
(𝑤) = 1.2 + sin(2𝑤), 𝛽

3
(𝑤) =

0.5𝑤
2, and 𝛽

2
(𝑤) = 𝛽

4
(𝑤) = 𝛽

5
(𝑤) ≡ 0. Both covariates

𝑉 and 𝑍
1
were generated from a uniform distribution over

Table 1: Results of the simulation study for scenario (I). Here
“correct” is the average true positive rate and “incorrect” is the
average true negative rate.

SCAD HARD 𝐿
1

SCAD HARD 𝐿
1

𝑛 = 200, CR = 20% 𝑛 = 200, CR = 30%
Correct 2.73 2.76 2.67 Correct 2.85 2.85 2.85
Incorrect 0.12 0.11 0.21 Incorrect 0.13 0.13 0.15

Table 2: Simulation results for scenario (I): bias, standard error (SE),
standard deviation (SD), and coverage probability (CP).

𝛼
1

𝛼
3

SCAD HARD 𝐿
1

SCAD HARD 𝐿
1

𝑛 = 200, CR = 20%
bias 0.0738 0.0729 0.0527 0.0552 0.0475 0.0324
SE 0.0767 0.0767 0.0757 0.0567 0.0566 0.0558
SD 0.0635 0.0645 0.0631 0.0495 0.0501 0.0558
CP 0.96 0.91 0.91 0.90 0.89 0.88

𝑛 = 200, CR = 30%
bias 0.0726 0.0726 0.0402 0.0480 0.0466 0.0280
SE 0.0824 0.0824 0.0812 0.0612 0.0612 0.0602
SD 0.0701 0.0721 0.0726 0.0618 0.0602 0.0613
CP 0.93 0.89 0.92 0.94 0.90 0.91

[0, 1], respectively, (𝑉
2
, 𝑉

3
)
T was generated from a normal

distribution with a mean of (0.5, 0.5)T, variance (0.25, 0.25)T
and covariance 0, 𝑉

4
was a Bernoulli random variable taking

a value of 0 or 1 with a probability of 0.5, and𝑉
5
was uniform

over [0, 2]. In simulation II, we took 𝑐𝑐 = 1.24 to yield an
approximate censoring rate of CR = 10% and 𝑐𝑐 = 0.45

to yield an approximate censoring rate of CR = 30%. We
used sample size 𝑛 = 200. The average number of zero
functional coefficients based on SCADandHARD is reported
in Table 3, and fitted curves of nonzero functional coefficients
are presented in Figures 1 and 2 based on SCAD and HARD,
respectively.

Notice that penalized estimates of functional coefficients
are based on the results in Step 1. Because the oracle property
does not hold for the 𝐿

1
penalty according to Remark 7, we

did not take 𝐿
1
penalty into account.

We can see from Table 3 and Figures 1 and 2 that the
penalized spline estimation of the functional coefficient that
we proposed performed well. Furthermore, for the varying
coefficient part, the “correct” numbers of significant variables
selected based on SCAD and HARD penalties are close. In
comparing the results between different censoring rates, it is
also shown that our method is extremely robust against the
censoring rate.

5. Real Data Example

In this section, we apply the proposedmethod to a SUPPORT
(Study to Understand Prognoses Preferences Outcomes and
Risks of Treatment) dataset [23].This study was amulticenter
study designed to examine outcomes and clinical decision
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Table 3: Results from the simulation study for scenario (II). The
legend is the same as in Table 1.

SCAD HARD SCAD HARD
𝑛 = 200, CR = 10% 𝑛 = 200, CR = 30%

Correct 2.61 2.79 Correct 2.625 2.745
Incorrect 0.165 0.195 Incorrect 0.48 0.48

making for seriously ill-hospitalized patients. One thou-
sand patients suffering from one of eight different diseases,
including acute respiratory failure (ARF), chronic obstructive
pulmonary disease (COPD), congestive heart failure (CHF),
cirrhosis, coma, colon cancer, lung cancer, andmultiple organ
system failure (MOSF) were followed up to 5.56 years. 672
observations were collected, including age, sex, race, coma
score (scoma), number of comorbidities (num.co), charges,
average of therapeutic intervention scoring system (avtiss),
white blood cell count (wbc), heart rate (hrt), respiratory
rate (resp), temperature (temp), serum bilirubin level (bili),
creatinine (crea), serum sodium (sod), and imputed ADL
calibrated to surrogate (adlsc). For more details about this
study, refer to [23].

We suppose that binary and multinary risk factors
have constant coefficients, which yields a 12-dimensional
parameter after transformingmultinary variables into binary.
Conversely, other risk factors are supposed to have varying
coefficients, that is, a 13-dimension functional coefficient.
Here the main exposure variable 𝑊 corresponds to age.
Censoring rate of 672 patients is 32.7%. The model we
considered is

𝜆 (𝑡 | 𝑍
𝑖
, 𝑉

𝑖
, age

𝑖
) = 𝜆

0 (𝑡) +

13

∑

𝑗=1

𝛽
𝑗
(age

𝑖
) 𝑍

𝑖𝑗

+

12

∑

𝑘=1

𝛼
𝑘
𝑉
𝑖𝑘
+ 𝑔 (age

𝑖
) ,

(26)

where 𝑉
𝑖𝑗
, 𝑗 = 1, 2, . . . , 13, denote binary variables of the 𝑖th

patient and 𝑍
𝑖𝑘
, 𝑘 = 1, 2, . . . , 12, denote the others of the 𝑖th

patient. Here, baseline hazard function 𝜆
0
(𝑡) is the failure risk

of patients who are white females suffering from MOSF with
other variables all equal to zero.

By fittingmodel (26) with a SCAD penalty, the parameter
of “other race” is identified as zero, and functional coefficients
of num.co, charges, wbc, hrt, temp, crea, sod, adlsc, and
𝑔(⋅) are identified as zero functions. Identified significant
risk factors and results of their parametric or functional
coefficients are shown in Figure 3 and Table 4.

The identified zero parameter of “other race” shows that,
besides Asian, black, and Hispanic, “other race” has no
significant different impact on risk in contrast with white
people. Table 4 demonstrates that Asians have the lowest
failure probability, as do people who are suffering from
MOSF. Conversely, coma is the most dangerous among these
eight different diseases. Figure 3 shows the fitted coefficients
and their 95% pointwise confidence intervals of the five risk
factors which were identified as significant.

Table 4: Applied to SUPPORTdata. Estimation results of significant
binary variables using the SCAD penalty.

Risk factor Estimator Variance × 10−3

Sex 0.0006 0.0178
Disease group

ARF 0.0007 0.0247
CHF 0.0011 0.0309
Cirrhosis 0.0018 0.0450
Colon cancer 0.0034 0.0580
Lung cancer 0.0042 0.0585
Coma 0.0074 0.1410
COPD 0.0017 0.0344

Race
Asian −0.0002 0.0414
Black 0.0006 0.0232
Hispanic 0.0008 0.0421

Appendices

In this appendix, we list assumptions and outline the proofs
of the main results. The following assumptions are imposed.

A. Assumptions

(A.i) The density 𝑓(𝑤) of 𝑤 is continuous, has compact
supportW, and satisfies inf

𝑤∈W𝑓(𝑤) > 0.

(A.ii) 𝛽(⋅) and𝑔(⋅)have continuous bounded secondderiva-
tives onW.

(A.iii) The density function 𝐾(⋅) is bounded and symmetric
and has a compact bounded support. ∫𝜏

0
𝜆
0
(𝑡)𝑑𝑡 < ∞.

(A.iv) ℎ → 0, 𝑛ℎ → ∞ and 𝑛ℎ4 → 0 as 𝑛 → ∞.

(A.v) The conditional probability 𝜌
0
(𝑡, 𝑧, V, 𝑤) is equicon-

tinuous in the arguments (𝑡, 𝑤) on the product space
[0, 𝜏] ×W.

(A.vi) 𝜑
0,0
(𝑤, 𝑡) and 𝜅

0,0
(𝑤, 𝑡) are bounded away from zero

on the product space [0, 𝜏] ×W, 𝑚
1
(⋅) and 𝑚

2
(⋅) are

continuous onW,𝑚
1
(𝑤

0
) is nonsingular for all 𝑤

0
∈

W, and

I (𝜏) = ∫
𝜏

0

{𝜅
2,0 (𝑡) −

𝜅
⊗2

1,0
(𝑡)

𝜅
0,0
(𝑡)
} 𝑑𝑡,

Σ (𝜏) = ∫
𝜏

0

[𝜅
2,1 (𝑡) + {

𝜅
1,0
(𝑡)

𝜅
0,0
(𝑡)
}

⊗2

𝜅
0,1 (𝑡)

−2
𝜅
1,0
(𝑡)

𝜅
0,0
(𝑡)
𝜅
1,1
(𝑡) ] 𝑑𝑡

(A.1)

are positive-definite.

(A.vii) The eigenvalues of the matrix 𝐸{∫𝜏
0
𝑍(𝑡)𝑍

T
(𝑡)𝑌(𝑡)𝑑𝑡}

are uniformly bounded away from 0.
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Figure 1: Results of the simulation study for scenario (I): the estimated curves of the nonzero functional coefficients 𝛽
1
(𝑤), 𝛽

3
(𝑤), and 𝑔(𝑤).

The solid, dashed, and dotted curves represent the true function, estimated functions, and 95% pointwise confidence intervals, respectively.
Left panel—HARD penalty; right panel—SCAD penalty.

(A.viii) lim sup
𝑛
(max

𝑘
𝐿
𝑘
/min

𝑘
𝐿
𝑘
) < ∞.

(A.ix) lim
𝑛→∞

𝑛
−1
𝐿max log(𝐿max) = 0.

B. Technical Lemmas

Write 𝑐
𝑛
= (𝑛ℎ)

−1/2
+ ℎ

2. Before we prove the theorems, we
present several lemmas for the proofs of the main results.
Lemma B.1 will be used for the proofs of Theorems 1 and
3. Lemma B.5 establishes the convergence rate for the spline
approximation of nonparametric functions. Its proof can be
finished in a similar way as in [24].

Write
𝐶
𝑛1
(𝑡, 𝑤

0
)

= 𝑛
−1

𝑛

∑

𝑖=1

𝑌
𝑖
(𝑡) 𝑞

1
(𝑡,

(𝑊
𝑖
− 𝑤

0
)

ℎ
, 𝑍

𝑖
, 𝑉, 𝑤

0
)

× 𝐾
ℎ
(𝑊

𝑖
− 𝑤

0
) ,

𝐶
𝑛2
(𝑡, 𝑤

0
) = 𝑛

−1

𝑛

∑

𝑖=1

𝑌
𝑖 (𝑡) 𝑞2 (𝑡,𝑊𝑖

, 𝑍
𝑖
, 𝑉)

(B.1)
for functions 𝑞

1
(⋅, ⋅, ⋅, ⋅, ⋅) and 𝑞

2
(⋅, ⋅, ⋅, ⋅).
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Figure 2: Results of the simulation study for scenario (II). The legend is the same as in Figure 1.

Lemma B.1. Assume that 𝑞
1
(𝑡, 𝑢, 𝑍, 𝑉, 𝑤) is equicontinuous

in its arguments 𝑤 and 𝑡, 𝑞
2
(𝑡,𝑊,𝑍, 𝑉) is equicontinuous in

its argument 𝑡, and that 𝐸(𝑞
1
(𝑡, 𝑢, 𝑍, 𝑉,𝑊) | 𝑊 = 𝑤

0
) is

equicontinuous in the argument𝑤
0
. Under Assumptions (A.i)–

(A.v), one has for each 𝑤
0
∈ W,

𝐶
𝑛𝑗
(𝑡, 𝑤

0
) = 𝐶

𝑗
(𝑡, 𝑤

0
) + 𝑂

𝑝
(𝑐

𝑛
) ,

sup
0≤𝑡≤𝜏

sup
𝑤0∈W


𝐶
𝑛𝑗
(𝑡, 𝑤

0
) − 𝐶

𝑗
(𝑡, 𝑤

0
)


𝑃

→ 0,
(B.2)

where 𝐶
𝑗
(𝑡, 𝑤

0
) = 𝑓(𝑤

0
) ∫ 𝐸{𝑌(𝑡)𝑞

𝑗
(𝑡, 𝑢, 𝑍, 𝑉, 𝑤

0
) | 𝑊 =

𝑤
0
}𝐾(𝑢)𝑑𝑢 for 𝑗 = 1, 2.

Its proof can be finished using the similar arguments in
Lemma 1 of [25].

Lemma B.2. Let 𝑈∗

𝑛
(𝛼

0
) = −(𝜕𝐿

𝑛
(𝛼)/𝜕𝛼)|

𝛼=𝛼0
. Assume that

(13) and Assumptions (A.i)–(A.vi) hold. We then have

𝑈
∗

𝑛
(𝛼

0
)

=

𝑛

∑

𝑖=1

∫

𝜏

0

[�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡)]

T
𝑑𝑀

𝑖 (𝑡) + 𝑜𝑝 (√𝑛)

≡ √𝑛�̃�
𝑛
(𝛼

0
) + 𝑜

𝑝
(√𝑛) ,

(B.3)

where 𝑉(𝑡) = ∑𝑛

𝑖=1
𝑌
𝑖
(𝑡)�̃�

𝑖
(𝑊

𝑖
)/∑

𝑛

𝑖=1
𝑌
𝑖
(𝑡).
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Figure 3: Results of the real data example. The estimated curves of those nonzero functional coefficients. The solid and dashed curves
represent the estimated curve and 95% pointwise confidence intervals (×104).

Proof. Because 𝑈∗

𝑛
(𝛼

0
) = −(𝜕𝐿

𝑛
(𝛼)/𝜕𝛼)|

𝛼=𝛼0
, we have

𝑈
∗

𝑛
(𝛼

0
)

=

𝑛

∑

𝑖=1

∫

𝜏

0

{𝑉
∗

𝑖
(𝑊

𝑖
) − 𝑉

∗

(𝑡)}
T

× [𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡) {𝐺

𝑛𝑖
(𝑡) + 𝑉

∗

𝑖
(𝑊

𝑖
)𝛼} 𝑑𝑡]

=

𝑛

∑

𝑖=1

∫

𝜏

0

{𝑉
∗

𝑖
(𝑊

𝑖
) − 𝑉 (𝑡)}

T

× [𝑑𝑁
𝑖
(𝑡) − 𝑌

𝑖
(𝑡)

× {𝑍
T
𝑖
�̂� (𝑊

𝑖
,𝛼

0
) + 𝑔 (𝑊

𝑖
,𝛼

0
) + 𝛼

T
0
𝑉
𝑖
} 𝑑𝑡]

(B.4)
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with 𝑉
∗

(𝑡) = ∑
𝑛

𝑖=1
𝑌
𝑖
(𝑡)𝑉

∗

𝑖
(𝑊

𝑖
)/∑

𝑛

𝑖=1
𝑌
𝑖
(𝑡). By a similar

discussion in [5], we can prove that the biases of �̂�(𝑤
0
,𝛼

0
)

and 𝑔(𝑤
0
,𝛼

0
) are the order of 𝑂

𝑝
(ℎ

2
) at each point 𝑤

0
∈ W,

respectively.
Furthermore, recall that 𝑉∗

𝑖
(𝑊

𝑖
) = 𝑉

T
𝑖
− 𝑍

T
𝑖
𝑇
𝑛2
(𝑊

𝑖
) −

𝑇
𝑛4
(𝑊

𝑖
) with 𝑇

𝑛2
(𝑊

𝑖
) = (𝐼

𝑝
, 0

𝑝×𝑝
, 0

𝑝
)𝑀

−1

𝑛1
(𝑊

𝑖
)𝑆

𝑛2
(𝑊

𝑖
) and

𝑇
𝑛4
(𝑊

𝑖
) = ∫

𝑊𝑖

0
(0

𝑝×𝑝
, 0

𝑝×𝑝
, 1

𝑝
)𝑀

−1

𝑛1
(𝑤

0
)𝑆

𝑛2
(𝑤

0
)𝑑𝑤

0
, where

𝑀
𝑛1
(𝑤

0
)

=
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑖
− 𝑤

0
) {𝑍

∗

𝑖
(𝑤

0
) − 𝑍 (𝑡, 𝑤

0
)}

⊗2

𝑌
𝑖 (𝑡) 𝑑𝑡

= ∫

𝜏

0

{Φ
𝑛20

(𝑡, 𝑤
0
) −

Φ
⊗2

𝑛10
(𝑡, 𝑤

0
)

Φ
𝑛00

(𝑡, 𝑤
0
)
} 𝑑𝑡,

𝑆
𝑛2
(𝑤

0
)

=
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑖
− 𝑤

0
) {𝑍

∗

𝑖
(𝑤

0
) − 𝑍 (𝑡, 𝑤

0
)}𝑉

T
𝑖
𝑌
𝑖 (𝑡) 𝑑𝑡

= ∫

𝜏

0

{Φ
𝑛11

(𝑡, 𝑤
0
) −

Φ
𝑛10

(𝑡, 𝑤
0
)

Φ
𝑛00

(𝑡, 𝑤
0
)
Φ

𝑛01
(𝑡, 𝑤

0
)} 𝑑𝑡,

(B.5)

with Φ
𝑛𝑘𝑙
(𝑡, 𝑤

0
) = (1/𝑛)∑

𝑛

𝑖=1
𝐾

ℎ
(𝑊

𝑖
− 𝑤

0
){𝑍

∗

𝑖
(𝑤

0
)}

⊗𝑘
(𝑉

⊗𝑙

𝑖
)
T

𝑌
𝑖
(𝑡) for 𝑘 = 0, 1, 2 and 𝑙 = 0, 1.
It follows from Lemma B.1 that

𝑀
𝑛1
(𝑤

0
) = 𝑚

1
(𝑤

0
) + 𝑂

𝑝
(𝑐

𝑛
) ,

𝑆
𝑛2
(𝑤

0
) = 𝑚

2
(𝑤

0
) + 𝑂

𝑝
(𝑐

𝑛
)

(B.6)

for each 𝑤
0
∈ W. This implies that

𝑇
𝑛2 (𝑤) = 𝑡1 (𝑤) + 𝑂𝑝

(𝑐
𝑛
) ,

𝑇
𝑛4 (𝑤) = 𝑡2 (𝑤) + 𝑂𝑝

(𝑐
𝑛
)

(B.7)

uniformly hold on W. Hence it follows from Assumption
(A.iv), the arguments similar to the proof of Theorem 3 in
[5] and the martingale central limit that

𝑈
∗

𝑛
(𝛼

0
)

=

𝑛

∑

𝑖=1

∫

𝜏

0

{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡) + 𝑂

𝑝
(𝑐

𝑛
)}

T
𝑑𝑀

𝑖
(𝑡)

−

𝑛

∑

𝑖=1

∫

𝜏

0

{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡) + 𝑂

𝑝
(𝑐

𝑛
)}

T
𝑌
𝑖
(𝑡)

×
{

{

{

(𝑍
T
𝑖
(𝑡) , 0

T
𝑝+1

)𝑀
−1

𝑛1
(𝑊

𝑖
)

×
1

𝑛

𝑛

∑

𝑗=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑗
−𝑊

𝑖
)H−1

× {𝑍
∗

𝑖
(𝑡,𝑊

𝑖
) − 𝑍 (𝑡,𝑊

𝑖
)} 𝑑𝑀

𝑗
(𝑡)

+ (0
T
2𝑝
, ℎ

−1
)

× ∫

𝑊𝑖

0

𝑀
−1

𝑛1
(𝑤)

× [

[

1

𝑛

𝑛

∑

𝑗=1

∫

𝜏

0

𝐾
ℎ
(𝑊

𝑗
− 𝑤)H−1

× {𝑍
∗

𝑖
(𝑤) − 𝑍 (𝑡, 𝑤)}

× 𝑑𝑀
𝑗
(𝑡) ]

]

𝑑𝑤
}

}

}

𝑑𝑡 + 𝑜
𝑝
(√𝑛) .

(B.8)

A further simplification indicates that 𝑈
∗

𝑛
(𝛼

0
) can be

expressed as

𝑛

∑

𝑖=1

∫

𝜏

0

{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡)}

T
𝑑𝑀

𝑖
(𝑡)

−

𝑛

∑

𝑖=1

∫

𝜏

0

{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡) + 𝑂

𝑝
(𝑐

𝑛
)}

T
𝑌
𝑖
(𝑡)

× [{𝑍
T
𝑖
, 0

T
𝑝
, 1}𝑚

−1

1
(𝑊

𝑖
) 𝑂

𝑝
(𝑐

𝑛
)] 𝑑𝑡

+ 𝑜
𝑝
(√𝑛)

=

𝑛

∑

𝑖=1

∫

𝜏

0

{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡)}

T
𝑑𝑀

𝑖
(𝑡) + 𝑜

𝑝
(√𝑛) .

(B.9)

Thus (B.3) holds.

Lemma B.3. Assume that (13) and Assumptions (A.i)–(A.vi)
hold. If 𝜆

𝑛
→ 0, √𝑛𝜆

𝑛
→ ∞ as 𝑛 → ∞, then with

probability tending to 1, for any given 𝛼
1
satisfying ‖𝛼

1
−𝛼

10
‖ =

𝑂
𝑝
(𝑛

−1/2
), and any given constant 𝐶,

𝐿
∗

𝑛
{(𝛼

T
1
, 0

T
𝑑−𝑠
)} = min

‖𝛼2‖≤𝐶𝑛
−1/2

𝐿
∗

𝑛
{(𝛼

T
1
,𝛼

T
2
)} . (B.10)
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Proof. It suffices to prove that, for any given𝛼
1
satisfying ‖𝛼

1
−

𝛼
10
‖ = 𝑂

𝑝
(𝑛

−1/2
), any given constant 𝐶 > 0, and each 𝛼

𝑗
, 𝑗 =

𝑠 + 1, . . . , 𝑑,

𝜕𝐿
∗

𝑛
(𝛼)

𝜕𝛼
𝑗

< 0 if − 𝐶𝑛−1/2 < 𝛼
𝑗
< 0,

𝜕𝐿
∗

𝑛
(𝛼)

𝜕𝛼
𝑗

> 0 if 0 < 𝛼
𝑗
< 𝐶𝑛

−1/2

(B.11)

hold with probability tending to 1. Notice that 𝑈∗

𝑛
(𝛼

0
) =

−(𝜕𝐿
𝑛
(𝛼)/𝜕𝛼)|

𝛼=𝛼0
. Then for each 𝛼 in a neighborhood of 𝛼

0

from Lemma B.2 we have
1

√𝑛
{𝐿

𝑛
(𝛼) − 𝐿

𝑛
(𝛼

0
)}

= −�̃�
𝑛
(𝛼

0
) (𝛼 − 𝛼

0
) {1 + 𝑜

𝑝 (1)}

+
1

2
(𝛼 − 𝛼

0
)
T
√𝑛Π (𝛼

0
) (𝛼 − 𝛼

0
) {1 + 𝑜

𝑝
(1)} .

(B.12)

By similar algebra with the proof of Lemma B.2, we know that

Π
𝑛
(𝛼

0
)

=
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

[{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡)}

T
]

⊗2

𝑌
𝑖
(𝑡) 𝜆

0
(𝑡) 𝑑𝑡 + 𝑂

𝑝
(𝑐

𝑛
)

= 𝐸(∫

𝜏

0

[{�̃�
𝑖
(𝑊

𝑖
) − 𝑉 (𝑡)}

T
]

⊗2

𝑌 (𝑡) 𝜆0 (𝑡) 𝑑𝑡) + 𝑂𝑝
(𝑐

𝑛
)

≡ Π
∗
(𝛼

0
) + 𝑂

𝑝
(𝑐

𝑛
)

(B.13)

is positive-definite with probability tending to 1 from
Assumption (A.vi) and Lemma B.1. Hence for 𝛼 − 𝛼

0
=

𝑂
𝑝
(𝑛

−1/2
), by the fact of �̃�

𝑛
= 𝑂

𝑝
(1), we have

1

√𝑛

𝜕𝐿
𝑛 (𝛼)

𝜕𝛼

= −�̃�
𝑛
{1 + 𝑜

𝑝
(1)} + √𝑛Π

∗
(𝛼

0
) (𝛼 − 𝛼

0
) {1 + 𝑜

𝑝
(1)}

= √𝑛Π
∗
(𝛼

0
) (𝛼 − 𝛼

0
) + 𝑂

𝑝 (1) ,

(B.14)

and then
𝜕𝐿

∗

𝑛
(𝛼)

𝜕𝛼
𝑗

=
𝜕𝐿

𝑛 (𝛼)

𝜕𝛼
𝑗

+ 𝑛𝑝


𝜆𝑛
(

𝛼
𝑗


) sgn (𝛼

𝑗
)

= {𝑂
𝑝
(
𝑛
−1/2

𝜆
𝑛

) + 𝜆
−1

𝑛
𝑝


𝜆𝑛
(

𝛼
𝑗


) sgn (𝛼

𝑗
)} 𝑛𝜆

𝑛
.

(B.15)

As a result, it follows from (13) and 𝜆
𝑛
→ 0,√𝑛𝜆

𝑛
→ ∞ as

𝑛 → ∞ that sgn(𝜕𝐿∗
𝑛
(𝛼)/𝜕𝛼

𝑗
) = sgn(𝛼

𝑗
) for each 𝛼 − 𝛼

0
=

𝑂
𝑝
(𝑛

−1/2
), which indicates that (B.11) holds with probability

tending to 1.

Lemma B.4. Suppose Assumptions (A.i) and (A.vii)–(A.ix)
hold, then there are positive constants 𝑀

1
and 𝑀

2
such that,

except in an event whose probability tends to zero, all the
eigenvalues of

𝐿max
𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U
𝑖
(𝑊

𝑖
) − U (𝑡)}

⊗2

𝑌
𝑖 (𝑡) 𝑑𝑡 (B.16)

between 𝑀
1
and 𝑀

2
, and consequently ∑

𝑛

𝑖=1
∫
𝜏

0
{U

𝑖
(𝑊

𝑖
) −

U(𝑡)}⊗2𝑌
𝑖
(𝑡)𝑑𝑡, are invertible.

Proof. According to Lemmas A.1 and A.2 of [24], except in
an event whose probability tends to zero, ‖∑

𝑘,𝑙
𝛾
𝑘𝑙
𝐵
𝑘𝑙
(𝑤)‖

2

𝐿2
≍

|𝛾|
2
/𝐿max. Note that 𝛾

T
[∑

𝑛

𝑖=1
∫
𝜏

0
{U

𝑖
(𝑊

𝑖
) − U(𝑡)}⊗2𝑌

𝑖
(𝑡)𝑑𝑡]𝛾 ≍

‖∑
𝑘,𝑙
𝛾
𝑘𝑙
𝐵
𝑘𝑙
(𝑤)‖

2

𝐿2
by Assumption (A.ii). Hence, Lemma B.4

holds.

In the rest of this paper, we denote 𝑛−1∑𝑛

𝑖=1
∫
𝜏

0
{U

𝑖
(𝑊

𝑖
) −

U(𝑡)}⊗2𝑌
𝑖
(𝑡)𝑑𝑡 by Ξ

𝑛
. Let

̌𝛾 = Ξ
−1

𝑛

1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U
𝑖
(𝑊

𝑖
) − U (𝑡)}

× {𝜆
0
(𝑡) + 𝑌

𝑖
(𝑡)𝛽

∗T
(𝑊

𝑖
) 𝑍

∗

𝑖

+𝑂
𝑝
(𝑛

−1/2
)} 𝑑𝑡,

(B.17)

and �̌�
∗

(𝑤) = B(𝑤) ̌𝛾. Then ̌𝛾 and �̌�
∗

(𝑤) are the mean of
𝛾 and �̃�

∗

(𝑤) conditioning on {𝑍
𝑖
, 𝑉

𝑖
,𝑊

𝑖
, 𝑖 = 1, 2, . . . , 𝑛},

respectively.

Lemma B.5. Suppose Assumptions (A.ii), (A.viii), and (A.ix)
hold. We then have 𝜌

𝑛
→ 0, √𝑛𝜌

𝑛
→ ∞ as 𝑛 → ∞,

‖�̃�
∗

− ̌𝛽
∗
‖
2

𝐿2
= 𝑂

𝑃
(𝐿max/𝑛), ‖�̌�

∗

− 𝛽∗‖
𝐿2

= 𝑂
𝑝
(𝜌

𝑛
), and

‖�̃�
∗

− 𝛽∗‖
2

𝐿2
= 𝑂

𝑝
(𝐿max/𝑛 + 𝜌

2

𝑛
).

Proof. By Assumptions (A.ii) and (A.viii), 𝜌
𝑛
= 𝑂(𝐿

−2

max) [20,
Theorem6.27]. Hence, it follows fromAssumption (A.iv) that
𝜌
𝑛

→ 0 and √𝑛𝜌
𝑛

→ ∞ as 𝑛 → ∞. By the triangle
inequality, ‖�̃�

∗

− 𝛽∗‖
𝐿2

≤ ‖�̃�
∗

− ̌𝛽
∗
‖
𝐿2
+ ‖�̌�

∗

− 𝛽∗‖
𝐿2
. Note

that

𝛾 − ̌𝛾

= Ξ
−1

𝑛

1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U
𝑖
(𝑊

𝑖
) − U (𝑡)} {𝑑𝑀

𝑖
(𝑡) + 𝑂

𝑝
(𝑛

−1/2
)} .

(B.18)

Thus, according to Ξ−1

𝑛
(1/𝑛)∑

𝑛

𝑖=1
∫
𝜏

0
{U

𝑖
(𝑊

𝑖
) − U(𝑡)}𝑑𝑀

𝑖
(𝑡) =

𝑂
𝑃
(𝐿

2

max/𝑛), which can be similarly proved by Lemma A.4 in
[24], we have ‖�̃�

∗

− ̌𝛽
∗
‖
2

𝐿2
≍ |𝛾 − ̌𝛾|

2
/𝐿max = 𝑂𝑃

(𝐿max/𝑛). On
the other hand, by the properties of B-spline basis functions,
we can prove that ‖�̌�

∗

− 𝛽∗‖
𝐿2

= 𝑂
𝑝
(𝜌

𝑛
) by the similar

argument of LemmaA.7 in [24].Thus, Lemma B.5 holds.
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LemmaB.6. Suppose (13) and Assumptions (A.i) and (A.vii)–
(A.iv) hold. If 𝜌

𝑛
→ 0 and 𝜆

𝑛
/𝜌

𝑛
→ ∞, 𝑏∗

𝑛
→ 0 as 𝑛 → ∞,

we then have ‖�̂�
∗

− �̌�
∗

‖
𝐿2
= 𝑂

𝑝
(𝑎

∗

𝑛
+(𝜆

𝑛
𝜌
𝑛
)
1/2
+(𝐿max/𝑛)

1/2
).

Proof. Using the properties of B-spline basis functions (Sec-
tion A.2 of [24]), we have


𝛽
𝑘
− ̌𝛽

𝑘



2

𝐿2

=
�̂�𝑘 − �̌�𝑘


2

𝑘
≍ 𝐿

−1

𝑘

�̂�𝑘 − �̌�𝑘

2
, (B.19)

which we sum over 𝑘 to obtain


𝛽
∗
− ̌𝛽

∗

2

𝐿2

=

𝑝

∑

𝑘=0

�̂�𝑘 − �̌�𝑘

2

𝑘
≍ 𝐿

−1

max
�̂� − �̌�


2
. (B.20)

Let 𝛿
𝑛
= 𝑎

∗

𝑛
+ (𝜆

𝑛
𝜌
𝑛
)
1/2

+ (𝐿max/𝑛)
1/2. It suffices to show that,

for any given 𝜀 > 0, there exists a large enough 𝐶 such that

Pr{ inf
‖u‖=𝐶

𝑃𝐿
𝑛
(�̌� + 𝐿

1/2

max𝛿𝑛u) > 𝑃𝐿𝑛
(�̌�)} ≥ 1 − 𝜀, (B.21)

which implies 𝑃𝐿
𝑛
(⋅) can reach a local minimum in the ball

{�̌� + 𝐿
1/2

max𝛿𝑛u : ‖u‖ ≤ 𝐶} with a probability of at least
1 − 𝜀. Thus, there exists a local minimizer satisfying ‖�̂� −
�̌�‖ = 𝑂

𝑝
(𝐿

1/2

max𝛿𝑛). Let �̂� = �̌� + 𝐿
1/2

max𝛿𝑛u; then by the Taylor
expansion and the definition of �̌� we have

𝑃𝐿
𝑛
(�̂�) − 𝑃𝐿

𝑛
(�̌�) =

𝑛

2
(�̂� − �̃�)

T
Ξ
𝑛
(�̂� − �̃�) {1 + 𝑜

𝑝 (1)}

+
𝑛

2
(�̃� − �̌�)

T
Ξ
𝑛
(�̃� − �̌�) {1 + 𝑜

𝑝 (1)}

+ 𝑛

𝑝

∑

𝑘=0

{𝑝
𝜆𝑛
(
�̂�𝑘

𝑘) − 𝑝𝜆𝑛
(
�̌�𝑘

𝑘)} .

(B.22)

It follows from Lemmas B.4 and B.5 that

𝑃𝐿
𝑛
(�̂�) − 𝑃𝐿

𝑛
(�̌�)

= 𝑛(𝛿
𝑛
+ (

𝐿max
𝑛

)

1/2

)

2

‖u‖2𝑂𝑝
(1) {1 + 𝑜

𝑝
(1)}

+ 𝑛

𝑝

∑

𝑘=0

{𝑝
𝜆𝑛
(
�̂�𝑘

𝑘) − 𝑝𝜆𝑛
(
�̌�𝑘

𝑘)} .

(B.23)

We first examine the second term on the right-hand side of
(B.23). A direct calculation with the Taylor expansion and
using 𝑝

𝜆𝑛
(0) = 0 yields that

𝑝

∑

𝑘=0

{𝑝
𝜆𝑛
(
�̂�𝑘

𝑘) − 𝑝𝜆𝑛
(
�̌�𝑘

𝑘)}

=

𝑝

∑

𝑘=0

[{𝑝
𝜆𝑛
(
�̂�𝑘

𝑘) − 𝑝𝜆𝑛
(
𝛽𝑘

𝐿2
)}

− {𝑝
𝜆𝑛
(
�̌�𝑘

𝑘) − 𝑝𝜆𝑛
(
𝛽𝑘

𝐿2
)}]

≥

𝑞

∑

𝑘=0

[{𝑝


𝜆𝑛
(
𝛽𝑘

𝐿2
) (
�̂�𝑘

𝑘 −
𝛽𝑘

𝐿2
)

−𝑝


𝜆𝑛
(
𝛽𝑘

𝐿2
) (
�̌�𝑘

𝑘 −
𝛽𝑘

𝐿2
)}

+
1

2
𝑝


𝜆𝑛
(
𝛽𝑘

𝐿2
)

× {(
�̂�𝑘

𝑘 −
𝛽𝑘

𝐿2
)
2

− (
�̌�𝑘

𝑘 −
𝛽𝑘

𝐿2
)
2

}

× (1 + 𝑜
𝑝
(1))]

−

𝑝

∑

𝑙=𝑞+1

𝑝
𝜆𝑛
(
�̌�𝑙
𝑙) ≥ − 𝑎

∗

𝑛
𝑂

𝑝
(𝛿

𝑛
) ‖u‖

− 𝑏
∗

𝑛
𝑂

𝑝
(𝛿

2

𝑛
+ 𝛿

𝑛
𝜌
𝑛
) ‖u‖2 − 𝑝

𝜆𝑛
(0) 𝑂

𝑝
(𝜌

𝑛
) .

(B.24)

Here, 𝑝

𝜆𝑛
(0) = lim

𝜃↓0
𝑝


𝜆𝑛
(𝜃). Thus, combining that with

(B.23) yields

1

𝑛
{𝑃𝐿

𝑛
(�̂�) − 𝑃𝐿

𝑛
(�̌�)}

≥ (𝛿
𝑛
+ (

𝐿max
𝑛

)

1/2

)

2

‖u‖2𝑂𝑝 (1)

− 𝑎
∗

𝑛
𝑂

𝑝
(𝛿

𝑛
) ‖u‖ − 𝑏∗

𝑛
𝑂

𝑝
(𝛿

2

𝑛
+ 𝛿

𝑛
𝜌
𝑛
) ‖u‖2

− 𝑝


𝜆𝑛
(0) 𝑂

𝑝
(𝜌

𝑛
) .

(B.25)

Notice that 𝛿
𝑛
= 𝑎

∗

𝑛
+ (𝜆

𝑛
𝜌
𝑛
)
1/2

+ (𝐿max/𝑛)
1/2 and 𝑏∗

𝑛
→

0 as 𝑛 → ∞. Then by choosing a sufficiently large 𝐶, the
first term dominates the second and the third terms on the
right-hand side of (B.25). On the other hand, according to
(13), we have (𝛿

𝑛
+ (𝐿max/𝑛)

1/2
)
2
/𝑝



𝜆𝑛
(0)𝜌

𝑛
= 𝑂

𝑝
(1 + (𝐿max +

𝑛𝑎
∗

𝑛
)/𝜆

𝑛
𝜌
𝑛
). Hence, by choosing a sufficiently large 𝐶, (B.21)

holds. This completes the proof of Lemma B.6.

C. Proof of Theorem 1

Let 𝛾
𝑛
= 𝑛

−1/2
+ 𝑎

𝑛
. It is sufficient to prove that for any given

𝜀 > 0, there exists a large enough constant 𝐶 such that

𝑃{ inf
‖u‖=𝐶

𝐿
∗

𝑛
(𝛼

0
+ 𝛾

𝑛
u) > 𝐿∗

𝑛
(𝛼

0
)} ≥ 1 − 𝜀, (C.1)
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whichmeans𝐿∗
𝑛
(⋅) can reach a localminimum in the ball {𝛼

0
+

𝛾
𝑛
u : ‖u‖ ≤ 𝐶} with a probability of at least 1 − 𝜀. Thus, there

exists a local minimizer satisfying ‖�̂� − 𝛼
0
‖ = 𝑂

𝑝
(𝛾

𝑛
).

Now we are going to prove (C.1). Note that
𝐿
∗

𝑛
(𝛼

0
+ 𝛾

𝑛
u) − 𝐿∗

𝑛
(𝛼

0
)

≥ 𝐿
𝑛
(𝛼

0
+ 𝛾

𝑛
u) − 𝐿

𝑛
(𝛼

0
)

+ 𝑛

𝑠

∑

𝑗=1

[𝑝
𝜆𝑛
(

𝛼
0𝑗
+ 𝛾

𝑛
𝑢
𝑗


) − 𝑝

𝜆𝑛
(

𝛼
0𝑗


)] .

(C.2)

Because 𝑈∗

𝑛
(𝛼

0
) = −(𝜕𝐿

𝑛
(𝛼)/𝜕𝛼)|

𝛼=𝛼0
, it similarly follows

from (A.iv) that
1

√𝑛
{𝐿

𝑛
(𝛼

0
+ 𝛾

𝑛
u) − 𝐿

𝑛
(𝛼

0
)}

≥ �̃�
𝑛
(𝛼

0
) 𝛾

𝑛
u {1 + 𝑜

𝑝
(1)}

+
1

2
uT√𝑛Π∗

𝑛
(𝛼

0
) u {1 + 𝑜

𝑝 (1)} 𝛾
2

𝑛
.

(C.3)

Hence, we can obtain that
𝐿
∗

𝑛
(𝛼

0
+ 𝛾

𝑛
u) − 𝐿∗

𝑛
(𝛼

0
)

≥ −√𝑛�̃�
𝑛
(𝛼

0
) 𝛾

𝑛
u {1 + 𝑜

𝑝
(1)}

+
1

2
uT𝑛Π∗

𝑛
(𝛼

0
) u {1 + 𝑜

𝑝 (1)} 𝛾
2

𝑛

+ 𝑛

𝑠

∑

𝑗=1

{𝛾
𝑛
𝑝


𝜆𝑛
(

𝛼
0𝑗


) sgn (𝛼

0𝑗
) 𝑢

𝑗

+𝛾
2

𝑛
𝑝


𝜆𝑛
(

𝛼
0𝑗


) sgn (𝛼

0𝑗
) 𝑢

2

𝑗
(1 + 𝑜

𝑝
(1))} .

(C.4)

Notice that �̃�
𝑛
(𝛼

0
) = 𝑂

𝑝
(1), Π∗

𝑛
(𝛼

0
) = 𝑂

𝑝
(1). Hence, by

choosing a large enough constant𝐶,−√𝑛�̃�
𝑛
(𝛼

0
)𝛾

𝑛
u{1+𝑜

𝑝
(1)}

+ (1/2)uT𝑛Π∗

𝑛
(𝛼

0
)u{1 + 𝑜

𝑝
(1)}𝛾

2

𝑛
> 0 uniformly in ‖𝑢‖ = 𝐶.

Using the discussion similar to that in [7], the last two terms
on the right-hand side of (C.4) are bounded by 𝑛𝑠(𝛾

𝑛
𝑎
𝑛
𝐶 +

𝛾
2

𝑛
𝑏
𝑛
𝐶
2
). It then follows from lim

𝑛→∞
𝑏
𝑛
= 0 that when 𝐶 is

sufficiently large, 𝐿∗
𝑛
(𝛼

0
+ 𝛾

𝑛
u) − 𝐿∗

𝑛
(𝛼

0
) > 0 uniformly holds

in ‖𝑢‖ = 𝐶. Hence, (C.1) holds.

D. Proof of Theorem 3

It follows from Lemma B.3 that part (1) holds. Now we are
going to prove part (2). From part (1) we see that the local
minimizer of 𝐿∗

𝑛
(𝛼) has the form of �̂� = (�̂�T

1
, 0

T
𝑑−𝑠
)
T and

satisfies �̂�−𝛼
0
= 𝑂

𝑝
(𝑛

−1/2
). It follows fromTaylor’s expansion

that
𝜕𝐿

∗

𝑛
(𝛼)

𝜕𝛼

�̂�

= 𝑈
∗

𝑛
(�̂�) + 𝑛 diag (bT, 0T

𝑑−𝑠
)

+ 𝑛 {diag [{𝑝

𝜆𝑛
(
𝛼01

)}1,...,𝑠
, 0

T
𝑑−𝑠
]
T
+ 𝑜

𝑝 (1)} (�̂� − 𝛼0) .

(D.1)

Then by some regular calculations we can obtain

�̂� − 𝛼
0

= −{
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

(𝑉
∗

𝑖
(𝑊

𝑖
) − 𝑉)

⊗2

𝑌
𝑖
(𝑡) 𝑑𝑡

+ diag ({𝑝

𝜆𝑛
(
𝛼01

)}1,...,𝑠
, 0

T
𝑑−𝑠
)
T
+ 𝑜

𝑝 (1) }

−1

⋅ {
1

√𝑛
�̃�
𝑛
(𝛼

0
) + diag (bT, 0T

𝑑−𝑠
) + 𝑜

𝑝
(𝑛

−1/2
)} .

(D.2)

It follows from the proofs of Lemmas B.2 and B.3 that

1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{𝑉
∗

𝑖
(𝑊

𝑖
) − 𝑉}

⊗2

𝑌
𝑖
(𝑡) 𝑑𝑡

= ∫

𝜏

0

{Υ
𝑛20 (𝑡) −

Υ
⊗2

𝑛10
(𝑡)

Υ
𝑛00

(𝑡)
} 𝑑𝑡 + 𝑜

𝑝 (1) ,

(D.3)

where Υ
𝑛𝑘𝑙
(𝑡) = (1/𝑛)∑

𝑛

𝑖=1
{�̃�

𝑖
(𝑊

𝑖
)}

⊗𝑘
𝜆
𝑙
(𝑡 | 𝑍

𝑖
, 𝑉

𝑖
,𝑊

𝑖
)𝑌

𝑖
(𝑡) for

𝑘 = 0, 1, 2, 𝑙 = 0, 1. Lemma B.1 and Assumptions (A.v) and
(A.vi) yield

1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{𝑉
∗

𝑖
(𝑊

𝑖
) − 𝑉}

⊗2

𝑌
𝑖
(𝑡) 𝑑𝑡 = I (𝜏) + 𝑜

𝑝
(1) . (D.4)

Next we consider �̃�
𝑛
(𝛼

0
). Using the martingale central limits

theorem, we can prove that �̃�
𝑛
(𝛼

0
) is asymptotically normally

distributed with a mean of zero and covariance 𝐸[�̃�
𝑛
(𝛼

0
)]

⊗2.
Thus we obtain that

𝐸[�̃�
𝑛
(𝛼

0
)]

⊗2

= lim
𝑛→∞

∫

𝜏

0

[Υ
𝑛21 (𝑡) + {

Υ
𝑛10 (𝑡)

Υ
𝑛00

(𝑡)
}

⊗2

Υ
𝑛01 (𝑡)

− 2
Υ
𝑛10 (𝑡)

Υ
𝑛00

(𝑡)
Υ
𝑛11 (𝑡) ] 𝑑𝑡 = Σ (𝜏) .

(D.5)

Hence, by using Slutsky’s Theorem, it follows from (D.2)–
(D.5) that

√𝑛 {�̂�
1
− 𝛼

10
− (I

1 (𝜏) + Γ)
−1b}

𝐷

→ 𝑁(0, (I
1
(𝜏) + Γ)

−1
Σ
1
(𝜏) (I

1
(𝜏) + Γ)

−1
) .

(D.6)

E. Proof of Theorem 5

Toprove part (a) ofTheorem 5,we use proof by contradiction.
Suppose that for an 𝑛 sufficiently large there exists a constant
𝜂, such that with a probability of at least 𝜂 there exists a 𝑘

0
>

𝑞 such that 𝛽
𝑘0

̸= 0. Then ‖�̂�
𝑘0
‖
𝑘0

= ‖𝛽
𝑘0
‖
𝐿2

> 0. Let �̂�∗ be
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a vector constructed by replacing �̂�
𝑘0
with 0 in �̂�. Then by the

definition of �̂�,

𝑃𝐿
𝑛
(�̂�) − 𝑃𝐿

𝑛
(�̂�

∗
)

= {𝐿
𝑛
(�̂�) − 𝐿

𝑛
(�̃�)} − {𝐿

𝑛
(�̂�

∗
) − 𝐿

𝑛
(�̃�)}

+ 𝑛𝑝
𝜆𝑛
(

�̂�
𝑘0

𝑘0
)

= 𝑛 {(�̂� − �̃�)
T
Ξ
𝑛
(�̂� − �̃�) − (�̂�

∗
− �̃�)

T
Ξ
𝑛
(�̂�

∗
− �̃�)}

× (1 + 𝑜
𝑝
(1)) + 𝑛𝑝

𝜆𝑛
(

�̂�
𝑘0

𝑘0
) .

(E.1)

It then follows from Lemmas B.4–B.6 that the first term
on the right-hand side of (E.1) is an order of 𝑂

𝑝
(𝑛

(max{(𝜆
𝑛
𝜌
𝑛
)
1/2
, 𝑎

∗

𝑛
, (𝐿max/𝑛)

1/2
})

2
). Notice that 𝑝

𝜆𝑛
(‖�̂�

𝑘0
‖
𝑘0

)

= 𝑝


𝜆𝑛
(0)‖�̂�

𝑘0
‖
𝑘0

(1 + 𝑜
𝑝
(1)) = 𝑝



𝜆𝑛
(0) 𝑂

𝑝
(max{(𝜆

𝑛
𝜌
𝑛
)
1/2
, 𝑎

∗

𝑛
,

(𝐿max/𝑛)
1/2
}). Hence,

𝑃𝐿
𝑛
(�̂�) − 𝑃𝐿

𝑛
(�̂�

∗
)

= 𝑛𝑂
𝑝
((max{(𝜆

𝑛
𝜌
𝑛
)
1/2
, 𝑎

∗

𝑛
, (
𝐿max
𝑛

)

1/2

})

2

)

+ 𝑛𝑝


𝜆𝑛
(0) 𝑂𝑝

(max{(𝜆
𝑛
𝜌
𝑛
)
1/2
, 𝑎

∗

𝑛
, (
𝐿max
𝑛

)

1/2

})

=
{

{

{

𝑂
𝑝
(Max

{(𝜆
𝑛
𝜌
𝑛
)
1/2
, 𝑎

∗

𝑛
, (𝐿Max/𝑛)

1/2
}

𝜆
𝑛

)

+𝑝


𝜆𝑛
(0) 𝜆

−1

𝑛

}

}

}

× 𝑛𝑂
𝑝
(max{(𝜆

𝑛
𝜌
𝑛
)
1/2
, 𝑎

∗

𝑛
, (
𝐿max
𝑛

)

1/2

})𝜆
𝑛
.

(E.2)

Because 𝜆
𝑛
→ 0 and 𝜆

𝑛
/max{𝜌

𝑛
, 𝑎

∗

𝑛
, (𝐿

𝑛
/𝑛)

1/2
} → ∞ as

𝑛 → ∞, (13) implies that 𝑃𝐿
𝑛
(�̂�) − 𝑃𝐿

𝑛
(�̂�∗) > 0 with

probability tending to 1.This contradicts the fact that𝑃𝐿
𝑛
(�̂�)−

𝑃𝐿
𝑛
(�̂�∗) ≤ 0. Thus, part (a) holds.
Lemmas B.5 and B.6 yield the proof of part (b).

F. Proof of Theorem 8

Note that

𝐸{

𝑞

∑

𝑘=0

𝜕𝑝
𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)
}

+
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

(U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡))

T
𝑍

(1)𝑇

𝑖
𝑌
𝑖
(𝑡)

⋅ {𝛽
(1)

(𝑊
𝑖
) − 𝛽

(1)
(𝑊

𝑖
)} 𝑑𝑡

(F.1)

is the conditional mean of (24) given all observed covariates
{(𝑋

𝑖
, 𝑍

𝑖
,𝑊

𝑖
)}

1≤𝑖≤𝑛
and 𝑌

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑛. It follows from (24)

that the expression given in (F.1) equals zero. Hence, together
with (24), we have

1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡)}

T
𝑑𝑀

𝑖
(𝑡) (1 + 𝑂

𝑝
(𝑛

−1/2
))

=

𝑞

∑

𝑘=0

[
𝜕𝑝

𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)
− 𝐸{

𝜕𝑝
𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)
}]

+
1

𝑛

𝑛

∑

𝑖=1

∫

𝜏

0

{U(1)

𝑖
(𝑊

𝑖
) − U(1)

(𝑡)}

⊗2

𝑌
𝑖
(𝑡) {�̂�

(1)
− 𝛾

(1)
} 𝑑𝑡.

(F.2)

By using similar quadratic approximation in [10], we have

𝑝
𝜆
(
𝛾𝑘

𝑘)

≈ 𝑝
𝜆
(
𝛽𝑘

𝐿2
) +

1

2

𝑝


𝜆
(
𝛽𝑘

𝐿2
)

𝛽𝑘
𝐿2

(
𝛾𝑘

𝑘 −
𝛽𝑘

𝐿2
)
,

𝑞

∑

𝑘=0

[
𝜕𝑝

𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)
− 𝐸{

𝜕𝑝
𝜆
(
�̂�𝑘

𝑘)

𝜕𝛾(1)
}]

= diag
{

{

{

1

2

𝑝


𝜆
(
𝛽𝑘

𝐿2
)

𝛽𝑘
𝐿2

R
𝑘

}

}

}0≤𝑘≤𝑞

× (�̂�
(1)
− 𝛾

(1)
) (1 + 𝑜

𝑝
(1))

= 𝐿
−1

𝑛
Γ
∗
(�̂�

(1)
− 𝛾

(1)
) (1 + 𝑜

𝑝 (1)) .

(F.3)

Finally, by using the arguments similar to the proof of
Theorem 4.1 of [26] and the proof of [24], (F.2) and the
martingale central theory, we know that

√𝑛𝐿−1
𝑛
{𝑑

T
𝑛
(Ξ

1
+ Γ

∗
)
−1
Ω

∗
(Ξ

1
+ Γ

∗
)
−1
𝑑
𝑛
}
−1/2

× 𝑑
T
𝑛
(𝛾

(1)
− 𝛾

(1)
)

𝐿

→ 𝑁(0, 1)

(F.4)

holds for any vector 𝑑
𝑛
with dimension ∑

𝑞

𝑘=0
𝐿
𝑘
and com-

ponents not all 0. Then for any (𝑞 + 1)-dimension vector 𝑑
𝑛

whose components are not all 0 and for any given 𝑤 in W,
choosing 𝑑∗

𝑛
= (B(1)

(𝑤))
T
𝑑
𝑛
yields

√𝑛𝐿−1
𝑛
{𝑑

∗T
𝑛
B(1)

(𝑤) (Ξ
1
+ Γ

∗
)
−1
Ω

∗
(Ξ

1
+ Γ

∗
)
−1

× (B(1)
(𝑤))

T
𝑑
∗

𝑛
}

−1/2

× 𝑑
∗T
𝑛
{�̂�

(1)

(𝑤) − 𝛽
(1)

(𝑤)}
𝐿

→ 𝑁(0, 1) ,

(F.5)

which implies (25) holds.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



16 Journal of Applied Mathematics

Acknowledgments

Ma’s research was supported by the National Natural Science
Foundation of China (NSFC) Grant no. 11301424 and the
Fundamental Research Funds for the Central Universities
Grant no. JBK120405.

References

[1] J. Huang, “Efficient estimation of the partly linear additive Cox
model,” The Annals of Statistics, vol. 27, no. 5, pp. 1536–1563,
1999.

[2] J. Cai, J. Fan, J. Jiang, and H. Zhou, “Partially linear hazard
regression for multivariate survival data,” Journal of the Ameri-
can Statistical Association, vol. 102, no. 478, pp. 538–551, 2007.

[3] J. Fan, H. Lin, and Y. Zhou, “Local partial-likelihood estimation
for lifetime data,”TheAnnals of Statistics, vol. 34, no. 1, pp. 290–
325, 2006.

[4] L. Tian, D. Zucker, and L. J. Wei, “On the Cox model with
time-varying regression coefficients,” Journal of the American
Statistical Association, vol. 100, no. 469, pp. 172–183, 2005.

[5] G. S. Yin,H. Li, andD. L. Zeng, “Partially linear additive hazards
regression with varying coefficients,” Journal of the American
Statistical Association, vol. 103, no. 483, pp. 1200–1213, 2008.

[6] J. Fan and R. Li, “Variable selection for Cox’s proportional
hazards model and frailty model,” The Annals of Statistics, vol.
30, no. 1, pp. 74–99, 2002.

[7] J. Fan and R. Li, “Variable selection via nonconcave penalized
likelihood and its oracle properties,” Journal of the American
Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.

[8] B. A. Johnson, D. Y. Lin, and D. Zeng, “Penalized estimating
functions and variable selection in semiparametric regression
models,” Journal of the American Statistical Association, vol. 103,
no. 482, pp. 672–680, 2008.

[9] B. A. Johnson, “Variable selection in semiparametric linear
regression with censored data,” Journal of the Royal Statistical
Society B. Statistical Methodology, vol. 70, no. 2, pp. 351–370,
2008.

[10] L. Wang, H. Li, and J. Z. Huang, “Variable selection in non-
parametric varying-coefficient models for analysis of repeated
measurements,” Journal of the American Statistical Association,
vol. 103, no. 484, pp. 1556–1569, 2008.

[11] P. Du, S. Ma, and H. Liang, “Penalized variable selection
procedure for Cox models with semiparametric relative risk,”
The Annals of Statistics, vol. 38, no. 4, pp. 2092–2117, 2010.

[12] D. Y. Lin and Z. Ying, “Semiparametric analysis of the additive
risk model,” Biometrika, vol. 81, no. 1, pp. 61–71, 1994.

[13] F. W. Huffer and I. W. McKeague, “Weighted least squares
estimation for aalen’s additive risk model,” Journal of the
American Statistical Association, vol. 86, no. 413, pp. 114–129,
1991.

[14] O. O. Aalen, “A linear regression model for the analysis of life
times,” Statistics in Medicine, vol. 8, no. 8, pp. 907–925, 1989.

[15] T.H. Scheike, “The additive nonparametric and semiparametric
Aalen model as the rate function for a counting process,”
Lifetime Data Analysis, vol. 8, no. 3, pp. 247–262, 2002.

[16] I. W. McKeague and P. D. Sasieni, “A partly parametric additive
risk model,” Biometrika, vol. 81, no. 3, pp. 501–514, 1994.

[17] H. Li, G. Yin, and Y. Zhou, “Local likelihood with time-varying
additive hazards model,”The Canadian Journal of Statistics, vol.
35, no. 2, pp. 321–337, 2007.

[18] J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of
Failure Time Data, JohnWiley & Sons, Hoboken, NJ, USA, 2nd
edition, 2002.

[19] J. Fan and I. Gijbels, Local Polynomial Modelling and Its
Applications: Monographs on Statistics and Applied Probability,
Chapman & Hall, London, UK, 1996.

[20] L. L. Schumaker, Spline Functions: Basic Theory, Cambridge
University Press, Cambridge, UK, 3rd edition, 2007.

[21] C. J. Stone, “Optimal global rates of convergence for nonpara-
metric regression,” The Annals of Statistics, vol. 10, no. 4, pp.
1040–1053, 1982.

[22] J. Fan and T. Huang, “Profile likelihood inferences on semipara-
metric varying-coefficient partially linear models,” Bernoulli,
vol. 11, no. 6, pp. 1031–1057, 2005.

[23] W. A. Knaus, F. E. Harrell Jr., J. Lynn et al., “The SUPPORT
prognostic model. Objective estimates of survival for seriously
ill hospitalized adults,” Annals of Internal Medicine, vol. 122, no.
3, pp. 191–203, 1995.

[24] J. Z. Huang, C. O. Wu, and L. Zhou, “Polynomial spline
estimation and inference for varying coefficient models with
longitudinal data,” Statistica Sinica, vol. 14, no. 3, pp. 763–788,
2004.

[25] J. Cai, J. Fan, H. Zhou, and Y. Zhou, “Hazard models with
varying coefficients for multivariate failure time data,” The
Annals of Statistics, vol. 35, no. 1, pp. 324–354, 2007.

[26] J. Z. Huang, “Local asymptotics for polynomial spline regres-
sion,”TheAnnals of Statistics, vol. 31, no. 5, pp. 1600–1635, 2003.


