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Under investigation in this paper is the mixed nonlinear Schrödinger equation, which describes the propagation of the
subpicosecond or femtosecond optical pulse in a monomodal optical fiber. The Darboux transformation is constructed and 𝑁-
times iterative potential formula is presented. Two-soliton and breather solutions are derived on the vanishing and two types of
nonvanishing backgrounds: the continuous wave(cw) background and constant background, respectively. The dynamic features of
the solitons and breathers are discussed via analytic solutions and graphical illustration.

1. Introduction

Investigations on the nonlinear Schrödinger equation have
attracted certain interest in nonlinear optics [1–6]. In this
paper, we mainly investigate the following mixed nonlinear
Schrödinger equation (MNLS) [7]:
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where 𝑢 denotes the slowly varying complex pulse envelope,
𝑧 and 𝑡 are the partial derivatives with respect to the

longitudinal distance and retarded time, 𝜎 = ±1 corresponds
to the focusing and defocusing nonlinear Schrödinger (NLS)
equation, 𝛿 is a real parameter describing the measure of the
derivative cubic nonlinearity, and Γ denotes the loss or gain
coefficient. Equation (1) usually governs the subpicosecond
or femtosecond optical pulse propagation in a monomodal
optical fiber.

As a complete integrability model, (1) is equivalent to the
following Wadati-Konno-Ichikawa (WKI) spectral system
[7, 8]:
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where Ψ = (𝜓
1
, 𝜓
2
)
 (  denotes the transpose of a matrix).

One can deduce (1) directly from the zero curvature equation
𝑈
𝑧
− 𝑉
𝑡
+ 𝑈𝑉 − 𝑉𝑈 = 0.

During the past decades, [8–10] have derived some
soliton solutions via the dressing method, the Hirota bilin-
ear method and the technique of determinant calculation,
respectively. However, to our knowledge, the soliton and
breather solutions of (1) have not been generated through𝑁-
fold Darboux transformation and the interaction characters
between twobreathers have not been analysed.The aimof this
paper is mainly to construct𝑁-fold Darboux transformation
(DT) in Section 2, derive two-soliton, one- and two-breather
solutions via the obtained DT, and discuss dynamic features
of those solitons and breathers in Section 3. Finally, our
conclusions will be addressed in Section 4.

2. 𝑁-Fold Darboux Transformation

Taking the transformation as
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we require that Ψ must satisfy
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where 𝑈
, 𝑉 have the same form as 𝑈, 𝑉. From the rules of
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obtain that
2

∑

𝑛=1

(𝑎
2𝑛
𝜆
2𝑗−1

+ 𝛼
2𝑗−1

𝑏
2𝑛−1

) 𝜆
2𝑛−1

2𝑗−1
= 1, (19a)

2

∑

𝑛=1

(𝑎
2𝑛
𝜆
∗

2𝑗−1
𝛼
∗

2𝑗−1
− 𝑏
2𝑛−1

) 𝜆
∗(2𝑛−1)

2𝑗−1
= −𝛼
2𝑗−1

, (19b)

with 𝑗 = 1, 2, so (19a)-(19b) result:

𝑎
4
=

Ω
𝑎
4

Ω
, 𝑏

3
=

Ω
𝑏
3

Ω
, (20)

where

Ω =



𝜆
2

1
𝜆
1
𝛼
1

𝜆
4

1
𝛼
1
𝜆
3

1

𝜆
2

3
𝜆
3
𝛼
3

𝜆
4

3
𝛼
3
𝜆
3

3

𝜆
∗2

1
𝛼
∗

1
−𝜆
∗

1
𝜆
∗4

1
𝛼
∗

1
−𝜆
∗3

1

𝜆
∗2

1
𝛼
∗

3
−𝜆
∗

3
𝜆
∗4

3
𝛼
∗

3
−𝜆
∗3

3



. (21)

Ω
𝑎
4

and Ω
𝑏
3

are produced from Ω by replacing its third and
fourth columns with (1, 1, −𝛼

∗

1
, −𝛼
∗

3
), respectively. Then the

two-soliton solutions for (1) can be derived as

𝑢
(2)

= 𝑢
𝑎
4

𝑑
4

−
8

3𝛿

𝑏
3

𝑑
4

. (22)

Then we we mainly discuss soliton solutions from three
different seeds.



4 Journal of Applied Mathematics

Case 1. Considering the vanishing background of 𝑢 = 0, we
can generate elastic interactions and bound states between
two solitons for (1) as shown in Figure 1.

Figure 1(a) depicts the interactions of two solitons on the
vanishing background. One can find that main features of
the interaction are that the shapes, amplitudes, and pulse
widths all remain invariant except for slightly visible phase
shifts, so the interaction is elastic. Figure 1(b) shows that
when suitable parameters are chosen, two bound solitons
with the same amplitude propagate in parallel without any
effect on each other even if the propagation distance grows
long enough. From Figure 1, we can conclude that the parallel
bound solitons will formwhen |𝜆

1
| → |𝜆

2
|, while if the value

of ||𝜆
1
| − |𝜆
2
|| increases, the elastic interactions between two

solitons will happen.

Case 2. In the case of the cw background as 𝑢 = 𝑢
𝑐
exp 𝑖(𝜅𝑡 +

𝜔𝑧), we can derive the nonlinear dispersion relation 𝜔 =

(4𝑢
2

𝑐
− 8𝜅
2

+ 3𝑢
2

𝑐
𝜅𝛿 + 16Γ)/16 for (1). By the method of

separation of variables and the superposition principle, we
derive

𝜙
1
= (𝑐
1
𝑒
𝜃
1 + 𝑐
2
𝑒
𝜃
2) exp 𝑖 (𝜅𝑡 + 𝜔𝑧) , 𝜙

2
= 𝑐
3
𝑒
𝜃
1 + 𝑐
4
𝑒
𝜃
2 ,

(23)

where

𝜃
1
=

𝑡

2
(−𝑖𝜅 −

1

3𝛿

√𝐵2 − 𝐴2) +
𝑧

2
(−𝑖𝜔 −

1

3𝛿

√𝐵2 − 𝐴2Θ) ,

𝜃
2
=

𝑡

2
(−𝑖𝜅 +

1

3𝛿

√𝐵2 − 𝐴2) +
𝑧

2
(−𝑖𝜔 +

1

3𝛿

√𝐵2 − 𝐴2Θ) ,

(24)

with

𝐴 = 4 (𝜆
2

1
− 1) , 𝐵 = 3𝑖𝑢

𝑐
𝛿𝜆
1
,

Θ =

9𝛿
2

𝑢
2

𝑐
− 32 (𝜆

2

1
− 1)

48𝛿
.

(25)

For simplicity, setting 𝑐
4

= 𝑐
1
and through direct computa-

tions, we can generate that

𝑐
3
=

𝜃
1𝑡

+ 𝑖𝜅 − 𝛾

(𝑖/2) 𝜆
1
𝑢
𝑐

𝑐
1
, 𝑐

2
=

(𝑖/2) 𝜆
1
𝑢
𝑐

𝜃
1𝑡

+ 𝑖𝜅 − 𝛾
𝑐
4
, (26)

with 𝛾 = 2𝑖(𝜆
2

1
− 1)/3𝛿. Substituting (27) into (18) and

taking Re(𝜆
1
) = Im(𝜆

1
), 𝜅 = 0, we can obtain Akhmediev-

breather solutions on the nonvanishing background for (1) as
shown in Figure 2(a). One can observe that the main feature
is propagation of the Akhmediev breather which is periodic
in the space coordinate and aperiodic in the time coordinate.
Therefore, it is considered as a modulation instability (MI)
process in which a cw beam becomes unstable [15]. MI was
predicted to occur in optical fibers and was experimentally
observed [16].

Iterating the DT again, we can obtain the two-breather
solution for (1) as shown in Figures 2(b), 3(a), and 3(b). One
can observe that the interactions between those breathers are

also elastic. Through adjusting the value of 𝜆
1
and 𝜆

2
, we can

control the directions of those breathers as shown in those
figures.

Case 3. Considering the constant background of 𝑢 = 𝜅
1
+𝑖𝜅
2
,

(1) gives the relation 𝜅
2

1
+𝜅
2

2
= −4Γ. Defining 𝜆 = 𝐴

𝑐
+𝑖𝜅
𝑐
, and

for simplicity setting 𝜅
𝑐
= √8(𝐴2

𝑐
− 1) − 9Γ𝛿2, we can obtain

𝜙
1
= 𝑐
1
𝑒
𝜗

+ 𝑐
2
𝑒
−𝜗

, 𝜙
2
= 𝑐
3
𝑒
𝜗

+ 𝑐
4
𝑒
−𝜗

, (27)

where

𝜗 = 2𝑡 (𝜉
1
+ 𝑖𝜂
1
) + 𝑧 (𝜉

1
+ 𝑖𝜂
1
)

8 (𝜆
2

− 1) + 9Γ𝛿
2

36𝛿2
,

𝑐
3
=

𝜗
𝑡
− (2𝑖/3𝛿) (𝜆

2

− 1)

(𝑖/2) 𝜆 (𝜅
1
+ 𝑖𝜅
2
)

𝑐
1
,

𝑐
2
=

(𝑖/2) 𝜆 (𝜅
1
+ 𝑖𝜅
2
)

−𝜗
𝑡
− (2𝑖/3𝛿) (𝜆

2 − 1)
𝑐
4
,

(28)

with

𝜉
1
+ 𝑖𝜂
1
= √𝛽 (16 + 𝛽), 𝛽 = 9Γ𝐴

2

𝑐
. (29)

Owing to 𝛽which is always negative, we discuss two different
cases according to the sign of (16 + 𝛽).

(A) When (16 + 𝛽) > 0, the value of 𝛽(16 + 𝛽) will
be negative; then we can arrive at 𝜉

1
= 0, 𝜂

1
=

√−𝛽(16 + 𝛽). Substituting these conclusions and (27)
into (18), we can derive the Ma-breather solution for
(1) as shown in Figure 4(a).

(B) When (16 + 𝛽) < 0, the value of 𝛽(16 + 𝛽) will be
positive; then we can arrive at 𝜉

1
= √𝛽(16 + 𝛽), 𝜂

1
=

0. Substituting these conclusions and (27) into (18), we
can derive the Akhmediev-breather solution for (1) as
shown in Figure 4(b).

One can observe from Figure 4(a) that the breathers time
periodically propagate on the constant backgrounds; that is,
they are the Ma-breathers. In addition, as 𝜅

1
+ 𝑖𝜅
2
approaches

zero, the Ma-breather will become the one-soliton solution.
Since 𝜅

2

1
+ 𝜅
2

2
= −4Γ and Γ denotes the gain or loss coefficient

in in (1), we can conclude that the absence of the gain or loss
term can become breathers into one-soliton solutions.

From Figure 4(b), one can find that the Akhmediev
breather is periodic in the space coordinate and aperiodic in
the time coordinate. Generally, the time-aperiodic solution
can be regarded as a homoclinic or separatrix trajectory in the
infinite-dimension phase space of the solutions for (1) with
periodic boundary conditions in space. Through numerical
simulation, one can gain the facts that are in Figure 4(b) as
follows:

(1) the periods are in inverse proportion to the value
of 16 + 𝛽, so the group velocities of the Akhmediev
breathers are dependent on parameters 𝛽;

(2) parameters 𝐴
𝑐
can affect the amplitudes.
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Figure 1: Evolution of the two-soliton solutions of (1). Parameters are (a) 𝜆
1

= 2 + 2𝑖, 𝜆
2

= 3 + 2𝑖, 𝛿 = 2.5, Γ = 0.1 and (b) 𝜆
1

= 1 + 2𝑖,
𝜆
2
= 1.0001 − 2𝑖, 𝛿 = 2.5, Γ = 0.1.
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Figure 2: Evolution of the breather solutions of (1). Parameters are (a) 𝑢
𝑐
= 1, 𝜅 = 0, 𝛿 = 3, 𝜆

1
= 2.05 + 2.05𝑖, Γ = 0 and (b) 𝑢

𝑐
= 1, 𝜅 = 0,

𝜆
1
= 2.05 + 2.05𝑖, 𝜆

2
= 2 + 2𝑖, 𝛿 = 3, Γ = 0.
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Figure 3: Evolution of the breather solutions of (1). Parameters are (a) 𝑢
𝑐
= 1, 𝜅 = 0, 𝜆

1
= 2.05+1.05𝑖, 𝜆

2
= 2+2𝑖, 𝛿 = 3, Γ = 0 and (b) 𝑢

𝑐
= 1,

𝜅 = 0, 𝜆
1
= 1.5 + 𝑖, 𝜆

2
= 3 + 1.1𝑖, 𝛿 = 3, Γ = 0.
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Figure 4: Evolution of the breather solutions of (1). Parameters are (a) 𝐴
𝑐
= 0.5, 𝜅

1
= 1, 𝜅

2
= 1, 𝛿 = 1 and (b) 𝐴

𝑐
= 0.05, 𝜅

1
= 1, 𝜅

2
= 1,

𝛿 = 1.

4. Conclusions

Our attention has been focused on (1) which describes the
propagation of the subpicosecond or femtosecond optical
pulse in a monomodal optical fiber. With symbolic compu-
tation, we have constructed 𝑁-fold Darboux transformation
and derived two-soliton and breather solutions on the vanish-
ing and two types of nonvanishing backgrounds, respectively.
In addition, some figures have been plotted to display the
dynamic characteristics of those solitons.
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