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This paper is concerned with the problem of the existence, uniqueness, and global exponential stability for neutral-type cellular
neural networks with distributed delays. Based on fixed point theory and Lyapunov functional, several sufficient conditions are
established for the existence, uniqueness, and global exponential stability of almost periodic solution for the above system. Finally,
a simple example is given to illustrate the feasibility and effectiveness of our main results.

1. Introduction

It is well known that the delayed cellular neural networks
(DCNNs) have been successfully applied to many practical
problems, such as signal and image processing, pattern recog-
nition, and optimization. Hence, they have been investigated
extensively by many researchers in recent years. In particular,
the stability and the existence of almost periodic solutions
are two important properties, which have close relation
to the applications of neural networks, so they have been
widely studied. Therefore, there have been extensive results
on the existence and stability of periodic solutions and almost
periodic solutions of delayed cellular neural networks in the
literature. We refer the reader to [1–12] and the references
cited therein for more details.

As pointed out in [13], in the biochemistry experiments,
neural information may transfer across chemical reactivity,
which results in a neutral-type process. Moreover, in many
cases the existing neural networkmodels cannot characterize
the properties of a neural reaction process precisely. To solve
this problem, it is naturally introducing the neutral networks.
To the best of our knowledge, however, the problem of global
exponential stability of almost periodic solution for neutral-
type cellular neural networks has not been fully investigated
in the literature.

In this paper, we consider the following neutral-type
cellular neural networks with distributed delays:
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+
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∞

0

𝑤

𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) d𝑠)

+

𝑛

∑

𝑗=1

𝑑

𝑖𝑗 (
𝑡) ℎ𝑗

(∫

∞

0

V
𝑗 (
𝑠) 𝑥̇𝑗 (

𝑡 − 𝑠) d𝑠) + 𝐼𝑖 (𝑡) ,

(1)

where 𝑛 denotes the number of units in a neural network,
𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th unit at time 𝑡, 𝑎

𝑖
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𝑗
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where 𝑝
𝑗
and 𝑞

𝑗
are continuous functions in [0, 𝛿] (𝛿 > 0)

and 𝑝
𝑗
(0) = 𝑞

𝑗
(0) = 1, 𝑗 = 1, 2, . . . , 𝑛.

Let 𝐶(X,Y ) and 𝐶1(X,Y ) be the space of continuous
functions and continuously differential functions which map
X into Y , respectively. Especially,𝐶(X) := 𝐶(X,X),𝐶1(X) :=
𝐶

1
(X,X). For any bounded function 𝑓 ∈ 𝐶(R), 𝑓+ =

sup
𝑠∈R|𝑓(𝑠)|, 𝑓

−
= inf
𝑠∈R|𝑓(𝑠)|.

The initial conditions associated with system (1) are of the
form

𝑥

𝑖 (
𝑠) = 𝑥

∗

𝑖
(𝑠) , ∀𝑠 ∈ (−∞, 0] ,

𝑥
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1
((−∞, 0] ,R) , 𝑖 = 1, 2, . . . , 𝑛.

(3)

We list some assumptionswhichwill be used in this paper.
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(4)

for all 𝑢, V ∈ R, 𝑗 = 1, . . . , 𝑛.
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)

}
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(5)

The organization of this paper is as follows. In Section 2,
we give some basic definitions and necessary lemmas which
will be used in later sections. In Sections 3 and 4, by using
a fixed point theorem and constructing suitable Lyapunov
functional, we obtain some sufficient conditions ensuring
existence, uniqueness, and global exponential stability of
almost periodic solution of system (1). Finally, an example is
given to illustrate that our results are feasible.

2. Preliminaries

Now, let us state the following definitions and lemmas, which
will be useful in proving our main result.

Definition 1 (see [14]). 𝑥 ∈ 𝐶(R) is called almost periodic, if
for any 𝜖 > 0 it is possible to find a real number 𝑙 = 𝑙(𝜖) > 0
and for any interval with length 𝑙(𝜖) there exists a number
𝜏 = 𝜏(𝜖) in this interval such that |𝑥(𝑡+𝜏)−𝑥(𝑡)| < 𝜖, ∀𝑡 ∈ R.
The collection of those functions is denoted by 𝐴𝑃(R).

Definition 2 (see [14]). Let𝑦 ∈ 𝐶(R,R𝑛) and let𝑃(𝑡) be a 𝑛×𝑛
continuous matrix defined on R. The linear system

̇𝑦 (𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) (6)

is said to be an exponential dichotomy on R if there exist
constants 𝑘, 𝜆 > 0, projection 𝑆, and the fundamental matrix
𝑌(𝑡) satisfying
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󵄩

󵄩

󵄩

𝑌 (𝑡) 𝑆𝑌

−1
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑘𝑒

−𝜆(𝑡−𝑠)
, ∀𝑡 ≥ 𝑠,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑡) (𝐼 − 𝑆) 𝑌

−1
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑘𝑒

−𝜆(𝑠−𝑡)
, ∀𝑡 ≤ 𝑠.

(7)

Lemma 3 (see [14]). If the linear system ̇𝑦(𝑡) = 𝑃(𝑡)𝑦(𝑡) has
an exponential dichotomy, then almost periodic system

̇𝑦 (𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) (8)

has a unique almost periodic solution 𝑦(𝑡) which can be
expressed as follows:

𝑦 (𝑡) = ∫

𝑡

−∞

𝑌 (𝑡) 𝑆𝑌

−1
(𝑠) 𝑔 (𝑠) ds

− ∫

∞

𝑡

𝑌 (𝑡) (𝐼 − 𝑆) 𝑌

−1
(𝑠) 𝑔 (𝑠) ds.

(9)

Lemma 4 (see [14]). Let 𝑎
𝑖
(𝑡) be an almost periodic function

and

𝑀[𝑎

𝑖
] = lim
𝑇→∞

1

𝑇

∫

𝑡+𝑇

𝑡

𝑎

𝑖 (
𝑠) ds > 0, i = 1, 2, . . . , n. (10)

Then the linear system ̇𝑦(𝑡) = −𝐴(𝑡)𝑦(𝑡) admits an exponential
dichotomy, where 𝐴(𝑡) = diag{𝑎

1
(𝑡), 𝑎

2
(𝑡), . . . , 𝑎

𝑛
(𝑡)}.

Definition 5. The almost periodic solution 𝑧 = (𝑥
1
, . . . , 𝑥

𝑛
)

𝑇

of system (1) with the initial value 𝑧∗ = (𝑥∗
1
, . . . , 𝑥

∗

𝑛
)

𝑇 is said to
be globally exponentially stable, if there exist constants 𝜔 > 0
and𝑀 ≥ 1, for any solution 𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
)

𝑇 of system (1)
with initial value 𝜙∗ = (𝜑∗

1
, . . . , 𝜑

∗

𝑛
)

𝑇 such that

𝑛

∑

𝑖=1

󵄨
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󵄨

󵄨

𝑥

𝑖 (
𝑡) − 𝜑𝑖 (

𝑡)

󵄨

󵄨

󵄨

󵄨
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󵄩

󵄩

󵄩

󵄩

𝑧

∗
− 𝜙

∗󵄩
󵄩

󵄩

󵄩∞
𝑒

−𝜔𝑡
, ∀𝑡 > 0, (11)

where
󵄩

󵄩

󵄩

󵄩

𝑧

∗
− 𝜙

∗󵄩
󵄩

󵄩

󵄩∞

:= max
1≤𝑖≤𝑛

sup
𝑠∈(−∞,0]

{

󵄨

󵄨

󵄨

󵄨

𝑥

∗

𝑖
(𝑠) − 𝜑

∗

𝑖
(𝑠)

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑥̇

∗

𝑖
(𝑠) − 𝜑̇

∗

𝑖
(𝑠)

󵄨

󵄨

󵄨

󵄨

} .

(12)

Lemma 6 (see [15, 16]). Let (X, ‖ ⋅ ‖) be a Banach space.
Assume that 0 ∈ Ω is an open bounded subset of X; 𝑇 : Ω →

X is completely continuous satisfying

‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝜕Ω; (13)

then 𝑇 has a fixed point in Ω.
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Let E = {𝑥 ∈ 𝐴𝑃(R) ∩ 𝐶1(R) : 𝑥̇ ∈ 𝐴𝑃(R)} and

X = {𝑧 = (𝑥

1
, . . . , 𝑥

𝑛
)

𝑇
: 𝑥

𝑖
∈ E, 𝑖 = 1, . . . , 𝑛} (14)

with the norm
‖𝑧‖ = max {‖𝑧‖0, ‖𝑧̇‖0}

= max {max
1≤𝑖≤𝑛

{

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨0
} ,max
1≤𝑖≤𝑛

{

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑖

󵄨

󵄨

󵄨

󵄨0
}} ,

(15)

where ‖𝑧‖
0
= max

1≤𝑖≤𝑛
{|𝑥

𝑖
|

0
}, ‖𝑧̇‖
0
= max

1≤𝑖≤𝑛
{|𝑥̇

𝑖
|

0
}, |𝑓|
0
=

sup
𝑠∈R|𝑓(𝑠)|, ∀𝑓 ∈ 𝐴𝑃(R). Then X is a Banach space with

the norm ‖ ⋅ ‖.
Let 𝜌 = max{𝜌

1
, 𝜌

2
}, where

𝜌

1
= max
1≤𝑖≤𝑛

{

{

{

(𝑎

−

𝑖
)

−1
[

[

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0)

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
]

]

}

}

}

,

(16)

𝜌

2
= max
1≤𝑖≤𝑛

{

{

{

[1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

[

[

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0)

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
]

]

}

}

}

.

(17)

Define an open bounded subset Ω inX by

Ω = {𝑧 ∈ X : ‖𝑧‖ < 𝑟0
=

𝜌

1 − 𝜃

} . (18)

By Lemmas 3 and 4, system (1) has a unique almost peri-
odic solution 𝑧𝜙 = (𝑥𝜑1

1
, . . . , 𝑥

𝜑
𝑛

𝑛
)

𝑇 which can be expressed as
follows:

𝑥

𝜑
𝑖

𝑖
= ∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢

𝐹

𝑖
(𝑠, 𝜙 (𝑠)) d𝑠, (19)

where 𝜙 = (𝜑
1
, . . . , 𝜑

𝑛
)

𝑇,

𝐹

𝑖
(𝑡, 𝜙 (𝑡)) =

𝑛

∑

𝑗=1

𝑏

𝑖𝑗 (
𝑡) 𝑓𝑗

(𝜑

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) 𝑔𝑗

(∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝜑𝑗 (

𝑡 − 𝑠) d𝑠)

+

𝑛

∑

𝑗=1

𝑑

𝑖𝑗 (
𝑡) ℎ𝑗

(∫

∞

0

V
𝑖𝑗 (
𝑠) 𝜑̇𝑗 (

𝑡 − 𝑠) d𝑠) + 𝐼𝑖 (𝑡) ,

(20)

where 𝑖 = 1, 2, . . . , 𝑛, ∀𝑡 ∈ R.
Let the map 𝑇 : X → X be defined by

𝑇 (𝜙) = (Φ

1
(𝜙) , . . . , Φ

𝑛
(𝜙))

𝑇
= (𝑥

𝜑
1

1
, . . . , 𝑥

𝜑
𝑛

𝑛
)

𝑇

,

∀𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
)

𝑇
∈ X.

(21)

Lemma 7. 𝑇 : Ω → X is completely continuous.

Proof. First, we show that𝑇 : Ω → X is continuous. Assume
that 𝜙1 = (𝜑1

1
, . . . , 𝜑

1

𝑛
)

𝑇
, 𝜙

2
= (𝜑

2

1
, . . . , 𝜑

2

𝑛
)

𝑇
∈ Ω; then

󵄨

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖
(𝑡, 𝜙

1
) − 𝐹

𝑖
(𝑡, 𝜙

2
)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑗=1

𝑏

𝑖𝑗 (
𝑡) [𝑓𝑗

(𝜑

1

𝑗
(𝑡)) − 𝑓𝑗

(𝜑

2

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) [𝑔𝑗

(∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝜑

1

𝑗
(𝑡 − 𝑠) d𝑠)

−𝑔

𝑗
(∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝜑

2

𝑗
(𝑡 − 𝑠) d𝑠)]

+

𝑛

∑

𝑗=1

𝑑

𝑖𝑗 (
𝑡) [ℎ𝑗

(∫

∞

0

V
𝑖𝑗 (
𝑠) 𝜑̇

1

𝑗
(𝑡 − 𝑠) d𝑠)

− ℎ

𝑗
(∫

∞

0

V
𝑖𝑗 (
𝑠) 𝜑̇

2

𝑗
(𝑡 − 𝑠) d𝑠)]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝑛

∑

𝑗=1

(𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝜑

1

𝑗
− 𝜑

2

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨0

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝜑̇

1

𝑗
− 𝜑̇

2

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨0

≤ max
{

{

{

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
,

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗

}

}

}

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

,

(22)

which implies that

󵄨

󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙

1
) − Φ

𝑖
(𝜙

2
)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢 󵄨

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖
(𝑠, 𝜙

1
(𝑠)) − 𝐹𝑖

(𝑠, 𝜙

2
(𝑠))

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑠

≤ (𝑎

−

𝑖
)

−1max
{

{

{

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
,

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗

}

}

}

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

≤

𝑛

∑

𝑖=1

(𝑎

−

𝑖
)

−1max
{

{

{

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
,

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗

}

}

}

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

:= 𝑙

1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

,

(23)

where 𝑙
1
= ∑

𝑛

𝑖=1
(𝑎

−

𝑖
)

−1max{∑𝑛
𝑗=1
𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
, ∑

𝑛

𝑗=1
𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗
}, 𝑖 =

1, . . . , 𝑛. Since

󵄨

󵄨

󵄨

󵄨

󵄨

̇

Φ

𝑖
(𝜙

1
) −

̇

Φ

𝑖
(𝜙

2
)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

[−𝑎

𝑖 (
𝑡) Φ𝑖

(𝜙

1
) + 𝐹

𝑖
(𝑡, 𝜙

1
)]

− [𝑎

𝑖 (
𝑡) Φ𝑖

(𝜙

2
) + 𝐹

𝑖
(𝑡, 𝜙

2
)]

󵄨

󵄨

󵄨

󵄨

󵄨
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≤ 𝑎

+

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙

1
) − Φ

𝑖
(𝜙

2
)

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖
(𝑡, 𝜙

1
) − 𝐹

𝑖
(𝑡, 𝜙

2
)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ (1 +

𝑎

+

𝑖

𝑎

−

𝑖

)max
{

{

{

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
,

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗

}

}

}

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

:= 𝑙

2

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

,

(24)

where 𝑙
2
= (1 + (𝑎

+

𝑖
/𝑎

−

𝑖
))max{∑𝑛

𝑗=1
𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
, ∑

𝑛

𝑗=1
𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗
},

𝑖 = 1, . . . , 𝑛, so

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇 (𝜙

1
) − 𝑇 (𝜙

2
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤

2

∑

𝑖=1

𝑙

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

𝜙

1
− 𝜙

2󵄩
󵄩

󵄩

󵄩

󵄩

. (25)

For arbitrary 𝜖 > 0, taking 𝛿 = (𝜖/∑2
𝑖=1
𝑙

𝑖
), when ‖𝜙1−𝜙2‖ < 𝛿,

one has

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇 (𝜙

1
) − 𝑇 (𝜙

2
)

󵄩

󵄩

󵄩

󵄩

󵄩

< 𝜖, (26)

which implies that 𝑇 : Ω → X is continuous.
Next, we show that 𝑇 maps bounded set onto itself.

Assume 𝑐 is a positive constant and 𝜙 ∈ Ω

𝑐
= {𝑧 ∈ Ω :

‖𝑧‖ ≤ 𝑐}. By the almost periodicity of system (1), there exists
a constant 𝐶 > 0 such that

max
1≤𝑖≤𝑛,1≤𝑗≤𝑚

max
𝑠∈R,𝜙∈Ω

𝑐

{𝐹

𝑖 (
𝑠, 0) , 𝐹𝑖

(𝑠, 𝜙)} < 𝐶. (27)

From the above analysis, we get that

󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙)

󵄨

󵄨

󵄨

󵄨

= ∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢 󵄨

󵄨

󵄨

󵄨

𝐹

𝑖
(𝑠, 𝜙 (𝑠)) − 𝐹𝑖 (

𝑠, 0)

󵄨

󵄨

󵄨

󵄨

d𝑠

+ ∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢

𝐹

𝑖 (
𝑠, 0) d𝑠

≤ 𝑙

1

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+

𝐶

𝑎

−

𝑖

, 𝑖 = 1, . . . , 𝑛,

󵄨

󵄨

󵄨

󵄨

󵄨

̇

Φ

𝑖
(𝜙)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

−𝑎

𝑖 (
𝑡) Φ𝑖

(𝜙 (𝑡)) + 𝐹𝑖
(𝑡, 𝜙)

󵄨

󵄨

󵄨

󵄨

≤ 𝑎

+

𝑖
[𝑙

1

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+

𝐶

𝑎

−

𝑖

] + 𝐶, 𝑖 = 1, . . . , 𝑛,

(28)

which imply that 𝑇Ω
𝑐
is uniformly bounded. In addition,

notice that
󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙 (𝑡

1
)) − Φ

𝑖
(𝜙 (𝑡

2
))

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑡
1

𝑡
2

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢

𝐹

𝑖
(𝑠, 𝜙 (𝑠)) d𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

󵄨

󵄨

󵄨

󵄨

𝑡

1
− 𝑡

2

󵄨

󵄨

󵄨

󵄨

, 𝑖 = 1, . . . , 𝑛.

(29)

Using Arzela-Ascoli theorem, we obtain that 𝑇Ω
𝑐
is relatively

compact.Hence,𝑇 is completely continuous.Theproof of this
lemma is complete.

3. Existence of Almost Periodic Solution

In this section, we study the existence of almost periodic
solutions of system (1).

Theorem 8. Assume that (𝐻
1
)–(𝐻
3
) hold; then system (1)

admits at least one almost periodic solution.

Proof. Consider the following nonlinear operator:

𝑇 (𝜙) = (Φ

1
(𝜙) , . . . , Φ

𝑛
(𝜙))

𝑇
, ∀𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
)

𝑇
∈ Ω.

(30)

For ∀𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
, 𝜓

1
, . . . , 𝜓

𝑚
)

𝑇
∈ 𝜕Ω we have ‖𝜙‖ = 𝑟

0
.

From Lemma 7, 𝑇 : Ω → X is completely continuous.
Similar to the arguments as that in Lemma 7, it follows from
the definition of 𝐹

𝑖
and 𝐺

𝑗
that

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖

󵄨

󵄨

󵄨

󵄨0
= sup
𝑠∈R

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖
(𝑠, 𝜙)

󵄨

󵄨

󵄨

󵄨

≤ sup
𝑠∈R

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖
(𝑠, 𝜙) − 𝐹

𝑖 (
𝑠, 0)

󵄨

󵄨

󵄨

󵄨

+ sup
𝑠∈R

󵄨

󵄨

󵄨

󵄨

𝐹

𝑖 (
𝑠, 0)

󵄨

󵄨

󵄨

󵄨

≤

𝑛

∑

𝑗=1

(𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝜑

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨0
+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝜑̇

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨0

+

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
,

(31)

which yields that
󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙)

󵄨

󵄨

󵄨

󵄨0
= sup
𝑡∈R

󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙 (𝑡))

󵄨

󵄨

󵄨

󵄨

≤ sup
𝑡∈R

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢

𝐹

𝑖
(𝑠, 𝜙 (𝑠)) d𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ (𝑎

−

𝑖
)

−1
𝑛

∑

𝑗=1

(𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
+ 𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗
)

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+ (𝑎

−

𝑖
)

−1
[

[

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0)

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
]

]

,

󵄨

󵄨

󵄨

󵄨

󵄨

̇

Φ

𝑖
(𝜙)

󵄨

󵄨

󵄨

󵄨

󵄨0
= sup
𝑡∈R

󵄨

󵄨

󵄨

󵄨

󵄨

̇

Φ

𝑖
(𝜙 (𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

= sup
𝑡∈R

󵄨

󵄨

󵄨

󵄨

−𝑎

𝑖 (
𝑡) Φ𝑖

(𝜙) + 𝐹

𝑖
(𝑡, 𝜙)

󵄨

󵄨

󵄨

󵄨

≤ [1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

𝑛

∑

𝑗=1

(𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
+ 𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗
)

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+ [1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

[

[

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0)

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
]

]

,

(32)
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where 𝑖 = 1, 2, . . . , 𝑛. Hence,
󵄩

󵄩

󵄩

󵄩

𝑇(𝜙)

󵄩

󵄩

󵄩

󵄩0
= max
1≤𝑖≤𝑛

{

󵄨

󵄨

󵄨

󵄨

Φ

𝑖
(𝜙)

󵄨

󵄨

󵄨

󵄨0
}

≤ max
1≤𝑖≤𝑛

{

{

{

(𝑎

−

𝑖
)

−1
𝑛

∑

𝑗=1

(𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
+ 𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗
)

}

}

}

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+max
1≤𝑖≤𝑛

{

{

{

(𝑎

−

𝑖
)

−1
[

[

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0)

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
]

]

}

}

}

= 𝜃

1
𝑟

0
+ 𝜌

1
,

󵄩

󵄩

󵄩

󵄩

󵄩

̇

𝑇(𝜙)

󵄩

󵄩

󵄩

󵄩

󵄩0
= max
1≤𝑖≤𝑛

{

󵄨

󵄨

󵄨

󵄨

󵄨

̇

Φ

𝑖
(𝜙)

󵄨

󵄨

󵄨

󵄨

󵄨0
}

≤ max
1≤𝑖≤𝑛

{

{

{

[1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

𝑛

∑

𝑗=1

(𝑏

+

𝑖𝑗
𝐿

𝑓

𝑗
+ 𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗
+ 𝑑

+

𝑖𝑗
𝐿

ℎ

𝑗
)

}

}

}

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+max
1≤𝑖≤𝑛

{

{

{

[1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

[

[

𝑛

∑

𝑗=1

𝑏

+

𝑖𝑗
𝑓

𝑗 (
0) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
𝑔

𝑗 (
0)

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
ℎ

𝑗 (
0) + 𝐼

+

𝑖
]

]

}

}

}

= 𝜃

2
𝑟

0
+ 𝜌

2
.

(33)

So
󵄩

󵄩

󵄩

󵄩

𝑇 (𝜙)

󵄩

󵄩

󵄩

󵄩

= max {󵄩󵄩󵄩
󵄩

𝑇 (𝜙)

󵄩

󵄩

󵄩

󵄩0
,

󵄩

󵄩

󵄩

󵄩

󵄩

̇

𝑇 (𝜙)

󵄩

󵄩

󵄩

󵄩

󵄩0
}

≤ max {𝜃
1
, 𝜃

2
}

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

+max {𝜌
1
, 𝜌

2
}

= 𝜃𝑟

0
+ 𝜌

≤

𝜌

1 − 𝜃

= 𝑟

0

=

󵄩

󵄩

󵄩

󵄩

𝜙

󵄩

󵄩

󵄩

󵄩

.

(34)

By Lemma 6, there exists at least a fixed point 𝜙
0
∈ Ω

satisfying 𝑇(𝜙
0
) = 𝜙

0
, which implies system (1) has at least

one almost periodic solution. This completes the proof.

4. Globally Exponential Stability of Almost
Periodic Solution

Theorem 9. Assume that (𝐻
1
)–(𝐻
3
) hold; suppose further the

following.

(𝐻

4
)There exists a positive constant 𝜆 < 1 such that

sup
𝑠∈R

{

{

{

𝑛

∑

𝑗=1

[

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖 (
𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑓

𝑖
+ (1 + 𝜆) 𝐿

𝑔

𝑖

× ∫

∞

0

𝑤

𝑖
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖
(𝑠 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇] − (1 − 𝜆) 𝑎𝑖 (𝑠)
}

}

}

< 0,

sup
𝑠∈R

{

{

{

[1 + 𝜆]

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑗𝑖 (
𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

ℎ

𝑖
− 𝜆

}

}

}

< 0, 𝑖 = 1, 2, . . . , 𝑛.

(35)

Then system (1) has a unique almost periodic solution, which is
globally exponentially stable.

Proof. It follows from Theorem 8 that system (1) has at least
one almost periodic solution 𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
)

𝑇 with initial
value 𝜙∗ = (𝜑

∗

1
, . . . , 𝜑

∗

𝑛
)

𝑇. We next show that the almost
periodic solution 𝜙 is globally exponentially stable.

Make a transformation for system (1): 𝑥
𝑖
= 𝑢

𝑖
− 𝜑

𝑖
, 𝑥∗
𝑖
=

𝑢

∗

𝑖
− 𝜑

∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, where 𝑧 = (𝑢

1
, . . . , 𝑢

𝑛
)

𝑇 is arbitrary
solution of system (1) with initial value 𝑧∗ = (𝑢∗

1
, . . . , 𝑢

∗

𝑛
)

𝑇.
By (2) and (𝐻

4
), there exist small enough positive con-

stants 𝜔 ≤ 𝛿 and 𝜖 such that

∫

∞

0

V
𝑖 (
]) 𝑒𝜔] d] ≤ ∫

∞

0

V
𝑖 (
]) (1 + 𝜖) d] = (1 + 𝜖) ,

∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗
(𝑠 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

𝜔𝜇d𝜇

≤ (1 + 𝜖) ∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗
(𝑠 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇,

𝜔 +

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖 (
𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑓

𝑖
+ [1 + 𝜆 (1 + 𝜖)] (1 + 𝜖) 𝐿

𝑔

𝑖

× ∫

∞

0

𝑤

𝑖
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖
(𝑠 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇)

≤ [1 − 𝜆 (1 + 𝜖)] 𝑎𝑖 (
𝑠) ,

[1 + 𝜆 (1 + 𝜖)]

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑗𝑖 (
𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

ℎ

𝑖
− 𝜆 ≤ 0,

(36)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑠 ∈ R.
Define

𝑉

1 (
𝑡) =

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

. (37)
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In view of system (1), we have

𝐷

+
𝑉

1 (
𝑡)

≤ 𝜔

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

+

𝑛

∑

𝑖=1

𝑒

𝜔𝑡
[

[

−𝑎

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

+

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑓

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

+

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑔

𝑗
∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇

+

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

ℎ

𝑗
∫

∞

0

V
𝑗 (
])
󵄨

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑡 − ])

󵄨

󵄨

󵄨

󵄨

󵄨

d]]

]

.

(38)

Let

𝑉

2 (
𝑡) = 𝜆

𝑛

∑

𝑗=1

∫

∞

0

V
𝑗 (
]) ∫
𝑡

𝑡−]
𝑒

𝜔(𝑟+]) 󵄨
󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑟)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑟 d],

𝑉

3 (
𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] 𝐿

𝑔

𝑗

× ∫

∞

0

𝑤

𝑗
(𝜇) ∫

𝑡

𝑡−𝜇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗
(𝑟 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

𝜔(𝑟+𝜇) 󵄨
󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑟)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑟 d𝜇.

(39)

So

𝐷

+
𝑉

2 (
𝑡)

≤ 𝜆

𝑛

∑

𝑗=1

𝑒

𝜔𝑡
∫

∞

0

V
𝑗 (
]) 𝑒𝜔]d] 󵄨󵄨󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

− 𝜆

𝑛

∑

𝑗=1

𝑒

𝜔𝑡
∫

∞

0

V
𝑗 (
])
󵄨

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑡 − ])

󵄨

󵄨

󵄨

󵄨

󵄨

d]

≤ 𝜆

𝑛

∑

𝑖=1

𝑒

𝜔𝑡
(1 + 𝜖)

[

[

𝑎

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

+

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑓

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

+

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑔

𝑗

×∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇]

]

− 𝜆

𝑛

∑

𝑗=1

𝑒

𝜔𝑡
[1 −

𝑛

∑

𝑖=1

(1 + 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

ℎ

𝑗
]

× ∫

∞

0

V
𝑗 (
])
󵄨

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑡 − ])

󵄨

󵄨

󵄨

󵄨

󵄨

d],

(40)

𝐷

+
𝑉

3 (
𝑡) ≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] 𝑒

𝜔𝑡
𝐿

𝑔

𝑗

× ∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗
(𝑡 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

𝜔𝜇d𝜇 󵄨󵄨󵄨
󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] 𝑒

𝜔𝑡 󵄨
󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑔

𝑗

× ∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] (1 + 𝜖) 𝑒

𝜔𝑡
𝐿

𝑔

𝑗

× ∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗
(𝑡 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇 󵄨󵄨󵄨
󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] 𝑒

𝜔𝑡 󵄨
󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑔

𝑗

× ∫

∞

0

𝑤

𝑗
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇.

(41)

Let 𝑉(𝑡) = ∑3
𝑞=1
𝑉

𝑞
. From (38)–(41), it follows that

𝐷

+
𝑉 (𝑡) ≤ 𝑒

𝜔𝑡

𝑛

∑

𝑖=1

{𝜔 − [1 − 𝜆 (1 + 𝜖)] 𝑎𝑖 (
𝑡)

+

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑓

𝑖

+

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] (1 + 𝜖) 𝐿

𝑔

𝑖

× ∫

∞

0

𝑤

𝑖
(𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖
(𝑡 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝜇} 󵄨󵄨󵄨
󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

+ 𝑒

𝜔𝑡

𝑛

∑

𝑗=1

{[1 + 𝜆 (1 + 𝜖)]

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

ℎ

𝑗
− 𝜆}

× ∫

∞

0

V
𝑗 (
])
󵄨

󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑡 − ])

󵄨

󵄨

󵄨

󵄨

󵄨

d] ≤ 0,

(42)

which implies that 𝑉(𝑡) ≤ 𝑉(0), ∀𝑡 > 0. Obviously,

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 󵄨
󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑉 (𝑡) . (43)
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On the other hand, we have

𝑉 (0) =

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖 (
0)

󵄨

󵄨

󵄨

󵄨

+ 𝜆

𝑛

∑

𝑗=1

∫

∞

0

V
𝑗 (
]) ∫
0

−]
𝑒

𝜔(𝑟+]) 󵄨
󵄨

󵄨

󵄨

󵄨

𝑥̇

𝑗 (
𝑟)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑟 d]

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[1 + 𝜆 (1 + 𝜖)] 𝐿

𝑔

𝑗

× ∫

∞

0

𝑤

𝑗
(𝜇) ∫

0

−𝜇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗
(𝑟 + 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

𝜔(𝑟+𝜇) 󵄨
󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑟)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑟 d𝜇

≤

{

{

{

𝑛 +

2𝑛

𝜔

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

6𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗

𝜔

}

}

}

󵄩

󵄩

󵄩

󵄩

𝑧

∗
− 𝜙

∗󵄩
󵄩

󵄩

󵄩

,

(44)

which implies from (43) that
𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑀

󵄩

󵄩

󵄩

󵄩

𝑧

∗
− 𝜙

∗󵄩
󵄩

󵄩

󵄩

𝑒

−𝜔𝑡
, ∀𝑡 > 0, (45)

where

𝑀 := 𝑛 +

2𝑛

𝜔

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

6𝑐

+

𝑖𝑗
𝐿

𝑔

𝑗

𝜔

. (46)

Thus, the almost periodic solution of system (1) is glob-
ally exponentially stable. The globally exponential stability
implies that the almost periodic solution is unique. This
completes the proof.

5. An Example

Example 1. Consider the following neutral-type cellular neu-
ral networks with distributed delays:

𝑥̇

𝑖 (
𝑡) = −𝑥𝑖 (

𝑡) + sin (√2𝑡)

×

2

∑

𝑗=1

𝑔

𝑗
(∫

∞

0

𝑒

−𝑠
𝑥

𝑗 (
𝑡 − 𝑠) d𝑠)

+ 0.1 [2 + cos2 (√3𝑡)]
2

∑

𝑗=1

ℎ

𝑗
(∫

∞

0

𝑒

−𝑠
𝑥̇

𝑗 (
𝑡 − 𝑠) d𝑠)

+ sin (√2𝑡) , 𝑖 = 1, 2,

(47)

where 𝑔
1
(𝑠) = 𝑔

2
(𝑠) = 0.1𝑠, ℎ

1
(𝑠) = 0.1 sin(𝑠), and ℎ

2
(𝑠) =

0.1 cos(𝑠), ∀𝑠 ∈ R. Then system (47) has a unique almost
periodic solution, which is globally exponentially stable.

Proof. Corresponding to system (1), 𝑎−
𝑖
= 1, 𝐿

𝑔

𝑗
= 𝐿

ℎ

𝑗
=

0.1, 𝑐+
𝑖𝑗
= 1, 𝑑

+

𝑖𝑗
= 0.3, 𝑤

𝑗
(𝑠) = V

𝑗
(𝑠) = 𝑒

−𝑠, 𝑖, 𝑗 = 1, 2. Taking
𝜆 = 0.5, it is easy to verify that (𝐻

1
)–(𝐻
4
) hold and the results

follow from Theorems 8 and 9 (see Figures 1, 2, and 3). This
completes the proof.
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Figure 1: Almost periodicity of state variables 𝑥
1
(𝑡) and 𝑥

2
(𝑡).
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Figure 2: Global exponential stability of state variable 𝑥
1
(𝑡).
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Figure 3: Global exponential stability of state variable 𝑥
2
(𝑡).

Remark 10. One can observe that all the results in [9–12] and
the references therein cannot be applicable to system (1) to
obtain the existence and exponential stability of the almost
periodic solutions. This implies that the results of this paper
are essentially new.

6. Conclusion

This paper is concerned with the neutral cellular neural
networks with distributed delays. By using fixed point theory
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and constructing suitable Lyapunov functional, some new
sufficient conditions are obtained for the existence and
global exponential stability of almost periodic solution of
the system. Conditions (𝐻

3
) and (𝐻

4
) in Theorems 8 and

9 indicate that the neutral terms and the distributed delays
are harm for the existence and global exponential stability
of almost periodic solution of the neutral-type system. The
method used in this paper provides a possible method to
study the existence and global exponential stability of almost
periodic solution of other neutral neural networks.
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