
Research Article
Method of Lower and Upper Solutions for Elliptic Systems with
Nonlinear Boundary Condition and Its Applications

Ruyun Ma, Ruipeng Chen, and Yanqiong Lu

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

Correspondence should be addressed to Ruyun Ma; ruyun ma@126.com

Received 8 March 2014; Accepted 30 April 2014; Published 12 May 2014

Academic Editor: Wan-Tong Li

Copyright © 2014 Ruyun Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We develop the method of lower and upper solutions for a class of elliptic systems with nonlinear boundary conditions. As its
application, an elliptic system modeling a population divided into juvenile and adult age groups is studied, and we find sufficient
conditions in terms of the principal eigenvalue of the corresponding linearized system, to guarantee the existence of coexistence
states of the above juvenile-adult model.

1. Introduction

Let Ω be a bounded domain in R𝑁 (𝑁 ≥ 2) with sufficiently
smooth boundary Γ. In this paper we study the elliptic
systems of the form

𝐿
𝑘
𝑢
𝑘
= 𝑓
𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) , 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 = 𝑔

𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) , 𝑥 ∈ Γ,

𝑘 = 1, 2, . . . , 𝑚,

(1)

where n is the unit exterior normal to Γ, 𝑢 = (𝑢
1
, . . . , 𝑢

𝑚
),

[𝑢]
𝑘
= (𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢
𝑘+1

, . . . , 𝑢
𝑚
), and 𝐿

𝑘
(𝑘 = 1, 2, . . . , 𝑚) is

a linear differential operator of the form

𝐿
𝑘
𝑢 = −

𝑁

∑

𝑖,𝑗=1

𝑎
𝑘

𝑖𝑗
(𝑥)𝐷𝑖𝐷𝑗𝑢

+

𝑁

∑

𝑖=1

𝑎
𝑘

𝑖
(𝑥)𝐷𝑖𝑢 + 𝑎

𝑘
(𝑥) 𝑢.

(2)

with symmetric coefficient matrix (𝑎
𝑘

𝑖𝑗
)
𝑛×𝑛

. We suppose that
𝑎
𝑘

𝑖𝑗
∈ 𝐶
2+𝛼

(Ω), 𝑎𝑘
𝑖

∈ 𝐶
1+𝛼

(Ω), and 𝑎
𝑘

∈ 𝐶
𝛼
(Ω) for a

certain 𝛼 ∈ (0, 1). Moreover, 𝐿
𝑘
(𝑘 = 1, 2, . . . , 𝑚) is supposed

to be strongly uniformly elliptic; that is, ∑𝑁
𝑖,𝑗=1

𝑎
𝑘

𝑖𝑗
(𝑥)𝜉
𝑖
𝜉
𝑗

≥

𝛼
𝑘

0
|𝜉|
2 for some constant 𝛼

𝑘

0
> 0 and every 𝑥 ∈ Ω,

𝜉 = (𝜉
1
, . . . , 𝜉

𝑁
) ∈ R𝑁.

System (1) with𝑚 = 1 arises, in particular, in the study of
steady state solutions of nonlinear parabolic equations of the
form

𝜕𝑢

𝜕𝑡
+ 𝐿𝑢 = 𝑓 (𝑥, 𝑢) in Ω × (0,∞) ,

𝜕𝑢

𝜕n
+ 𝑏 (𝑥) 𝑢 = 𝑔 (𝑥, 𝑢) on Γ × (0,∞) ,

𝑢 = 𝑢
0

on Ω,

(3)

where 𝐿 is some second order, strongly uniformly elliptic
differential operator. In this connection, nonlinear bound-
ary conditions seem to be of particular importance. For
the study of the stability of the solutions of the parabolic
initial-boundary value problem (3), one has to have a good
knowledge of the steady states, that is, of the solutions of (1)
with𝑚 = 1. In the past few decades, the theory of monotone
operators has been applied to boundary value problems of the
form (3); see, for example, [1–3] and the references therein. In
all of the above-mentioned papers, the boundary condition is
of the special form 𝜕𝑢/𝜕v = 𝑔(𝑢), where 𝑔 is decreasing and
v is the conormal with respect to the differential operator 𝐿.
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Besides these results, there are some scattered existence
theorems for nonlinear Stecklov problems of the form

𝐿𝑢 = 0 in Ω,

𝜕𝑢

𝜕v
= 𝑔 (𝑥, 𝑢) on Γ,

(4)

where 𝐿 is supposed to be formally self-adjoint such that
the homogeneous linear boundary value problem possesses a
nontrivial solution; we refer the readers here to [4, 5] and the
references therein.The stationary version of (3), which covers
the above-mentioned several situations, has been studied by
several authors; see Amann [6, 7] and Hess [8]. In particular,
Amann [6] studied the stationary version of (3) and obtained
a general existence theorem for it, namely, the result that the
existence of a subsolution and a supersolution guarantees the
existence of a solution. By transforming the stationary version
of (3) into an equivalent fixed point equation in𝐶(Ω), he gave
a new and more elegant proof for the above result.

Motivated by the above work, we will develop themethod
of lower and upper solutions for system (1) under the
following assumptions:

(H1) for 𝑘 = 1, . . . , 𝑚, 𝑓
𝑘

: Ω × R𝑚 → R is 𝛼-Hölder
continuous in the first variable and locally Lipschitz
in the second variable; 𝑔

𝑘
: Γ × R𝑚 → R is locally

Lipschitz continuous;

(H2) For 𝑘 = 1, . . . , 𝑚, 𝑎𝑘 > 0 in Ω, and 𝑏
𝑘

∈ 𝐶
1+𝛼

(Γ)

satisfying 𝑏
𝑘
> 0 on Γ.

By a solution 𝑢 = (𝑢
1
, . . . , 𝑢

𝑚
) of (1) we mean a classical

solution, that is, for each 𝑘 = 1, 2, . . . , 𝑚, 𝑢
𝑘
∈ 𝐶
2
(Ω) ∩𝐶

1
(Ω)

such that 𝐿
𝑘
𝑢
𝑘
(𝑥) = 𝑓

𝑘
(𝑥, 𝑢
𝑘
(𝑥), [𝑢]

𝑘
(𝑥)) for 𝑥 ∈ Ω, and

𝜕𝑢
𝑘
(𝑥)/𝜕n + 𝑏

𝑘
(𝑥)𝑢
𝑘
(𝑥) = 𝑔

𝑘
(𝑥, 𝑢
𝑘
(𝑥), [𝑢]

𝑘
(𝑥)) for 𝑥 ∈ Γ. For

given V = (V
1
, . . . , V

𝑚
) and 𝑤 = (𝑤

1
, . . . , 𝑤

𝑚
), we say V ≤ 𝑤 if

V
𝑘
≤ 𝑤
𝑘
for every 𝑘 = 1, 2, . . . , 𝑚, and we define

[V, 𝑤] = {𝑢 ∈ [𝐶 (Ω)]
𝑚

: V
𝑘 (𝑥) ≤ 𝑢

𝑘 (𝑥) ≤ 𝑤
𝑘 (𝑥) ,

∀𝑥 ∈ Ω, 𝑘 = 1, 2, . . . , 𝑚} .

(5)

Definition 1. Let 𝑢, 𝑢 ∈ [𝐶
2
(Ω) ∩ 𝐶

1
(Ω)]
𝑚. Then 𝑢 and 𝑢 are

called ordered coupling upper and lower solutions of (1), if
𝑢 ≥ 𝑢 and they satisfy

𝐿
𝑘
𝑢
𝑘
≥ 𝑓
𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) ,

∀[𝑢]
𝑘
≤ [𝑢]𝑘 ≤ [𝑢]𝑘, 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 ≥ 𝑔

𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) ,

∀[𝑢]
𝑘
≤ [𝑢]𝑘 ≤ [𝑢]𝑘, 𝑥 ∈ Γ,

𝑘 = 1, 2, . . . , 𝑚,

𝐿
𝑘
𝑢
𝑘
≤ 𝑓
𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) ,

∀[𝑢]
𝑘
≤ [𝑢]𝑘 ≤ [𝑢]𝑘, 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 ≤ 𝑔

𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) ,

∀[𝑢]
𝑘
≤ [𝑢]𝑘 ≤ [𝑢]𝑘, 𝑥 ∈ Γ,

𝑘 = 1, 2, . . . , 𝑚,

(6)

respectively.

The main result of this paper is the following.

Theorem2. Assume that (H1) and (H2) are satisfied. Let𝑢 and
𝑢 be ordered coupling upper and lower solutions of (1).Then (1)
has at least one solution 𝑢 in [𝑢, 𝑢].

Remark 3. Obviously, in the special case that 𝑚 = 1,
Theorem 2 generalize the correspondingAmann [6,Theorem
2.1]. In addition, we would like to point out that Theorem 2
also generalizes Wang [9, Theorem 3.7.1], where the author
developed the method of lower and upper solutions for the
system (1) with linear boundary conditions.

The plan of the paper is as follows. In Section 2 we will
develop the method of lower and upper solutions for elliptic
system (1) and prove Theorem 2. Finally in Section 3, we will
applyTheorem 2 to show the existence of positive solution of
a juvenile-adult model.

2. Lower and Upper Solutions Method

Lemma 4. Let (H1) and (H2) hold. Then the system (1) is
equivalent to the fixed point equation 𝑢 = 𝑇(𝑢) in [𝐶(Ω)]

𝑚.
The map 𝑇 : [𝑢, 𝑢] ⊂ [𝐶(Ω)]

𝑚
→ [𝐶(Ω)]

𝑚 is completely
continuous; that is, 𝑇 is continuous and maps bounded set into
compact set.

Proof. For every (V, 𝑤) = ((V
1
, . . . , V

𝑚
), (𝑤
1
, . . . , 𝑤

𝑚
)) ∈

[𝐶
𝛼
(Ω)]
𝑚
× [𝐶
1+𝛼

(Γ)]
𝑚, it is well known (cf. [10, 11] ) that the

system

𝐿
𝑘
𝑢
𝑘
= V
𝑘
, 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 = 𝑤

𝑘
, 𝑥 ∈ Γ,

𝑘 = 1, 2, . . . , 𝑚,

(7)

has a unique solution 𝑢 = (𝑢
1
, . . . , 𝑢

𝑚
) =: 𝑆(V, 𝑤) ∈

[𝐶
2+𝛼

(Ω)]
𝑚 as well as in [𝑊

2

𝑝
(Ω)]
𝑚, 1 < 𝑝 < ∞. Hence the

Schauder estimates and the 𝐿𝑝-estimates take the form

𝑢𝑘
𝐶2+𝛼(Ω)

≤ 𝐶 (
V𝑘

𝐶𝛼(Ω)
+
𝑤𝑘

𝐶1+𝛼(Γ)
) ,

𝑘 = 1, 2, . . . , 𝑚,

(8)

𝑢𝑘
𝑊2
𝑝
(Ω)

≤ 𝐶(
V𝑘

𝐿𝑝(Ω)
+
𝑤𝑘

𝑊
1−1/𝑝

𝑝
(Γ)

) ,

𝑘 = 1, 2, . . . , 𝑚,

(9)
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respectively. Here and in the following 𝐶 denotes a positive
constant (not necessarily the same in different formulas)
which is independent of the functions appearing in these esti-
mates. Hence (8) implies that 𝑆 : [𝐶

𝛼
(Ω)]
𝑚
× [𝐶
1+𝛼

(Γ)]
𝑚

→

[𝐶
2+𝛼

(Ω)]
𝑚 is a bounded linear operator. Since [𝐶(Ω)]

𝑚
→

[𝐿
𝑝
(Ω)]
𝑚 and [𝐶(Γ)]

𝑚
→ [𝐿

𝑝
(Γ)]
𝑚 for every 𝑝 ∈ (1,∞),

Amann [6, Proposition 3.3] implies the existence of constant
𝐶 such that

𝑢𝑘
𝑊1
𝑝
(Ω)

≤ 𝐶 (
V𝑘

𝐿𝑝(Ω)
+
𝑤𝑘

𝐿𝑝(Γ)
)

≤ 𝐶 (
V𝑘

𝐶(Ω)
+
𝑤𝑘

𝐶(Γ)
) ,

𝑘 = 1, 2, . . . , 𝑚,

(10)

for every (V, 𝑤) ∈ [𝐶
𝛼
(Ω)]
𝑚

× [𝐶
1+𝛼

(Γ)]
𝑚. Since the latter

space is dense in [𝐶(Ω)]
𝑚
×[𝐶(Γ)]

𝑚, the estimate (10) implies
that 𝑆 has a unique continuous extension for each 𝑝 ∈ (1,∞),
denoted again by 𝑆, such that 𝑆 is also a bounded linear
operator from [𝐶(Ω)]

𝑚
× [𝐶(Γ)]

𝑚 to [𝑊
1

𝑝
(Ω)]
𝑚.

Now, let 𝐹 and 𝐺 be the Nemytskii operators generated
by the vector fields (𝑓

1
, . . . , 𝑓

𝑚
) and (𝑔

1
, . . . , 𝑔

𝑚
), respectively.

Here and in the following we denote by 𝑝 an arbitrary, but
fixed real number satisfying 𝑝 > 𝑁.This implies in particular
that [𝑊

1

𝑝
(Ω)]
𝑚 is compactly embedded into [𝐶(Ω)]

𝑚. We
define 𝑇 : [𝑢, 𝑢] → [𝑊

1

𝑝
(Ω)]
𝑚
(→→ [𝐶(Ω)]

𝑚
) by

𝑇 (𝑢) = 𝑆 (𝐹 (𝑢) , 𝐺 ∘ 𝜏 (𝑢)) , (11)
where 𝜏 denotes the usual trace operator. Then 𝑇 can be
considered as a mapping of [𝑢, 𝑢] into [𝐶(Ω)]

𝑚. It is obvious
that every solution of the system (1) is a fixed point of 𝑇.
Conversely, if 𝑢 ∈ [𝐶(Ω)]

𝑚 is a fixed point of 𝑇, then we can
show that 𝑢 is also a solution of the system (1) by using the
same methods as in the proof of Amann [6, Lemma 4.1].

Let 𝐼 = ∏
𝑚

𝑘=1
[min 𝑢

𝑘
,max 𝑢

𝑘
]. Then it is easy to see that

𝐹 : [𝑢, 𝑢] → [𝐶(Ω)]
𝑚 and 𝐺 : 𝐼

Γ
:= {𝑢 ∈ [𝐶(Γ)]

𝑚
: 𝑢(Γ) ⊂

𝐼} → [𝐶(Γ)]
𝑚 are bounded and continuous. Moreover, 𝜏 :

[𝐶(Ω)]
𝑚

→ [𝐶(Γ)]
𝑚 is a continuous linear operator such

that 𝜏([𝑢, 𝑢]) ⊂ 𝐼
Γ
. Since 𝑆 is also a bounded linear operator

from [𝐶(Ω)]
𝑚
×[𝐶(Γ)]

𝑚 to [𝑊
1

𝑝
(Ω)]
𝑚, and since [𝑊1

𝑝
(Ω)]
𝑚 is

compactly embedded into [𝐶(Ω)]
𝑚 for 𝑝 > 𝑁, it follows that

𝑇 is completely continuous from [𝑢, 𝑢] to [𝐶(Ω)]
𝑚.

Proof of Theorem 2. The regularity assumption (H1) for 𝑓
𝑘

and 𝑔
𝑘
implies the existence of positive constants 𝜎

𝑘
(𝑘 =

1, 2, . . . , 𝑚) such that
𝑓
𝑘
(𝑥, 𝑢
𝑘
, [V]𝑘) − 𝑓

𝑘
(𝑥, V
𝑘
, [V]𝑘) ≥ −𝜎

𝑘
(𝑢
𝑘
− V
𝑘
) ,

∀𝑢 ≤ V ≤ 𝑢, ∀𝑥 ∈ Ω,

(12)

𝑓
𝑘
(𝑥, V
𝑘
, [V]𝑘) − 𝑓

𝑘
(𝑥, 𝑢
𝑘
, [V]𝑘) ≥ −𝜎

𝑘
(V
𝑘
− 𝑢
𝑘
) ,

∀𝑢 ≤ V ≤ 𝑢, ∀𝑥 ∈ Ω,

(13)

𝑔
𝑘
(𝑦, 𝑢
𝑘
, [V]𝑘) − 𝑔

𝑘
(𝑦, V
𝑘
, [V]𝑘) ≥ −𝜎

𝑘
(𝑢
𝑘
− V
𝑘
) ,

∀𝑢 ≤ V ≤ 𝑢, ∀𝑦 ∈ Γ,

(14)

𝑔
𝑘
(𝑦, V
𝑘
, [V]𝑘) − 𝑔

𝑘
(𝑦, 𝑢
𝑘
, [V]𝑘) ≥ −𝜎

𝑘
(V
𝑘
− 𝑢
𝑘
) ,

∀𝑢 ≤ V ≤ 𝑢, ∀𝑦 ∈ Γ.

(15)

Let

𝑀
𝑘
:= 𝜎
𝑘
+max {𝑎𝑘

𝐶(Ω)
,
𝑏𝑘

𝐶(Γ)
} . (16)

Then the system (1) is equivalent to the system

(𝐿
𝑘
+ 𝑀
𝑘
) 𝑢
𝑘
= 𝑓
𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) + 𝑀

𝑘
𝑢
𝑘
, 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 + 𝑀

𝑘
𝑢
𝑘
= 𝑔
𝑘
(𝑥, 𝑢
𝑘
, [𝑢]𝑘) + 𝑀

𝑘
𝑢
𝑘
,

𝑥 ∈ Γ, 𝑘 = 1, 2, . . . , 𝑚.

(17)

Moreover, 𝑢 and 𝑢 are also subsolution and supersolution for
the system (17). Consequently, by Lemma 4, system (17) is
equivalent to the fixed point equation 𝑢 = 𝑇(𝑢) in [𝐶(Ω)]

𝑚,
and 𝑇 : [𝑢, 𝑢] → [𝐶(Ω)]

𝑚 is completely continuous.
Now, let us show that 𝑇 : [𝑢, 𝑢] → [𝑢, 𝑢].
It is clear that [𝑢, 𝑢] is a bounded closed convex subset of

[𝐶(Ω)]
𝑚. Let V ∈ [𝑢, 𝑢] and 𝑢 = 𝑇(V). Then 𝑢 and V satisfy

that

𝐿
𝑘
𝑢
𝑘
+ 𝑀
𝑘
𝑢
𝑘
= 𝑓
𝑘
(𝑥, V
𝑘
, [V]𝑘) + 𝑀

𝑘
V
𝑘
, 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 + 𝑀

𝑘
𝑢
𝑘
= 𝑔
𝑘
(𝑥, V
𝑘
, [V]𝑘) + 𝑀

𝑘
V
𝑘
,

𝑥 ∈ Γ, 𝑘 = 1, 2, . . . , 𝑚.

(18)

On the other hand, since V ∈ [𝑢, 𝑢], we have 𝑢 ≤ V ≤ 𝑢 and
so [𝑢]

𝑘
≤ [V]
𝑘
≤ [𝑢]
𝑘
, which together with Definition 1 yields

that 𝑢 verifies

𝐿
𝑘
𝑢
𝑘
+ 𝑀
𝑘
𝑢
𝑘
≥ 𝑓
𝑘
(𝑥, 𝑢
𝑘
, [V]𝑘) + 𝑀

𝑘
𝑢
𝑘
, 𝑥 ∈ Ω,

𝜕𝑢
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑢𝑘 + 𝑀

𝑘
𝑢
𝑘
≥ 𝑔
𝑘
(𝑥, 𝑢
𝑘
, [V]𝑘) + 𝑀

𝑘
𝑢
𝑘
,

𝑥 ∈ Γ, 𝑘 = 1, 2, . . . , 𝑚.

(19)

Let𝑤
𝑘
= 𝑢
𝑘
−𝑢
𝑘
. Then we can easily conclude from (12), (14),

(18), and (19) that

𝐿
𝑘
𝑤
𝑘
+ 𝑀
𝑘
𝑤
𝑘
≥ 𝑓
𝑘
(𝑥, 𝑢
𝑘
, [V]𝑘) − 𝑓

𝑘
(𝑥, V
𝑘
, [V]𝑘)

+ 𝑀
𝑘
(𝑢
𝑘
− V
𝑘
) ≥ 0,

𝑥 ∈ Ω, 𝑘 = 1, 2, . . . , 𝑚,

𝜕𝑤
𝑘

𝜕n
+ 𝑏
𝑘 (𝑥) 𝑤𝑘 + 𝑀

𝑘
𝑤
𝑘
≥ 𝑔
𝑘
(𝑥, 𝑢
𝑘
, [V]𝑘) − 𝑔

𝑘
(𝑥, V
𝑘
, [V]𝑘)

+ 𝑀
𝑘
(𝑢
𝑘
− V
𝑘
) ≥ 0,

𝑥 ∈ Γ, 𝑘 = 1, 2, . . . , 𝑚.

(20)

From the maximum principle for elliptic boundary value
problems it follows that 𝑤

𝑘
≥ 0; that is, 𝑢

𝑘
≤ 𝑢
𝑘
. Similarly,

by using (13) and (15), we can obtain 𝑢
𝑘
≤ 𝑢
𝑘
. Consequently,

𝑇 maps [𝑢, 𝑢] into itself, and the existence of a fixed point
follows from Schauder fixed point theorem.
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3. Application to a Juvenile-Adult Model

In this section, we will apply the method of lower and upper
solutions in Section 2 to study the existence of coexistence
states of the following elliptic system describing two subpop-
ulations of the same species competing for resources:

− Δ𝑢 = 𝑎 (𝑥) V − 𝑐 (𝑥) 𝑢 − 𝑒 (𝑥) 𝑢 (𝑢 + V) ,

𝑥 ∈ Ω,

− ΔV = 𝑏 (𝑥) 𝑢 − 𝑑 (𝑥) V − 𝑓 (𝑥) V (𝑢 + V) ,

𝑥 ∈ Ω,

𝜕𝑢

𝜕n
+ 𝛼 (𝑥) 𝑢 = 𝑔 (𝑥, 𝑢, V) , 𝑥 ∈ Γ,

𝜕V
𝜕n

+ 𝛽 (𝑥) V = ℎ (𝑥, 𝑢, V) , 𝑥 ∈ Γ.

(21)

System (21) arises from population dynamics where
it models the steady-state solutions of the corresponding
nonlinear evolution problem [12], where 𝑢 and V represent
the concentrations of the adult and juvenile populations,
respectively. The function 𝑎 gives the rate at which juveniles
become adults and 𝑐 corresponds to the death rate of adult
population. As adults give birth to juveniles, the function 𝑏

corresponds to the birth rate of the population. Juveniles are
lost both through death and through becoming adults, the
function 𝑑 corresponds to this overall loss. The Laplacian
operator shows the diffusive character of 𝑢 and V within
Ω. By using fixed point theory and lower and upper solu-
tions method, several authors have studied the existence of
coexistence states of the system (21), subject to Dirichlet
or Neumann boundary conditions; see, for example, [13–
16] and the references therein. We consider here the more
general model (21), in which the boundary conditions may
be interpreted as the conditions that the populationsmay pass
through the boundary of the habitat. This is a mathematical
model more closer to the reality.

In the rest of this section, we suppose that 𝛼 and 𝛽 satisfy
(H2), the coefficients 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are positive functions
in 𝐶
𝛼
(Ω), and 𝑔 and ℎ are nonnegative functions defined

on Γ × R2
+
(R
+

= [0,∞)) and satisfy (H1). We will use the
notation 𝑢 ≫ 0 if 𝑢(𝑥) > 0 for 𝑥 ∈ Ω. Apparently, since
𝑎(𝑥) > 0, 𝑏(𝑥) > 0 for 𝑥 ∈ Ω, the system

− Δ𝑢 = 𝑎 (𝑥) V − 𝑐 (𝑥) 𝑢, 𝑥 ∈ Ω,

− ΔV = 𝑏 (𝑥) 𝑢 − 𝑑 (𝑥) V, 𝑥 ∈ Ω,

𝜕𝑢

𝜕n
+ 𝛼 (𝑥) 𝑢 = 0, 𝑥 ∈ Γ,

𝜕V
𝜕n

+ 𝛽 (𝑥) V = 0, 𝑥 ∈ Γ,

(22)

is a linear cooperative system, for which we can give the
following strong maximum principle.

Lemma 5. Let 𝑢
0
, V
0
∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) be such that 𝑢

0
≫

0, V
0
≫ 0 and

−Δ𝑢
0
≥ 𝑎 (𝑥) V0 − 𝑐 (𝑥) 𝑢0, 𝑥 ∈ Ω,

−ΔV
0
≥ 𝑏 (𝑥) 𝑢0 − 𝑑 (𝑥) V0, 𝑥 ∈ Ω,

𝜕𝑢
0

𝜕n
+ 𝛼 (𝑥) 𝑢0 ≥ 0, 𝑥 ∈ Γ,

𝜕V
0

𝜕n
+ 𝛽 (𝑥) V0 ≥ 0, 𝑥 ∈ Γ,

(23)

where equality does not hold in some of the equations in (23).
Then (22) satisfies the strong maximum principle; that is, if
𝑢, V ∈ 𝐶

2
(Ω) ∩ 𝐶

1
(Ω) such that

−Δ𝑢 ≥ 𝑎 (𝑥) V − 𝑐 (𝑥) 𝑢, 𝑥 ∈ Ω,

−ΔV ≥ 𝑏 (𝑥) 𝑢 − 𝑑 (𝑥) V, 𝑥 ∈ Ω,

𝜕𝑢

𝜕n
+ 𝛼 (𝑥) 𝑢 ≥ 0, 𝑥 ∈ Γ,

𝜕V
𝜕n

+ 𝛽 (𝑥) V ≥ 0, 𝑥 ∈ Γ,

(24)

then either (i) 𝑢, V ≡ 0 on Ω or (ii) 𝑢 ≫ 0, V ≫ 0.

Proof. Otherwise, there exist 𝑢
1
, V
1
not both identically zero

satisfying (24) but not satisfying (ii) in the conclusion of the
theorem. For 𝑡 ∈ [0, 1], define 𝑢

𝑡
= (1 − 𝑡)𝑢

0
+ 𝑡𝑢
1
and V
𝑡
=

(1 − 𝑡)V
0
+ 𝑡V
1
. Then there exists 𝑡

0
with 0 < 𝑡

0
≤ 1 such that

𝑢
𝑡
, V
𝑡
≫ 0 for 0 ≤ 𝑡 < 𝑡

0
and either 𝑢

𝑡
0

or V
𝑡
0

has a zero in Ω.
Without loss of generality, we assume that there exists 𝑥

1
∈ Ω

such that 𝑢
𝑡
0

(𝑥
1
) = 0. Then by (23) and (24) we have

−Δ𝑢
𝑡
0

≥ 𝑎 (𝑥) V𝑡
0

− 𝑐 (𝑥) 𝑢𝑡
0

, 𝑥 ∈ Ω. (25)

That is,

−Δ𝑢
𝑡
0

+ 𝑐 (𝑥) 𝑢𝑡
0

≥ 𝑎 (𝑥) V𝑡
0

≥ 0, 𝑥 ∈ Ω. (26)

On the other hand, we can also deduce from (23) and (24)
that

𝜕𝑢
𝑡
0

𝜕n
(𝑥) + 𝛼 (𝑥) 𝑢𝑡

0
(𝑥) ≥ 0, 𝑥 ∈ Γ, (27)

and therefore the maximum principle for elliptic boundary
value problems yields that 𝑢

𝑡
0

≡ 0 or 𝑢
𝑡
0

≫ 0 on Ω. Since
𝑢
𝑡
0

(𝑥
1
) = 0, we have that 𝑢

𝑡
0

≡ 0, and then from (26) we get
V
𝑡
0

≡ 0. Since 𝑢
1
and V
1
are not both identically zero, 𝑡

0
< 1.

Thus, as 𝑢
𝑡
0

= (1−𝑡
0
)𝑢
0
+𝑡
0
𝑢
1
≡ 0 and V

𝑡
0

= (1−𝑡
0
)V
0
+𝑡
0
V
1
≡

0, we have, for 𝜃 := (𝑡
0
− 1)/𝑡

0
< 0,

𝑢
1
= 𝜃𝑢
0
, V

1
= 𝜃V
0
. (28)

This is impossible since 𝑢
0
, V
0
satisfy (23) and 𝑢

1
, V
1
satisfy

(24).

Corollary 6. Assume that 𝑎(𝑥)−𝑐(𝑥) < 0 and 𝑏(𝑥)−𝑑(𝑥) < 0

for all𝑥 ∈ Ω.Then the system (22) verifies the strongmaximum
principle.
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Proof. We may get the desired results by using Theorem 9
and choosing 𝑢

0
≡ V
0
≡ 𝑀, where𝑀 is any positive constant.

Lemma 7. The cooperative system (22) has a principal eigen-
value; that is, there exists Λ ∈ R and 𝑢

0
, V
0
∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω)

such that 𝑢
0
≫ 0, V

0
≫ 0 and

−Δ𝑢
0
+ 𝑐 (𝑥) 𝑢0 − 𝑎 (𝑥) V0 = Λ𝑢

0
, 𝑥 ∈ Ω,

−ΔV
0
− 𝑏 (𝑥) 𝑢0 + 𝑑 (𝑥) V0 = ΛV

0
, 𝑥 ∈ Ω,

𝜕𝑢
0

𝜕n
+ 𝛼 (𝑥) 𝑢0 = 0, 𝑥 ∈ Γ,

𝜕V
0

𝜕n
+ 𝛽 (𝑥) V0 = 0, 𝑥 ∈ Γ.

(29)

Proof. Obviously, system (22) can be equivalently rewritten
as

L𝑈 − 𝐴 (𝑥)𝑈 = 0, 𝑥 ∈ Ω,

𝜕𝑢

𝜕n
+ 𝛼 (𝑥) 𝑢 = 0, 𝑥 ∈ Γ,

𝜕V
𝜕n

+ 𝛽 (𝑥) V = 0, 𝑥 ∈ Γ,

(30)

where

𝑈 = (
𝑢

V) , L = (
−Δ 0

0 −Δ
) ,

𝐴 (𝑥) = (
−𝑐 (𝑥) 𝑎 (𝑥)

𝑏 (𝑥) −𝑑 (𝑥)
) .

(31)

Let 𝑋 = {𝑈 ∈ 𝐶
2+𝛼

(Ω) × 𝐶
2+𝛼

(Ω) : 𝜕𝑢/𝜕n + 𝛼(𝑥)𝑢 =

0, 𝜕V/𝜕n + 𝛽(𝑥)V = 0} and 𝑌 = 𝐶
𝛼
(Ω) × 𝐶

𝛼
(Ω). Then L

maps 𝑋 into 𝑌. It is well known that if 𝑀 > 0 is sufficiently
large, thenL−𝐴(𝑥)+𝑀 : 𝑋 → 𝑌 is invertible such that (L−

𝐴(𝑥)+𝑀)
−1 is compact. Moreover, if𝑀 is chosen sufficiently

large such that 𝑎(𝑥) − 𝑐(𝑥) < 𝑀 and 𝑏(𝑥) − 𝑑(𝑥) < 𝑀 for
all 𝑥 ∈ Ω, then Corollary 6 yields that (L − 𝐴(𝑥) + 𝑀)

−1 is
strongly positive. It follows from the Krein-Rutman theorem
that (L − 𝐴(𝑥) + 𝑀)

−1 has a positive principal eigenvalue,
which is denoted by𝜇.Therefore, there exists �̃� = (

�̃�

Ṽ ) ∈ 𝑌×𝑌

with �̃� ≫ 0, Ṽ ≫ 0 such that (L − 𝐴(𝑥) + 𝑀)
−1
�̃� = 𝜇�̃�.

Consequently, (L − 𝐴(𝑥))�̃� = (1/𝜇 − 𝑀)�̃� and so L − 𝐴(𝑥)

has a principal eigenvalue 𝜆
1
(L − 𝐴(𝑥)).

Proposition 8. Assume that𝐴
1
(𝑥) = (𝑎

1

𝑖𝑗
(𝑥))
2×2

and𝐴
2
(𝑥) =

(𝑎
2

𝑖𝑗
(𝑥))
2×2

are cooperative matrices. If 𝐴
1
(𝑥) ≥ 𝐴

2
(𝑥), that is,

𝑎
1

𝑖𝑗
(𝑥) ≥ 𝑎

2

𝑖𝑗
(𝑥) for all𝑥 ∈ Ω and 𝑖, 𝑗 = 1, 2 but𝐴

1
(𝑥) ̸≡ 𝐴

2
(𝑥),

then 𝜆
1
(L − 𝐴

1
(𝑥)) < 𝜆

1
(L − 𝐴

2
(𝑥)).

Proof. By Lemma 7, there exists 𝑈
1
= (
𝑢
1

V
1
) ∈ 𝑋 so that 𝑢

1
≫

0, V
1
≫ 0 and [L − 𝐴

1
(𝑥) − 𝜆

1
(L − 𝐴

1
(𝑥))]𝑈

1
= 0. Then

[L − 𝐴
2 (𝑥) − 𝜆

1
(L − 𝐴

1 (𝑥))] 𝑈1

= [L − 𝐴
1 (𝑥) − 𝜆

1
(L − 𝐴

1 (𝑥))] 𝑈1

+ (𝐴
1 (𝑥) − 𝐴

2 (𝑥))𝑈1 = (𝐴
1 (𝑥) − 𝐴

2 (𝑥))𝑈1 ≥ 0,

(32)

but (𝐴
1
(𝑥) − 𝐴

2
(𝑥))𝑈

1
̸≡ 0, and from Lemma 5 we know

that system [L − 𝐴
2
(𝑥) − 𝜆

1
(L − 𝐴

1
(𝑥))]𝑈 = 0 satisfies the

strong maximum principle. Hence if 𝛾 denotes the principal
eigenvalue of the system L − 𝐴

2
(𝑥) − 𝜆

1
(L − 𝐴

1
(𝑥))𝐼, then

it follows easily that 𝛾 > 0. Clearly, L − 𝐴
2
(𝑥) has principal

eigenvalue 𝜆
1
(L − 𝐴

2
(𝑥)) = 𝜆

1
(L − 𝐴

1
(𝑥)) + 𝛾 > 𝜆

1
(L −

𝐴
1
(𝑥)).

For each positive function 𝜉 ∈ 𝐶
𝛼
(Ω), we denote by 𝜉 and

𝜉 the maximum and minimum of 𝜉 inΩ, respectively. Let

𝛼
0
= min
𝑥∈Γ

𝛼 (𝑥) , 𝛽
0
= min
𝑥∈Γ

𝛽 (𝑥) ,

𝑀 = max{𝑎

𝑒
,
𝑏

𝑓
} .

(33)

Then they are all positive constants. ApplyingTheorem 2, we
will prove the following existence results of positive solutions
of system (21).

Theorem 9. Suppose that 𝑔, ℎ : Γ ×R2
+

→ R
+
satisfy

𝑔 (𝑥,𝑀, 𝑦) ≤ 𝑀𝛼
0

∀ (𝑥, 𝑦) ∈ Γ × [0,𝑀] ; (34)

ℎ (𝑥, 𝑧,𝑀) ≤ 𝑀𝛽
0

∀ (𝑥, 𝑧) ∈ Γ × [0,𝑀] . (35)

If 𝜆
1
(L − 𝐴(𝑥)) < 0, then system (21) has at least one positive

solution.

Proof. Assume 𝜆
1
(L−𝐴(𝑥)) < 0.Then there existsΦ = (

𝜙
1

𝜙
2

)

with𝜙
1
≫ 0, 𝜙

2
≫ 0 such that (L−𝐴(𝑥))Φ = 𝜆

1
(L−𝐴(𝑥))Φ;

that is,

− Δ𝜙
1
= 𝑎 (𝑥) 𝜙2 − 𝑐 (𝑥) 𝜙1 + 𝜆

1 (L − 𝐴 (𝑥)) 𝜙1,

𝑥 ∈ Ω,

− Δ𝜙
2
= 𝑏 (𝑥) 𝜙1 − 𝑑 (𝑥) 𝜙2 + 𝜆

1 (L − 𝐴 (𝑥)) 𝜙2,

𝑥 ∈ Ω,

𝜕𝜙
1

𝜕n
+ 𝛼 (𝑥) 𝜙1 = 0, 𝑥 ∈ Γ,

𝜕𝜙
2

𝜕n
+ 𝛽 (𝑥) 𝜙2 = 0, 𝑥 ∈ Γ.

(36)

Let 𝑈∗ = (
𝑢
∗

V∗ ) = (𝑀
𝑀
) and 𝑈

∗
= (
𝑢
∗

V
∗
) = 𝜀 (

𝜙
1

𝜙
2

), where 𝑀 is
given as in (33). In the following we will show that𝑈∗ and𝑈

∗

satisfy the hypotheses of Theorem 2 if 𝑀 is defined as above
and 𝜀 > 0 is chosen sufficiently small.
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By the definition of 𝑀, we have 𝑎(𝑥) − 𝑒(𝑥)𝑀 ≤ 0 for all
𝑥 ∈ Ω, and so

𝑐 (𝑥)𝑀 ≥ 0 ≥ (𝑎 (𝑥) − 𝑒 (𝑥)𝑀) V − 𝑒 (𝑥)𝑀
2
,

∀0 ≤ V ≤ 𝑀.

(37)

In other words, we get

− Δ𝑢
∗
+ 𝑐 (𝑥) 𝑢

∗
≥ 𝑎 (𝑥) V − 𝑒 (𝑥) 𝑢

∗
(𝑢
∗
+ V) ,

∀0 ≤ V ≤ 𝑀.

(38)

Moreover, from (33) it follows that

𝜕𝑢
∗

𝜕n
+ 𝛼 (𝑥) 𝑢

∗
= 𝛼 (𝑥)𝑀 ≥ 𝛼

0
𝑀

≥ 𝑔 (𝑥,𝑀, V) = 𝑔 (𝑥, 𝑢
∗
, V) ,

∀0 ≤ V ≤ 𝑀.

(39)

Similarly, we can deduce from (35) that

− ΔV∗ + 𝑑 (𝑥) V∗ ≥ 𝑏 (𝑥) 𝑢 − 𝑓 (𝑥) V∗ (V∗ + 𝑢) ,

∀0 ≤ 𝑢 ≤ 𝑀,

𝜕V∗

𝜕n
+ 𝛽 (𝑥) V∗ = 𝛽 (𝑥)𝑀 ≥ 𝛽

0
𝑀

≥ ℎ (𝑥, 𝑢,𝑀) = ℎ (𝑥, 𝑢, V∗) ,

∀0 ≤ 𝑢 ≤ 𝑀.

(40)

Let 𝜀 = min{𝑎/𝑒𝜙
1
, 𝑏/𝑓 𝜙

2
}. Then, for any 𝜀 ∈ (0, 𝜀), we

have 𝑎(𝑥) − 𝜀𝑒(𝑥)𝜙
1
(𝑥) ≥ 0 and 𝑏(𝑥) − 𝜀𝑓(𝑥)𝜙

2
(𝑥) ≥ 0 for all

𝑥 ∈ Ω. Hence when 𝜀 < 𝜀 and 𝜀𝜙
2
≤ V ≤ 𝑀, we get

− Δ𝑢
∗
− 𝑎 (𝑥) V + 𝑐 (𝑥) 𝑢∗ + 𝑒 (𝑥) 𝑢∗ (𝑢∗ + V)

= −𝜀Δ𝜙
1
− 𝑎 (𝑥) V + 𝑐 (𝑥) 𝜀𝜙1 + 𝑒 (𝑥) 𝜀𝜙1 (𝜀𝜙1 + V)

= 𝜀 (−Δ𝜙
1
− 𝑎 (𝑥) 𝜙2 + 𝑐 (𝑥) 𝜙1)

+ 𝑎 (𝑥) (𝜀𝜙2 − V) + 𝑒 (𝑥) 𝜀𝜙1 (𝜀𝜙1 + V)

= 𝜀𝜆
1 (L − 𝐴 (𝑥)) 𝜙1 + 𝜀𝑎 (𝑥) 𝜙2

− (𝑎 (𝑥) − 𝑒 (𝑥) 𝜀𝜙1) V + 𝜀
2
𝑒 (𝑥) 𝜙

2

1

≤ 𝜀𝜆
1 (L − 𝐴 (𝑥)) 𝜙1 + 𝜀𝑎 (𝑥) 𝜙2

− (𝑎 (𝑥) − 𝑒 (𝑥) 𝜀𝜙1) 𝜀𝜙2 + 𝜀
2
𝑒 (𝑥) 𝜙

2

1

= 𝜀𝜆
1 (L − 𝐴 (𝑥)) 𝜙1 + 𝜀

2
𝑒 (𝑥) 𝜙1 (𝜙1 + 𝜙

2
) < 0,

(41)

when 𝜀 is sufficiently small; that is,

− Δ𝑢
∗
+ 𝑐 (𝑥) 𝑢∗ < 𝑎 (𝑥) V − 𝑒 (𝑥) 𝑢∗ (𝑢∗ + V) ,

∀𝜀𝜙
2
≤ V ≤ 𝑀.

(42)

Furthermore, since the function 𝑔 is nonnegative, we have
that

𝜕𝑢
∗

𝜕n
+ 𝛼 (𝑥) 𝑢∗ = 𝜀(

𝜕𝜙
1

𝜕n
+ 𝛼 (𝑥) 𝜙1) = 0 ≤ 𝑔 (𝑥, 𝑢

∗
, V) ,

∀𝜀𝜙
2
≤ V ≤ 𝑀.

(43)

Applying the similar discussions as above, we can also prove
that

− ΔV
∗
+ 𝑑 (𝑥) V∗ < 𝑏 (𝑥) 𝑢 − 𝑓 (𝑥) V∗ (V∗ + 𝑢) ,

∀𝜀𝜙
1
≤ 𝑢 ≤ 𝑀,

𝜕V
∗

𝜕n
+ 𝛽 (𝑥) V∗ = 𝜀(

𝜕𝜙
2

𝜕n
+ 𝛽 (𝑥) 𝜙2)

= 0 ≤ ℎ (𝑥, 𝑢, V
∗
) , ∀𝜀𝜙

1
≤ 𝑢 ≤ 𝑀.

(44)

Consequently, it follows fromTheorem 2 that system (21) has
at least one positive solution 𝑈 in [𝑈

∗
, 𝑈
∗
].

Remark 10. It is worth remarking that the results of Theo-
rem 9 remain true if we use the weaker assumption 𝑔, ℎ :

Γ ×R2
+

→ R
+
and

𝑔 (𝑥, 𝑦, 𝑧) ≥ 0, ℎ (𝑥, 𝑦, 𝑧) ≥ 0,

∀𝑥 ∈ Γ, (𝑦, 𝑧) ∈ [0,𝑀] × [0,𝑀] .

(45)

Remark 11. In the special case 𝑔 ≡ ℎ ≡ 0 on Γ × R2
+
, the

assumptions (34) and (35) are fulfilled. From Proposition 8
and similar argument used in the proof of [14, Theorem 3.2],
we may show that the condition 𝜆

1
(L − 𝐴(𝑥)) < 0 is also

necessary for the existence of positive solutions of system
(21). Consequently, if 𝑔 ≡ ℎ ≡ 0 on Γ × R2

+
, then system

(21) has a positive solution if and only if 𝜆
1
(L − 𝐴(𝑥)) < 0.

Hence Theorem 9 generalizes [14, Theorem 3.2] and [15,
Corollary 18] inwhich only the problemwith linear boundary
conditions was considered.
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