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Embedded systems have become increasingly connected and communicate with each other, forming large-scaled and complicated
network systems. To make their design and testing more reliable and robust, this paper proposes a formal specification language
called SENS and a SENS-based automatic test generation tool called TGSENS. Our approach is summarized as follows: (1) A user
describes requirements of target embedded network systems by logical property-based constraints using SENS. (2) Given SENS

specifications, test cases are automatically generated using a SAT-based solver. Filtering mechanisms to select efficient test cases are
also available in our tool. (3) In addition, given a testing goal by the user, test sequences are automatically extracted from exhaustive
test cases.We’ve implemented our approach and conducted several experiments on practical case studies.Through the experiments,
we confirmed the efficiency of our approach in design and test generation of real embedded air-conditioning network systems.

1. Introduction

An embedded network system (ENS) is a system consisting
of a number of embedded units that communicate with
each other. Nowadays, ENSs are growing rapidly and play-
ing an important role in our daily life, such as in-vehicle
networking systems, home appliance networks, and building
energy management systems. On the other hand, because
of the increasing complexity of functionality and growing
network scales, as well as the increasing numbers and types
of embedded units in ENSs, development of the ENSs has
been becoming more and more difficult. Particularly, design
and test generation are ones of the most important and
cost-consuming phases in reliable ENS development, but
many companies still rely on the traditional techniques where
system requirements are described in a natural language

and test cases are generated based on human experience.
However, design and test by manpower may not sufficiently
cover enormous numbers of combination to be considered
especially for complicated ENSs.

During the last decade, numerous formal methods have
been proposed to improve software quality. Especially, test
generation is an attractive application for mechanized formal
methods; the importance of good test cases is universally
recognized and so is the high cost of generating them by
hand.One of thesemethods, themodel-based test generation,
has been extensively studied (e.g., see [1–4]). One of the
advantages of this technique is that each behavior of the
system model is described directly, and then test cases can
be automatically generated from the models. Note, however,
that if test cases are generated from incomplete specifications
and models, they suffer from the problem of lacking and low
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quality of test cases. Therefore, formal specification based
modeling and test generation for large-scale ENSs are still
challenges.

This paper presents our works gained in a joint project of
AIST, DaiKin Industries, and Kyoto Institue of TechnoIogy.
The ultimate goal of our project is to develop a robust
and reliable automatic test generation tool suitable for a
development process of air-conditioning network systems
developed by Daikin . (We refer to the company as Company
D in the rest of this paper.) The target system consists
of a number of embedded controllers and indoor/outdoor
air-conditioning equipment for building management. For
this project, we have taken an approach of automatic test
generation based on a formal specification. In the following,
we present three main contributions toward our overall goal.

(i) Development of a Formal Specification Language. First,
we have developed a specification language for ENSs
called SENS (Specification language for Embedded
Network Systems). SENS is designed under the con-
cept of test-oriented, object-oriented, modular, and
lightweight description of ENSs. In SENS system, the
requirements are specified using logical constraints.
This logical property rigorously determines a set of
state transitions that satisfy all constraints and thus
helps to get the specification without lacking and
inconsistency and clearly obtain an advantage over a
manpower design of system and test.

(ii) Development of a Test Case Generator. Second, we
have developed a tool calledTGSENS (Test Generator
based on SENS) which automatically generates high
quality test cases from a given specification written
in SENS. Our tool can find distinct and enormous
test cases quickly that satisfy complex specifications
using a SAT solver as a core engine. Our tool can
also perform filtering to select efficient test cases.
In a feasibility study using air-conditioning systems
of Company D, given a specification for a certain
function of the system, our tool took only about 12
seconds to generate 77,700 test cases. We expect that
our tool will provide both quality improvement and
cost saving for testing target ENSs.

(iii) Development of a Test Sequence Generator. Third, we
have also developed a tool in TGSENS to generate
test sequences that satisfy a given testing goal by a
user. In an experiment using components of the target
air-conditioning systems, our tool generated 156 test
sequences in 8 minutes for a given testing goal such
that the sequence contains 2 milestone states whose
distance is less than 3 state transitions. We confirmed
that our tool is helpful for test engineers to design test
scenarios efficiently.

The rest of this paper is organized as follows. In the
next section, we briefly introduce the overview of our work
and our tool. Section 3 describes the features, syntax, and
semantics of the SENS language. In Section 4, we pro-
pose the method for generating test cases and sequences

from SENS specifications. Section 5 presents experimen-
tal results when applying our tool to the air-conditioning
systems of Company D. Section 6 discusses related works.
Finally, we conclude our work and mention future works in
Section 7.

2. Overview of Our Work

Our target system is an embedded network system (ENS). An
ENS can be considered as a concurrent system consisting of
multiple subsystems with global environments, for example,
embedded indoor and outdoor equipment and controllers in
an air-conditioning network system as illustrated in Figure 1.
Each subsystem in an ENS is an event-triggered system
whose events are communications with other subsystems and
whose operations are constrained by conditions related to its
environment and time.

The behaviors of an ENS are specified in a hierarchical
way: an ENS consists of subsystems, a subsystem is con-
structed from its functions, and each function is constructed
from a set of functional requirements, as described in
Figure 1. To enhance the reliability and efficiency of design
and testing ENSs, we first focus on designing and modeling
a formal specification language for ENSs, called SENS,
which supports the hierarchy of ENSs and is convenient for
our test generation purpose. We next achieve an automatic
test generation approach based on SENS, called TGSENS.
Figure 2 illustrates the overview of our tool that consists of
the following 5 steps.

(1) Specifying Requirements in SENS. A user describes
system requirements of the target ENS using SENS.
For the air-conditioning systems of Company D,
we have translated original specification documents
written in a natural language to formal specifications
in SENS.

(2) Translating SENS Specifications to CNF. The SENS

translator first performs the syntax and type checking
for the given SENS specification. Next, the transla-
tor automatically transforms logical requirements of
the SENS specification to CNF (conjunctive normal
form) formulas according to our translation rules.

(3) Solving CNF Formulas Using a SAT Solver. The CNF
formulas obtained in Step (2) are imported as an
input of the solver. The solver automatically finds
all possible assignments that satisfy the input CNF
formulas by iteratively using a SAT solver.

(4) Mapping from Assignments to Test Cases. The set
of possible assignments obtained in Step (3) are
automatically mapped to the set of state transitions
corresponding to one-step test cases.

(5) Generating Test Sequences under a Testing Goal.When
a user gives a testing goal including remarkable states
and lengths of sequences, a set of test sequences
are automatically derived from the test cases (state
transitions) obtained in Step (4).
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Figure 1: An air-conditioning system and its SENS specification.
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Figure 2: An overview of TGSENS.

3. SENS Specification

In this section, we present a compact formal language called
SENS to specify requirements of embedded network systems
(ENSs). In Section 3.1, we present features of SENS. In
Sections 3.2 and 3.3, we briefly describe the syntax and
semantics of SENS.

3.1. Features of SENS. The SENS specification is basically a
set of requirements represented by logical formulas. SENS
is based on a quantifier-free predicate modal logic with a
next operator where predicate variables are classified into
environments, systems, communication channels, and timer
variables. SENS has the following features.

3.1.1. Property-Based. Property-based logical formulas repre-
sent requirements which constrain system behaviors. Since a
part of the specification less affects the entire specification, it

is easy to modify and reuse SENS specifications. A require-
ment is described in a traditional Hoare triple-like way:

⟨𝑝𝑟𝑒 : 𝑒V𝑒𝑛𝑡 : (𝑝𝑜𝑠𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛)⟩ , (1)

where 𝑝𝑟𝑒 (resp., 𝑝𝑜𝑠𝑡) denotes a logical constraint holding
in a prestate (resp., poststate) and an 𝑒V𝑒𝑛𝑡 (resp., 𝑎𝑐𝑡𝑖𝑜𝑛)
represents a message receiving (resp., sending) between
subsystems. This 3-tuple requirement needs to hold for all
transitions of the system model, and we call this 3-tuple
requirement a transition requirement.

3.1.2. Test-Oriented. For a testing purpose, specifying tested
values and bounds of variables is available in the variable
declaration. This supports a test-oriented design and an
efficient test generation from SENS specifications.

3.1.3. Object-Oriented. A group of subsystems is represented
as a parameterized class, and each subsystem is defined as an
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instance of the class in the main class representing the whole
system.This representation leads to an efficient description of
a large number of subsystems in an ENS.

3.1.4. Modular. Specifications of an ENS, a subsystem, and a
function are broken down into specifications of subsystems,
functions, and transition requirements, respectively. This
modular construction makes it easy to specify a large-scaled
and complicated ENS piece by piece and provide a reusability
of specifications. This also allows a step-wise test generation
from SENS specifications for unit testing, integration testing,
and system testing.

3.1.5. Lightweight Description of Time Constraints. We con-
sider a timer as a component of a subsystem and then specify
time constraints using events and actions with the timer.
SENS provides a timer variable which is declaredwith a time-
value, a time-unit, and a condition formula for counting up
the timer.

3.2. Syntax of SENS. Here, we give the brief explanation
of SENS description using the following example embedded
system.

Example 1. Consider an illustrating system in Figure 3.There
are 2 kinds of equipment, namely, classes 𝐴 and 𝐵. Let us
consider a simple ENS consisting of 3 subsystems 𝐴

1
, 𝐵
1
, and

𝐵
2
, where𝐴

1
is an instance of𝐴 and𝐵

1
and𝐵

2
are instances of

𝐵. A subsystem of class 𝐴 sends a message 𝑚 after 2 minutes
from starting its operation. Each subsystem of class 𝐵 turns
on its lamp when receiving message 𝑚. This system can be
described in the SENS specification of Pseudocode 1.

The SENS declarations consist of the following declara-
tions (refer to Appendix A for the full syntax of SENS).

(i) Main Class Declaration. File <main.cls> specifies the
main class. The main class represents the whole system
consisting of subsystems and the environment. In the file
<main.cls> of Pseudocode 1, the classes 𝐴 and 𝐵 are
imported in line 1, and subsystems 𝐴

1
, 𝐵
1
, and 𝐵

2
are instan-

tiated in lines 6-7. Environment variables are declared in the
Var part. Data types, environment variables, and channels
declared in themain class are referred in all class declarations.
Invariants (logical expressions) for the entire system are
declared in the main class. In the example <main.cls>,
global data type onoff status is declared in lines 3-4.

(ii) Class Declaration. Files <A.cls> and <B.cls> of
Pseudocode 1 specify classes 𝐴 and 𝐵, respectively. 𝐴 class
other than the main class specifies a class of subsystems.
Local data types, variables, channels, and timers for the
subsystem are declared in the class declaration. In <A.cls>,
local variable op and timer t are declared in lines 6–9, and a
function of the subsystem is declared in lines 11–14.

For data types, variables, channels, and timers externally
declared and internally used, the files to declare them are
imported with the Import statement and their names are
described in the Extern part. The main class file is imported

<main.cls>

(1) Import A, B;

(2) Class main

(3) Data

(4) onoff status {on,off};

(5) Var

(6) B1, B2 : B;
(7) A1 : A(B1, B2);

<A.cls>

(1) Import B;

(2) Extern

(3) Data

(4) onoff status; //from main

(5) Class A(arg1 : B, arg2 : B)

(6) Var

(7) op : onoff status {off};

(8) Timer

(9) t 2 min;

(10)
(11) Function SendingM

(12) Require

(13) ∼ op==off && op==on : null: t!start;

(14) op==on : t?ring : arg1.ch!m,arg2.ch!m;

<B.cls>

(1) Extern

(2) Data

(3) onoff status; //from main

(4) Class B

(5) Data

(6) m type {m};

(7) Var

(8) op : onoff status {off};

(9) lamp : onoff status {off};

(10) Channel

(11) ch : m type;

(12)
(13) Function Lighting

(14) Require

(15) op==on && lamp==off : ch?m:lamp==on;

(16) op==off −> lamp==off;

Pseudocode 1: An example SENS specification.

to all class files by default. A class can have parameters used
as constants in the class specification. In line 1 of <A.cls>,
class 𝐵 is imported since class 𝐵 is used in the parameter
declaration of 𝐴. In lines 3-4, data type onoff status is
described in the Extern part.

(iii) Variable and Data Type Declarations. A variable is
declared with its name, type, initial value, and test declaration
(values and bounds for testing) in the part following to Var.
Data types are int and doublewith ranges, and enumerated
data types are defined in the Data part. In the Data part,
a type is defined as a set of values. In SENS, only finite
and discrete values are used. In the example<main.cls>,
a global data type, onoff status, which has two elements
on and off, is declared in lines 3-4. In <B.cls>, a local
data type, m type, which has the only element m, is declared
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Figure 3: An example embedded system.

in lines 5-6. Using the test declaration beginning with the
keywordtestedwith, one can define the specific values of
variables to be considered in a testing phase. For example,
consider the following variable declaration:

Var v1 double [-2, 5] {0}

testedwith {-2, 0..5 (0.5)};

variable v1 is defined as follows: its type is double, its range
is −2 ≤ v1≤ 5, its initial value 0, and its tested values are
−2 and a number from 0 to 5 in increments of 0.5. In our
semantics of SENS, each variable of a subsystem takes one
value, that is, an element of its domain. If the declaration of
a variable has a test declaration, the domain is defined by the
test declaration. Otherwise, the domain is defined by the data
type of the variable.

(iv) Channel and Timer Declarations. Channels are used to
describe communications between subsystems. A channel
is declared with its name and message type. In lines 10-
11 of <B.cls>, a channel ch for receiving message m is
declared. A timer is declared with its name, time-value, unit,
and conditions (logical formula) for counting up. When
the condition is omitted, the condition is always true. For
example, consider the following timer declarations:

Timer

t1 5 min;
t2 5 hour [(v==dry) || (v==cool)];

Timer t1 is declared to count up 5 minutes. Timer t2 is
declared to count up 5 hours, but the counting is performed
only when the value of v is dry or cool.

The event is a message receiving (channel-name?expr)
or timeout (timer-name?ring). Similarly, the action is a
message sending (channel-name!expr), timer starting (timer-
name!start), or timer reset (timer-name!clear). When spec-
ifying a communication between subsystems, a message
sending (action) is described using both a recipient’s object
name and a channel name, while a message receiving (event)
is described using only a channel name.

(v) Function and Requirement Declarations. Functions are
declared in the class declaration or in individual function
declaration files. In the function declaration, constants, data
types, variables, and timers can be defined locally. A function
contains a set of requirements.

A requirement is an expression representing an invariant
or a 3-tuple of a precondition, an event, and a postcondition
or/with/without actions. (More precisely, the third part of
the transition requirement is a postcondition or an action or
actions or a postcondition with an action or a postcondition
with actions.) We call the 3-tuple requirement a transition
requirement. The BNF description for a transition require-
ment is given in Algorithm 1 (Refer to Appendix A.4).

The precondition and postcondition are logical expres-
sions. In the transition requirement declaration, the event
part can contain no more than one event (it can also be null
which is a symbol showing that no event occurs), while the
action part can contain multiple actions. We assume that a
transition requirement contains no more than one event and
actions related to the same timer.

Expressions are constructed with constants, variables,
and operators. Expressions have logical comparison and
arithmetic operators that general programming languages
such as C have. In addition, expressions in SENS have the
logical implication operator (–>) and the previous state oper-
ator (∼). Especially, expression ∼ v represents the previous
value of v.

3.3. Semantics of SENS. A SENS specification describes
requirements of an ENS consisting of subsystems com-
municating each other. We model the system specified by
SENS using a labeled transition system. Figure 4 illustrates
our system modeling where time constraints in SENS are
modeled using our timer models that will be shown later.
First, each instance corresponding to a subsystem in the
given specification ismodeled.When the class corresponding
to the subsystem contains timer variables, we compose the
subsystem model and its timer models. Next, an entire ENS
is modeled as a parallel composition of all subsystems. The
transition system modeled from the SENS specification is
used for generating test cases and test sequences.

In Section 3.3.1, we give the modeling of timers. In
Section 3.3.2, we give the modeling of a subsystem and
explain the composition of the subsystem and the timer. In
Section 3.3.3, we explain the composition of subsystems.

3.3.1. Modeling of Timers. A timer is specified in the timer
declaration with its timer name, number (time), unit, and
conditions for counting up in SENS. We consider two
kinds of models 𝑀

1
and 𝑀

2
for timers expressed in Figures

5(a) and 5(b). We can use simpler timer model 𝑀
2
for

state elimination, while we can use timer model 𝑀
1
for

considering the relation of a time length between timers (refer
to Section 3.3.2.).

Definition 2 (timer model). We model the behavior of each
timer𝑇

𝑖
as a labeled transition system (𝑆

𝑇𝑖
, Σ
𝑇𝑖

, 𝑅
𝑇𝑖

)with𝑅
𝑇𝑖

⊆

𝑆
𝑇𝑖

× Σ
𝑇𝑖

× 𝑆
𝑇𝑖
, where 𝑆

𝑇𝑖
denotes a set of states, Σ

𝑇𝑖
denotes

a set of labels, and 𝑅
𝑇𝑖
denotes a labeled transition for 𝑇

𝑖
.

(𝑆
𝑇𝑖

, Σ
𝑇𝑖

, 𝑅
𝑇𝑖

) for 𝑀
1
and 𝑀

2
are defined as follows:

(i) 𝑆
𝑇𝑖

= {ready, 0, 1, . . ., max, over} in 𝑀
1
;

(ii) 𝑆
𝑇𝑖

= {ready, run, over} in 𝑀
2
;
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Entire system

Sub-system 1 Sub-system n

Timer 1 Timer m Timer 1 Timer m󳰀

· · · · · ·

· · ·
· · · · · ·

Figure 4: A model composition for the entire ENS.

requirement-declaration::=
invariant | transition-requirement

invariant::= expr
transition-requirement::=

pre-condition “:” event “:”
(post-condition | (action (“,” | action)∗)
| (post-condition “,”(action (“,” | action)∗)))

Algorithm 1: The BNF description for a transition requirement.

(iii) Σ
𝑇𝑖

= {?start, ?clear, !ring, c} in 𝑀
1
, 𝑀
2
.

In models 𝑀
1
and 𝑀

2
, states ready and over, respec-

tively, represent states in which timer 𝑇
𝑖
is ready and counted

over. In model 𝑀
1
, state “ℎ” (0 ≤ ℎ ≤ max) represents a state

in which timer 𝑇
𝑖
has counted up ℎ times. In model 𝑀

2
, we

reduce states 0, . . ., max to state run representing a state in
which timer 𝑇

𝑖
is running, for the state elimination.

In both models, each state is changed to state ready
when receiving message clear. State ready is changed to
state 0 in 𝑀

1
(resp., state run in 𝑀

2
) when receiving message

start. State max in 𝑀
1
(resp., state run in 𝑀

2
) is changed

to stateover when sending message ring. We define that
transitions labeled with !𝑠𝑡𝑎𝑟𝑡 and c occur only if the
condition for the timer holds. If the condition is not described
in the timer declaration, the condition is considered to be
“true”.

If there aremultiple conditions 𝑝, 𝑞, . . . , 𝑟, we define tran-
sitions as represented in Figure 5(c). In the figure, transitions
labeled with ?clear are eliminated for simplicity. In the
figure, the first, second, and third transitions labeled with c
occur when conditions 𝑝, 𝑞, and 𝑟, respectively, hold.

3.3.2. Modeling of Subsystems. A subsystem is specified in the
class declaration in SENS. For a given specification, wemodel
the behavior of each subsystem as a labeled transition system
in two steps. First, the behavior of a subsystem 𝐶

𝑖
except

timers is modeled as a labeled transition system 𝑀(𝐶
𝑖
). Next,

the behavior of a subsystem including timers is modeled as

?clear
?clear

?clear
?clear

?clear

ready
?start !ring

max over
c

0 1
c c

· · ·

(a) Model𝑀1
?clear

?clear ?clear

ready
?start !ring

run over

c

(b) Model𝑀2

ready

?start

?start

?start

run

run

run

over

c

c

c

!ring

!ring

!ring

...
...

...

p holds
(¬ p ∧ q) holds
(¬ p ∧ ¬ q ∧ . . . ∧ r) holds

(c) Model𝑀󸀠
2
for timers with multiple conditions

Figure 5: Timer Models.

𝑀
𝑇

(𝐶
𝑖
) which is a composition of 𝑀(𝐶

𝑖
) and models of the

timers.

Definition 3 (subsystem model). We model the behavior of a
subsystem 𝐶

𝑖
, except for its timers, as 𝑀(𝐶

𝑖
) = (𝑆

𝐶𝑖
, Σ
𝐶𝑖

, 𝑅
𝐶𝑖

)

with 𝑅
𝐶𝑖

⊆ 𝑆
𝐶𝑖

× Σ
𝐶𝑖

× 𝑆
𝐶𝑖
. Given a SENS specification, the

set of states 𝑆
𝐶𝑖
, the set of labels Σ

𝐶𝑖
, and the set of transitions

𝑅
𝐶𝑖
are obtained by Definitions 15, 16, and 17 of Appendix B.1.

Example 4. Consider the example specification of
subsystem 𝐶

𝐴
in Pseudocode 1. Figure 6 illustrates

the subsystem model for 𝐶
𝐴

which satisfies the
specification. Given SENS specification for class 𝐴,
the states are (∼op=off, op=off), (∼op=off, op=on),
(∼op=on,op=on), and (∼op=on, op=off) from variable op
and previous state variable ∼op used in the specification by
Definition 15. By Definition 16, the labels are t!start, t?ring,
B[1]. ch!m, and B[2]. ch!m with the events and actions
used in the specification. Each transition in 𝑀(𝐶

𝐴
) satisfies

the two conditions in Definition 17. For example, 𝑠 → 𝑠󸀠

with 𝑠 = (∼op=off,op=off) and 𝑠󸀠 = (∼op=on,op=off)
cannot be a transition of 𝑀(𝐶

𝐴
), since it does not hold the

condition for previous state variables; that is, 𝑠 ⊨ (op=on), if
and only if 𝑠

󸀠 ⊨ (∼op=on) by Definition 17.
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∼op=off

∼op=off

op=off
∼op=on

∼op=on

op=off

op=onop=on
t!start

t?ring
C B[1].ch!m
C B[2].ch!m

Figure 6: An example model for system 𝐶
𝐴
.

We model the behavior of a subsystem 𝐶
𝑖
with its

timers 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑚
as an interleaving composition of the

subsystem model and timer models as follows:

𝑀
𝑇

(𝐶
𝑖
) = 𝑀 (𝐶

𝑖
) ‖ 𝑀 (𝑇

1
) ‖ 𝑀 (𝑇

2
) ‖ ⋅ ⋅ ⋅ ‖ 𝑀 (𝑇

𝑚
) , (2)

where 𝑀(𝐶
𝑖
) denote the subsystem model explained in

Definition 3 and 𝑀(𝑇
𝑗
) denotes the model for timer 𝑇

𝑗
(1 ≤

𝑗 ≤ 𝑚) explained in Section 3.3.1. We inductively define the
above model composition, that is,

(1) 𝑀(𝐶
𝑖
) ‖ 𝑀(𝑇

𝑗
) in Definition 18,

(2) 𝑀(𝐶𝑇
𝑖
) ‖ 𝑀(𝑇

𝑘
) in Definition 19, where 𝑀(𝐶𝑇

𝑖
) =

𝑀(𝐶
𝑖
) ‖ 𝑀(𝑇

1
) ‖ ⋅ ⋅ ⋅ ‖ 𝑀(𝑇

𝑗
) with 𝑗 < 𝑘.

And the composition rule is defined in Definitions 18 and 19
of Appendix B.2.

Example 5. Consider again the example specification of
subsystem 𝐶

𝐴
in Pseudocode 1. Figure 7 shows a part of the

composed model of 𝑀(𝐶
𝐴

) in Figure 6 and timer model
𝑀
2
for timer 𝑡. The transitions labeled with 𝑡 start and

𝑡 ring correspond to rules (a1) and (a2) in Definition 18, that
is, message synchronization. The transition labeled with c
corresponds to rule (a4) in Definition 18.

3.3.3. System Model. Now we explain the model for the
entire system. Assume that the entire system consists of 𝑘

subsystems. We define the model for the system as the par-
allel synchronized composition of labeled transition systems
𝑀
𝑇

(𝐶
𝑖
) representing all subsystems 𝐶

𝑖
(1 ≤ 𝑖 ≤ 𝑘). The

composition of two subsystems is defined in Definition 20
and the entire system model 𝑀

𝑇
(𝐶
1
) ‖ ⋅ ⋅ ⋅ ‖ 𝑀

𝑇
(𝐶
𝑛
) is

obtained by an inductive composition. (When a transition
of a subsystem has multiple message sending, we assume
that its composition is synchronously performed in our
modeling.) The composition rule is defined in the definition
of Appendix B.3.

Example 6. Consider the example specifications of subsys-
tems𝐶

𝐴
and𝐶

𝐵
[1] in Pseudocode 1. Figure 8 shows an exam-

ple composition of transitions in 𝑀
𝑇

(𝐶
𝐴

) and 𝑀
𝑇

(𝐶
𝐵

[1]).

∼op=off
op=on

∼op=on ∼op=on
op=offop=on

t start t ring
C B[1].ch!m
C B[2].ch!m

t=ready t=run t=over

C

· · ·

Figure 7: An example model for system 𝐶
𝐴
with a timer.

t ring
C B[1].ch!m
C B[2].ch!m

C A.op=on
C A.t=run

C B[1].op=on
C B[1].lamp=off

C A.t ring

C A.op=off

C B[1].op=on
C B[1].lamp=off

C AC B[1].ch m
C B[2].ch!m

C A.op=off
C A.t=over

C A.t=over

C B[1].op=on
C B[1].lamp=on

C A.∼op=on

C A.∼op=on

C A.∼op=on

∼op=on

∼op=on
op=off

op=on
t=run

t=over

ch?m

op=on

lamp=off

op=on

lamp=on

|| =

C A C B[1]

C A||C B[1]

Figure 8: An example transition composition for 𝐶
𝐴
and 𝐶

𝐵[1]
.

4. Automatic Test Generation from
the SENS Specification

In this section, we present the methods for a given SENS

specification to automatically generate test cases and test
sequences in Sections 4.1 and 4.2, respectively.

4.1. Test Case Generation

4.1.1. Concept. In our approach, we find all test cases by
using a SAT solver. A SAT solver is a tool to solve the SAT
(satisfiability) problem which determines whether there is
a value assignment to satisfy a given Boolean formula in
CNF (conjunctive normal form). Although this problem is
an NP-complete problem, there have been very high-speed
SAT solvers (e.g., MiniSAT [5]) for practical sized problems.
Using a SAT solver, we can find distinct and enormous test
cases quickly that satisfy SENS specifications.

4.1.2. Test Cases. Given a SENS specification that describes a
target system, every transition of the system model satisfies
all requirements in the given specification, as mentioned in
the previous section. Therefore, we can consider that each
transition 𝑡 of the system model corresponds to a one-step
test case.That is, the prestate (resp., events) of 𝑡 is a valid input
state (resp., system inputs) of a test case and the poststate
(resp., action) of 𝑡 is a valid output state (resp., system output)
of the test case. We formally define a test case as follows.
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Definition 7 (test case). Consider a given specification S. A
test case is a tuple,

(𝑖𝑛𝑝𝑢𝑡, 𝑒V𝑒𝑛𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑜𝑢𝑡𝑝𝑢𝑡) , (3)

corresponding to a transition of the system model 𝑀 such
that 𝑀 ⊨ S. In other words, a test case is an assignment that
makes every transition requirement of S hold.

Note that, if the given specification is for a subsystem
module, subsystems, and an entire ENS, derived test cases
are, respectively, used for unit testing, integration testing, and
system testing.

4.1.3. Translation of SENS to CNF. For generating test cases,
we first translate all the requirements in the given SENS

specification to a CNF formula which becomes an input of
a SAT solver. Since the SENS specification is a set of logical
constraint formulas, we can translate it to CNF according to
the semantics of SENS.

There are 3 main steps of the translation procedure as
follows. First, we introduce fresh propositional variables to
construct the state space of the system model. Second, tran-
sition requirements and invariants in the SENS specification
are translated into logical formulas. Third, we collect all of
the constraints presented in logical formulas.The constraints
are connected with conjunction and the result is converted
to CNF. (Every propositional logic formula can be converted
into an equivalent formula, that is, in CNF. However, by naive
algorithms where the transformation is based on rules of De
Morgan’s laws and the distributive law, the size of CNF can be
exponentially increased. To get a compact CNF formula, we
used the Tseitin-transformation [6] after translating SENS

to a propositional logic formula.) Due to space limitation, the
details of all translation rules are given in Appendix C.

4.1.4. Generating Test Cases. Once we obtain the CNF for-
mula from the given SENS specification, we apply a SAT
solver to the CNF formula to find an assignment. As men-
tioned above, the assignment that makes requirements of the
SENS specification true corresponds to a test case.

Algorithm 2 describes our method for generating test
cases. We use a SAT solver iteratively to find all possible
assignments and convert them to test cases that cover all
possible transitions of the system model.

4.1.5. Filtering. The proposed method can generate all possi-
ble test cases with 100% coverage for requirements of a given
specification. On the other hand, the number of complete test
cases can be very huge. In order to extract efficient test cases,
we also give several filtering mechanisms in our method.
In the current version of our tool, a user can select test
cases satisfying a precondition of transition requirements,
test cases containing a communication label, and test cases
whose timer label isring, which means the test cases related
to a time constraint.

Example 8. Consider again the example specification of sub-
system 𝐶

𝐴
in Pseudocode 1. Each transition of the model for

system 𝐶
𝐴
in Figure 7 corresponds to a test case. Especially,

((∼op=off,op=on), 0, {t!start}, (∼op=on,op=on)) corre-
spond to a test case satisfying a precondition of the tran-
sition requirement <∼op==off&&op==on:null:t!start>

in line 13 of the specification. On the other hand,
((∼op=on,op=on),{t?ring}, {C B[1].ch!m,C B[2].ch!m},
(∼op=on,op=off)) correspond to a test case containing
timer label ring and communication labels.

As shown in Table 3, the number of all test cases for 𝐶
𝐴

is 176. Among them, test cases satisfying a precondition are
10, which is less than 6% of the entire test cases. Moreover,
among them, 2 test cases can be extracted, respectively, with
a communication label and timer label ring.

4.2. Test Sequence Generation

4.2.1. Concept. As mentioned in Section 4.1, our test gener-
ator can generate all possible test cases for a given SENS

specification. Since the number of complete test cases can be
very huge, it is hard to run tests by inputting all the test cases
separately. Therefore, it is practical to extract test sequences
and focus on specific variables interested for testing. To deal
with this problem, we propose a test sequence generator for
appropriate testing goals given by users.

4.2.2. Test Sequences and Testing Goals. In our method, we
generate test sequences from two inputs: given a SENS spec-
ification and a testing goal. First, we define a test sequence as
follows.

Definition 9 (test sequence). A test sequence is a sequence of
test cases, whose adjacent output and input are the same.This
means that a test sequence is a sequence,

⟨(𝑖𝑛𝑝𝑢𝑡
1
, 𝑒V𝑒𝑛𝑡

1
, 𝑎𝑐𝑡𝑖𝑜𝑛

1
, 𝑜𝑢𝑡𝑝𝑢𝑡

1
)

. . . , (𝑖𝑛𝑝𝑢𝑡
𝑛
, 𝑒V𝑒𝑛𝑡

𝑛
, 𝑎𝑐𝑡𝑖𝑜𝑛

𝑛
, 𝑜𝑢𝑡𝑝𝑢𝑡

𝑛
)⟩ ,

(4)

where 𝑜𝑢𝑡𝑝𝑢𝑡
𝑖

= 𝑖𝑛𝑝𝑢𝑡
𝑖+1
, for 𝑖 = 1, . . . , 𝑛 − 1.

Next, a “testing goal” is a key feature that helps to generate
appropriate test sequences. This also allows us to reduce
the size of space and time for searching test sequences.
In the current version of our method, a user can specify
the following 3 features as a testing goal: “key variables”
for a testing purpose, a list of “milestone” states forming a
backbone of the sequence, and a “maximum length” between
two adjacent milestones. We formally define a testing goal as
follows.

Definition 10 (testing goals). Given a SENS specification, a
testing goal 𝐺 = ⟨𝑉, 𝑆, 𝐿𝑠⟩, where 𝑉 is a set of key variables, 𝑆

is a list ofmilestone states, and 𝐿𝑠 is a list ofmaximum lengths
such that

(1) 𝑎 “key variable” is a variable that we focus on testing
in the given specification;

(2) 𝑎 “milestone” is a state that wewant each test sequence
to pass through;
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Data: A SENS specification
Result: A Set of test cases

(1) begin
(2) Translate the given SENS specification to a logical formula 𝑓 in conjunctive normal form (CNF)

based on translation rules in Appendix C;
(3) Input 𝑓 to a SAT solver;
(4) if𝑓 is satisfiable then
(5) The SAT solver outputs a solution 𝑚 (value assignment) corresponding to one test case;
(6) Add the solution 𝑚 to a set of solutions;
(7) Let 𝑓 ← 𝑓 ∧ ¬𝑚 and return Step 2 to search for another solution;
(8) else
(9) The SAT solver declares 𝑓 is unsatisfiable;
(10) Then there are no more solutions;
(11) Translate previous solutions to test cases and stop;
(12) return The set of test cases;

Algorithm 2: Our algorithm of test case generation.

(3) 𝑎 “maximum length,” max of a run from a milestone
𝑠 ∈ 𝑆 to the next milestone 𝑠󸀠 ∈ 𝑆, denoted by 𝑠

≤max
󳨀󳨀󳨀󳨀→

𝑠󸀠, is the maximum number of transitions needed for
the run.

We say that a test sequence ⟨(𝑖
1
, 𝑒
1
, 𝑎
1
, 𝑜
1
), . . . ,

(𝑖
𝑛
, 𝑒
𝑛
, 𝑎
𝑛
, 𝑜
𝑛
)⟩ satisfies a testing goal 𝐺 = ⟨𝑉, 𝑆 =

⟨𝑠
1
, . . . , 𝑠

𝑘
⟩, 𝐿𝑠⟩, if and only if (1) the first input state 𝑖

1

and the last output state 𝑜
𝑛
of the test sequence, respectively,

are equal to the first milestone 𝑠
1
and the last milestone 𝑠

𝑘
, (2)

all other milestone states exist in the input states of the test
sequence in order, and (3) the length between the milestone
states in the test sequence is less than the maximum length
defined in 𝐿𝑠. In addition, value assignments only for the key
variables appear in the generated test sequences satisfying
the testing goal.

Example 11. If the list of milestones is ⟨𝑠
1
, 𝑠
2
, 𝑠
3
⟩, then we can

specify the maximum length in total as the
≤max1
󳨀󳨀󳨀󳨀󳨀→ ⋅

≤max2
󳨀󳨀󳨀󳨀󳨀→,

where max
1
is the maximum of transitions which can be

taken to go through from themilestone 𝑠
1
to themilestone 𝑠

2
,

and max
2
is the maximum of transitions which can be taken

to go through from the milestone 𝑠
2
to the milestone 𝑠

3
.

Let us consider the simple example specification of system
𝐵 in Pseudocode 1. Assume a testing goal whose key variables
𝑉 = {op,lamp}, milestones 𝑆 = ⟨𝑠

1
= (op=off,lamp=off),

𝑠
2
= (op=on,lamp=on) ⟩, and 𝑠

1

≤2

󳨀→ 𝑠
2
. Then,

⟨((op=off,lamp=off), 0, 0, (op=on,lamp=off)),
((op=on,lamp=off), ch?m, 0, (op=on,lamp=on))⟩

is a test sequence satisfying the testing goal.

4.2.3. Generating Test Sequences. Our approach for test
sequence generation has three main steps. First, from a
given SENS specification, we first generate all test cases by
our method in Algorithm 2. Then, the obtained test cases
correspond to all transitions of the target system model.

Second, we synthesize all the transitions into a transition
system (graph). Each state of this transition system is a tuple
of variable assignments. Each edge is a transition relation
from a prestate to a poststate, and a label of each edge is an
event that makes the transition occur. The transition system
of the specification is stored in a file, while the testing goal is
stored in a separate file.

Third, given the transition system and the testing goal in
two files, we compute all possible desired test sequences that
satisfy the testing goal; that is, we search the set of sequences
starting from a given milestone state to another milestone
statewhose distance is less than the givenmaximum length by
tree searching algorithms including exhaustive BFS (breath
first search) and DFS (depth first search) algorithms. Each
resulting test sequence is treated as a test scenario. In our
test sequence generation, we reduce the searching state space
of the system model by an equivalence partitioning based
on the key variables of the given testing goal and search the
sequences containing milestone states.

In our TGSENS, test sequences can be generated from
both the original transition system and the filtered test
cases. In the test sequence generation from the original
transition system, the obtained test sequences obviously keep
the transition relation of the original system model. In the
test sequence generation from the filtered test cases, test
sequences including transitions eliminated by filtering are not
generated. However, since the filtering is defined by formal
rules, the effect by filtering is clear for users who recognize
that test sequences with filtering options will be obtained. For
this reason, we believe that it does not affect the main results
of our research, in other words, generations of reliable test
cases/sequences.

5. Implementation and Experiments

5.1. Implementation. We implemented our approach of
SENS-based automatic test generation in the tool called
TGSENS. The tool TGSENS consists of the following four
parts as illustrated in Figure 2. (1) The first part translates
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the specification written in SENS into a CNF formula. (2)
The second part searches and collects all assignments that
satisfy the CNF formula by using a SAT solver as its core
engine. (3)The third part translates the obtained assignments
into test cases which are expressed with variables used in the
original SENS specification. (4) The forth part searches the
test sequences from the output file of the third part and given
testing goals. The resulting test sequences can be viewed by
two ways: a textual format or a graphical figure using a dot
file viewer.

Currently, for the function level (corresponding to the
function declaration in SENS) and the subsystem level
(corresponding to the class declaration in SENS), we have
completed the implementation of the first part in TGSENS

but not yet for the system level. That means that the imple-
mentation for the composition of subsystems for the entire
system level is our future work. Hence, the current version of
our tool can perform the test generation for unit testing.

Our tool was implemented on Windows XP for both
×86 and ×64 environments. The first, third, and forth parts
were implemented with a Java language. The second part
was implemented based on MiniSAT [5] with C++. The size
of the implemented programs is totally about 20,000 lines,
respectively, 16, 000, 3, 000, 500, and 340 lines for each part.

We also implemented the user interface (in Japanese) of
TGSENS given in Figure 9. Given an input SENS specifica-
tion, our tool has execution options to generate output files
of exhaustive test cases, filtered test cases, and test sequences
under a given testing goal. TGSENS also has a function to
check a reachability of states and generate path sequences
among the input states.

5.2. Experiments: Specification in SENS. We applied SENS to
specify system requirements of real air-conditioning systems
by Company D. In general, there are specifications with
different levels. In Company D, specifications are divided
into “instruction manuals,” “functional specifications,” and
“detailed specifications,” and each specification is broken
into functions. For example, as to specifications of certain
indoor equipment, an instruction manual consists of about
10 functions with 30 pages, and a functional specification
and a detailed specification, respectively, consist of about 80
functions with 400 pages.

We translated several specifications in a natural language
with tables and figures to SENS specifications. The target
specifications were for two modules 𝐹

ℎ
and 𝐹

𝑖
in an instruc-

tion manual and one function 𝐹
𝑗
in a detailed specification

of an indoor equipment, one function 𝐹
𝑙
in a functional

specification of an air-cleaning system, and three functions
𝐹
𝑚
, 𝐹
𝑛
, and 𝐹

𝑜
in a functional specification of a controller.

For all specifications, this translation needed 1 or 2 days
by one person who is one of our SENS developers. Almost all
(70–80%) of the translation time was for understanding the
real specifications and confirming whether the SENS spec-
ifications are valid with industrial engineers, while the rest
of the time (several hours) was for the actual description. In
addition, we held a one-day seminar for industrial engineers
to explain how to describe the SENS specifications and we

Input file

Output folder

Test case Reachability check Test sequence

Filtering
Satisfying

pre-conditions

Containing
communication

labels

Containing timer
label “ring”

(a) The main interface for generating test cases.

Test sequence
Generating a

graphical result

Setting for a testing goal

(b) The interface for generating test sequences.

Figure 9: The GUI interface of TGSENS.

confirmed that after the one-day seminar, the engineers were
easily able to use SENS to specify embedded systems by
themselves.

Example 12. We show a part of an example SENS specifica-
tion for function 𝐹

𝑙
in Pseudocode 2. 𝐹

𝑙
is a mode change

function for an air-cleaning system by Company D. The
original specification of this function was written in Japanese
with 𝐴

4
sized 4 pages and includes 5 tables and 4 transition

diagrams.We transformed this document into about 100 lines
of a SENS specification. The SENS specification consists of 8
variables (including 6 global variables, 1 local variable, and 1
channel), 20 invariants, and 8 transition specifications. Lines
16–18 specify invariants and lines 20–22 specify transition
specifications. All 8 variables have discrete values and the
details of variables and their ranges are given in Table 1.

Table 2 shows the scale of the SENS specifications for
function 𝐹

ℎ
-𝐹
𝑜
: the number of lines except comments and

blank lines, the number of declared variables and channels,
and the number of requirements including invariants and
transition requirements. As to the specification of 𝐹

𝑜
, the size

of requirements was relatively long since variables of the array
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<AC.cls>

(1) Class AC

(2) Data

(3) Type opMode {Off, Auto, Turbo, Pollen, Calm, Normal};

(4) Type humidMode {Off, Auto, Cont, High};

(5) Type airVolume {W0, W1, W2, W3, W4, W5, W6};

(6) Type airPurity {KTY1, KTY2, KTY3, KTY4, KTY5};

(7) Type Brightness {Normal, Dark, Off};

(8) Type switch {On};

(9) Var

(10) Mode A: Type opMode; //Mode of operation

(11) Mode B: Type humidMode; //Mode of humidity

(12) AV : Type airVolume; //Actual air volume

(13) AP : Type airPurity; //Air purity

(14) BM : Type Brightness; //Brightness for monitor LED

(15) BO : Type Brightness; //Brightness for other LED

(16) Channel

(17) C : Type switch; //Indicating pushing a button

(18) ⋅ ⋅ ⋅

<Mode Change.func>

(1) Bundled AC;

(2) Extern

(3) Data

(4) Type opMode, Type humidMode,

(5) Type airVolume, Type airPurity,

(6) Type Brightness, Type switch;

(7) Var

(8) Mode A, Mode B, AV, AP, BM, BO;

(9) Channel

(10) C;

(11)
(12) Function Mode Change

(13) Var

(14) BU : Type Brightness; //User-defined brightness

(15) Require

(16) Mode A==Auto −> (AV==W1 || AV==W2 || AV==W3 || AV==W4 || AV==W5);

(17) Mode A==Auto && Mode B==Off && AP==KTY1 −> AV==W1;

(18) Mode A==Calm −> AV==W1;

(19) ⋅ ⋅ ⋅

(20) Mode A!=Off && BU==Normal: C?On : BU==Dark;

(21) Mode A!=Off && BU==Dark: C?On : BU==Off;

(22) true : C?On : Mode A== ∼ Mode A;

(23) ⋅ ⋅ ⋅

Pseudocode 2: An example SENS specification for an air-cleaning system

type with a big size are used. In the future, our SENS descrip-
tion could be more compact by preparing for-statement or
while-statement descriptions. For comparison, we also show
the number of pages of the original specifications in a natural
language in Table 2.

Although we, here, showed the experimental results
only for air-conditioning systems, we also have other case
studies applying SENS to specify embedded systems such
as an electric pot and an automatic dispenser. For instance,
we applied SENS to describe a requirement specification
for an electric pot (http://www.sessame.jp/workinggroup
/WorkingGroup2/POT Specification.htm), which has been
openly used as an example embedded system by SESSAME

(http://www.sessame.jp) (Society of Embedded Software Skill
Acquisition for Managers and Engineers) of Japan. The
original requirement specification was written in Japanese
including state transition diagrams with 14 pages and con-
sisting of 14 functions. We described approximately 1,100
lines of the SENS specifications for all the functions, which
include 28 variables, 5 timers, and 7 channels in the class
specification and totally 386 requirements for all function
specifications. Through our case studies, we confirmed that
SENS is efficiently applicable to not only the air-conditioning
systems but also other general embedded systems.

In addition, by describing the specifications in SENS, we
found several undefined and under-specified requirements
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Table 1: Variables in the example specification for function 𝐹
𝑙
.

Variable Variable description Range
Mode A Mode of operation 6
Mode B Mode of humidity 4
AV Actual air volume 7
AP Air purity 5
BM Brightness for monitor LED 3
BO Brightness for other LED 3
BU User-defined brightness 3
C Channel for indicating pushing a button 3

in the original specifications for the target air-conditioning
system. Through the feasibility study, we could confirm both
the description ability and facility of SENS. Engineers in
Company D plan to use our tool in real development pro-
cesses. We anticipate that using SENS increases the quality of
specifications by preventing the undefinition, the ambiguity,
and the inconsistency in the specifications.

5.3. Experiments: Test Generation. In this section, we
describe several case studies of generating test cases and
test sequences from given example specifications <A.cls>

and <B.cls> in Pseudocode 1 and 𝐹
𝑖
, 𝐹
𝑗
, 𝐹
𝑘
, and 𝐹

𝑙
, using

our tool TGSENS. 𝐹
𝑘
is a specification whose variable range

is reduced from that of 𝐹
𝑗
for testing. The experiment was

performed in the following environments: Intel Core 2 Duo
P8600 2.4GHz, 3.0GB Memory, Microsoft Windows XP
SP3, and Sun Java Runtime Environment 1.6.0 24.

Table 3 describes the result of applying TGSENS to test
case generation. In the table, we show the size of SENS

specifications, the size of CNF, the number of test cases, and
the execution times to generate test cases for each part of
TGSENS. For the size of a SENS specification, we represent
the number of states and the number of transition labels in
the table. Here, the number of states indicates the one of the
state space constructed by all possible variable assignments
in the specification.The number of transition labels indicates
the number of labels in the system model constructed from
the specification.

Example 13. Consider the case of 𝐹
𝑙
. The number of possible

states (including states not satisfying the specification) for 𝐹
𝑙

is 6 × 4 × 7 × 5 × 33 = 68,040 from Table 1. The number of
transition labels is 2 as shown in Table 3. Then the number
of all possible state transitions (those that do not satisfy the
specification are included) is 68,040 × 2 × 68,040 ≈ 9.3 × 109.
From such a large number of transitions, TGSENS figured
out 77,700 transitions satisfying the given specification as
test cases within 12 seconds. For instance, as for the filtering
option of including a communication label,TGSENS selected
8,100 test cases (≈10.5% of all the test cases) within 1 second.

For 𝐹
𝑗
(resp., 𝐹

𝑘
), TGSENS took only about 26 (resp., 1)

minutes to generate approximately 900,000 (resp., 160,000)
test cases. For example, the specification of 𝐹

𝑗
has 13 variables

including 3 previous state variables and those value ranges are

3, 5, 5, 4, 5, 5, 2, 35, 35, 3, 3, 3, and 3.Then, the number of states
for 𝐹
𝑗
is 2 × 315 × 4 × 54 = 71,744,535,000 ≈ 7.2 × 1010. On the

other hand, the numbers of states for𝐹
𝑘
and 𝐹
𝑙
are 45,000 and

68,040, respectively. 𝐹
𝑗
has a feature of including variables

whose range are large, like 35, and thus the number of states
is excessively large compared to those of other specifications.
The execution result of 𝐹

𝑗
indicates that the specification has

71,744,535,000 ≈ 7.2 × 10
10 states and 30 transition labels.

Then, the number of all possible state transitions for 𝐹
𝑗
is

71,744,535,000 × 30 × 71,744,535,000 ≈ 1.5 × 1023. Since the
number of state transitions for 𝐹

𝑗
is much larger than those

for 𝐹
𝑘
and 𝐹

𝑙
, the CNF size for 𝐹

𝑗
is much larger than those

for 𝐹
𝑘
and 𝐹

𝑙
. Accordingly, 𝐹

𝑗
needed much execution time

to search test cases. Although, with such a huge amount of
state space, it is very impossible tomanually check all cases by
human, TGSENS can correctly do that and takes only about
26 minutes.

We next describe the result of applying TGSENS to test
sequence generation. Table 4 shows the results using the
SENS specification for function 𝐹

𝑙
with 3 example testing

goals, G1–G3. In the table, for each testing goal, we show the
number of milestone states, the maximum lengths between
milestones, the number of key variables of the given testing
goal, the number of test sequences, and the execution time to
generate test sequences.

Example 14. Pseudocode 3 shows the input file to specify
the testing goal G3 in TGSENS. We can also set the testing
goal directly in the GUI interface of TGSENS shown in
Figure 9(b). The testing goal G3 specifies the following:

(i) key variables (declared in lines 25–28): three varia-
bles Mode A, Mode B, and AV in the specifi cation.

(ii) The list of milestones (declared in lines 4–19):
⟨𝑠
1
, 𝑠
2
, 𝑠
3
⟩, where 𝑠

1
is a state in which Mode A=Auto,

𝑠
2
is a state in which Mode A=Off, and 𝑠

3
is a state in

which Mode A=Auto.
(iii) maximum lengths between milestones (declared in

lines 22-23): 𝑠
1

≤2

󳨀󳨀→ 𝑠
2
and 𝑠
2

≤2

󳨀󳨀→ 𝑠
3
.

When the specification for 𝐹
𝑙
and the testing goal G3 are

given, a transition system of this function is first obtained
from the result of test case generation. Then, TGSENS

automatically searches desired test sequences satisfying the
testing goal from the transition system. Pseudocode 4 shows
a part of the generated test sequences.

The resulting transition system for 𝐹
𝑙
has 1,800 states

and 77,700 transitions. From the transition system, TGSENS
figured out 28 (resp., 32) sequences from 𝑠

1
to 𝑠
2
(resp., 𝑠

2
to

𝑠
3
) and thus totally 896 (=28 × 32) test sequences satisfying

the testing goal only in 3 minutes.

6. Related Work

Model-based testing technique has been an attractive
research area in software engineering field recently [7–9].
Model-based testing is a technique that derives a desired test
case from amodel or a specification of a system. Asmodeling
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Table 2: Scales of example SENS specifications.

System Function SENS Spec. Original spec.
Number of lines Number of variables Number of req. Number of pages

Indoor equip. 𝐹
ℎ

12 5 7 1
Indoor equip. 𝐹

𝑖
22 4 6 1

Indoor equip. 𝐹
𝑗

71 6 22 2
Air cleaner 𝐹

𝑙
101 7 28 4

Controller 𝐹
𝑚

77 6 22 3
Controller 𝐹

𝑛
52 6 4 4

Controller 𝐹
𝑜

428 10 47 4

Table 3: Experiment results for test case generation.

System
function

SENS Spec. CNF Test cases Execution times (sec.)
Number of

states
Number of
trans. labels

Number of
literals

Number of
clauses

Number of
test cases

SENS to
CNF

Search all
assignments

Translate to test
cases

𝐴 12 17 25 68 176 0.044 0.031 0.056
𝐵 4 3 11 19 19 0.050 0.006 0.013
𝐹
𝑖

12 36 36 141 1,330 0.069 0.053 0.125
𝐹
𝑗 ≈ 7.2 × 1010 30 620 62,845 893,155 0.175 1565.90 56.57

𝐹
𝑘

4.5 × 104 30 102 406 157,874 0.078 62.24 21.77
𝐹
𝑙

≈ 6.8 × 10
4 3 91 715 77,700 0.151 9.609 1.929

(1) [AllTransitionFileName]

(2) mode op2.csv;

(3)
(4) //Milestone List

(5) [MilestoneList]

(6) //first Milestone

(7) AC::Mode A#Auto,

(8) AC::AV#W3,
(9) AC::AP#KTY3,
(10) AC::Mode B#Auto,

(11) AC::Mode Change::BU# Normal,

(12) AC::BM#Normal,
(13) AC::BO#Normal;
(14)
(15) //second Milestone

(16) AC::Mode A#Off;

(17)
(18) //third Milestone

(19) AC::Mode A#Auto;

(20)
(21) //maximum lengths between two milestones

(22) [StepNumList]

(23) 2,2;

(24)
(25) [SelectVarNameList]

(26) AC::Mode A,

(27) AC::AV,
(28) AC::Mode B;

Pseudocode 3: An example testing goal.

Table 4: Experiment results for test sequence generation.

Number of sequences Exe. time
(1) (2) (3)

G1 1 2 ⋅
≤2

󳨀󳨀→ ⋅ 25 1.3 sec.
G2 1 2 ⋅

≤3

󳨀󳨀→ ⋅ 156 8min.
G3 3 3 ⋅

≤2

󳨀󳨀→ ⋅
≤2

󳨀󳨀→ ⋅ 896 3min.
(1) Number of key variables, (2) number of milestones, and (3) Maximum
lengths.

makes it possible to refine or check functionality of target
systems, we can expect to obtain correct test cases generated
from valid models in earlier phases of development. Thus
model-based test generation has been attracting the attention
of model-driven software development approaches. Model-
based testing has two technical issues: modeling target
systems appropriately and generating test cases effectively.

As for the modeling, many techniques have been pro-
posed, even if we focus on formal modeling only. Mod-
els are described based on contracts, abstract data types,
process algebras, labeled transition systems, data flow, and
so on. These concepts are implemented using specification
languages in tools like VDM [7], Z [10], B [11], Spec# [12],
and JML [13]. With most modeling languages, a user has to
specify the systems’ behaviors individually.

Test case generations frommodels have been proposed in
several ways. Here, test cases include arguments to execute
specific functions, pairs of possible inputs and expected
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[Trace: 0]

[AC::Mode B#Auto, AC::Mode A#Auto, AC::AV#W3]

[AC::Mode B#Cont, AC::Mode A#Auto, AC::AV#W1]

[AC::Mode B#Off, AC::Mode A#Off, AC::AV#W0]

[AC::Mode B#Off, AC::Mode A#Auto, AC::AV#W1]

[AC::Mode B#High, AC::Mode A#Auto, AC::AV#W1]

[Trace: 1]

[AC::Mode B#Auto, AC::Mode A#Auto, AC::AV#W3]

[AC::Mode B#Cont, AC::Mode A#Auto, AC::AV#W1]

[AC::Mode B#Off, AC::Mode A#Off, AC::AV#W0]

[AC::Mode B#Off, AC::Mode A#Auto, AC::AV#W3]

[AC::Mode B#High, AC::Mode A#Auto, AC::AV#W1]

[Trace: 2]

[AC::Mode B#Auto, AC::Mode A#Auto, AC::AV#W3]

[AC::Mode B#Cont, AC::Mode A#Auto, AC::AV#W1]

[AC::Mode B#Off, AC::Mode A#Off, AC::AV#W0]

[AC::Mode B#Off, AC::Mode A#Auto, AC::AV#W2]

[AC::Mode B#High, AC::Mode A#Auto, AC::AV#W1]

⋅ ⋅ ⋅

Pseudocode 4: An example output: Test sequences.

outputs, or event sequences. Test cases are searched by tracing
executions of models, selecting random values with filtering,
or generating candidates with some algorithms.

Here, we describe previous works on model-based test-
ing. Spec Explorer [9] generates test cases by state exploration
based on multiple strategies from contract-like specifications
Spec# on a Microsoft. NET framework. In TGV [8] by
INRIA, as a part of the CADP (Construction and Analysis
of Distributed Processes) package, test graphs are generated
from labeled transition systems. Uppaal-Tron [14] generates
test sequences for real-time systems using the model checker
UPPAAL, and an industrial case study of Uppaal-Tron tar-
geted an electronic refrigerator controller. T-VEC [15] is a
coverage-based test generation tool of Simulink/MathWorks
which has been used to identify a fault in the Mars Polar
Lander.

Somemodel-based test generators use constraints solving
to generate test cases. In [16], a test generator based on
autofocus is proposed. Autofocus [17] is a graphical tool
for model-based development of distributed systems. By
translating a specification into a constraint logic program,
this generator can deal with all the possible execution traces
of the model. TestEra [18] is a test generation framework
for Java programs. By considering pre-/postconditions for
executingmethods as constraints, TestEra generates test cases
with SAT-solvers. Exhaustive generation is available through
certain options.

Most previous studies targeted the testing of programs
or protocols. Although TGV has case studies for small-
sized embedded applications, there are only a few studies on
the large-scale embedded network systems targeted in our
proposed project. Different from other works, we have pro-
posed the original specification language, SENS, focusing

on property-based specifications and the tool TGSENS to
automatically generate test cases and sequences focusing on
testing goals for embedded network systems.

7. Conclusion

In this paper, we have proposed a method to automatically
generate test cases and sequences based on the specification
of embedded networked systems (ENSs). We first proposed
a formal specification language SENS whose features are
(1) property-based, (2) test-oriented, (3) object-oriented,
(4) modular description, and (5) lightweight description of
time constraints. By the “property-based” feature such that
requirements are property-based constraints holding in the
entire ENS, logical properties for the system specification
are clear and modifications and reuse of the specifications
are easy since a part of specifications less affect the entire
specifications. Thus, SENS has an advantage on the effi-
cient description and reuse of specifications for large and
complicated ENSs. The “object-oriented” and “modular”
feature enables SENS to structurally describe requirement
specifications of ENSs consisting of a number of embedded
subsystems/equipment.The “lightweight” feature on descrip-
tion of time constraints leads to readily specify embedded
systems sensitive to time requirements. In addition, the “test-
oriented” feature is helpful for automatic test generation
from SENS specifications. To the best of our knowledge,
there has been no other formal specification language having
all the above features for ENSs. Using SENS, we can effi-
ciently describe the requirements of ENSs.

We next proposed the methods for automatic test gener-
ation in the tool TGSENS whose features are summarized as
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follows: (1)TGSENS takes specifications of an ENS written
in SENS as its input and automatically generates test cases
and test sequences; (2) the test case generation problem is
translated into a satisfiability problem, and test cases are
generated by iteratively using a SAT solver; (3) the test
sequences are also automatically obtained based on a testing
goal, that is, key variables, milestone states, and a desired
maximum length of test sequences, given by a user. We
finally applied TGSENS to generate tests for the real air-
conditioning systems, and our tool rapidly succeeded in
generating about 900,000 test cases in 30minutes and extract
28 test sequences in 3 minutes.

We expect that using TGSENS can improve the quality of
test cases and thus enhance the quality of ENSs. Previously in
industrial fields, test cases have often been designed in aman-
ual way. Such the test design depending on testing engineers’
skills seldom covers all the requirements of the complicated
ENSs. On the other hand, TGSENS can automatically and
mechanically generate test cases from given formal SENS
specifications. Both the description of formal specifications
and the automatic test generation lead to improving the
quality of test cases. Actually, we found several undefined
and under-specified requirements by describing the SENS
specifications for real industrial embedded systems as noted
in Section 5.2. In addition, TGSENS can generate test cases
with 100% coverage for requirements of the given SENS

specification by an exhaustive search using a SAT-based
solver.TGSENS also supports feasible test generation by user-
specified test filtering and test sequence generation.

The successive work of our project is the improvement
of our test generator in order to deal with the composition
of subsystems. One of the most important aspects of test
generation based on formal specifications and models for
industrial systems is “scalability.” To overcome this problem,
we plan to tackle a higher-speed and more scalable test
generation using parallel computing. We also plan to find a
constructive way of generating test suites of the whole system
from test suites of subsystems as a futurework.We also plan to
apply the model checking technique to generate more target-
specific test cases and sequences.

Appendices

A. Syntax of SENS

A.1. Main Class Declaration. See Pseudocode 5.

A.2. Class Declaration. See Pseudocode 6.

A.3. Variable, Channel, and Timer Declarations. See Pseudo-
code 7.

A.4. Function and Requirement Declarations. See Pseudo-
code 8.

A.5. Expression. See Pseudocode 9.

B. Semantics of SENS

B.1. Modeling of Subsystems

States For 𝑀(𝐶
𝑖
). Let 𝑉

𝐶𝑖
= {V
1
, . . . , V

𝑛
} denote a set of all

variables used in the SENS specification for the subsystem
𝐶
𝑖
. That is, 𝑉

𝐶𝑖
is a set of all variables declared in the

variable declaration of the class declaration for 𝐶
𝑖
, and the

extern declaration of the class-file-declaration for𝐶
𝑖
. For each

variable V
𝑖
(1 ≤ 𝑖 ≤ 𝑛), let 𝑑(V

𝑖
) denote a set of all values of V

𝑖

declared in the specification. When considering a test model,
let 𝑑(V

𝑖
) be a set of all values in the test declaration for V

𝑖
.

In addition, we also define a set of variables with previous
state operator “∼.” Let 𝑉󸀠

𝐶𝑖
= {V󸀠
1
, . . . , V󸀠

𝑛
󸀠} (⊆ 𝑉

𝐶𝑖
) denote a set

of every variable V󸀠
𝑖

∈ 𝑉
𝐶𝑖
whose previous state variable ∼ V󸀠

𝑖

is used in the specification.

Definition 15 (states of 𝑀(𝐶
𝑖
)). 𝑆
𝐶𝑖
is a set of all states 𝑠 such

that
(i) 𝑠 is an (𝑛 + 𝑛󸀠)-tuple of value assignments for all

variables in 𝑉
𝐶𝑖
and 𝑉󸀠

𝐶𝑖
; that is, 𝑠 = (V

1
= 𝑎
1
, . . . , V

𝑛
=

𝑎
𝑛
, ∼ V󸀠
1

= 𝑎󸀠
1
, . . . , ∼ V󸀠

𝑛
󸀠 = 𝑎󸀠
𝑛
󸀠), 𝑎
𝑗

∈ 𝑑(V
𝑗
) (1 ≤ 𝑗 ≤ 𝑛),

𝑎󸀠
𝑗

∈ 𝑑(V󸀠
𝑗
) (1 ≤ 𝑗 ≤ 𝑛󸀠);

(ii) 𝑠 satisfies all conditions specified as invariants in the
requirement declaration of the class declaration for𝐶

𝑖

and the invariant declaration.

Hereafter we denote 𝑠 ⊨ (V
𝑖

= 𝑎
𝑖
) if the value for V

𝑖
is

assigned to 𝑎
𝑖
at state 𝑠. Otherwise 𝑠 ⊭ (V

𝑖
= 𝑎
𝑖
) and thus

𝑠 ⊨ (V
𝑖

̸= 𝑎
𝑖
) since each variable is assigned to one value at the

same time.

Labels For 𝑀(𝐶
𝑖
). Let 𝐿(𝐶

𝑖
) be a set of all events and actions

declared in the class declaration and the class-file-declaration
for subsystem 𝐶

𝑖
. There are three kinds of labels: input labels

corresponding events, output labels corresponding actions,
and label 𝜏.

(i) Input labels are channel-name?expr and timer-
name?ring and represent message receiving.

(ii) Output labels are channel-name!expr, timer-
name!start, and timer-name!clear and represent
message sending.

(iii) Label 𝜏 means an internal transition with no message
receiving and sending.

Definition 16 (labels of 𝑀(𝐶
𝑖
)). Σ
𝐶𝑖
is a set of labels such that

Σ
𝐶𝑖

= {𝐿 | 𝐿 ∈ P (𝐿 (𝐶
𝑖
)) , |in (𝐿)| ≤ 1} , (B.1)

where in(𝐿) denotes a set of input labels in 𝐿.
Each 𝐿 (∈ Σ

𝐶𝑖
) is a set of labels in a transition, and we

call 𝐿 a transition label. Note that each transition label can
contain at most one input label and multiple output labels
by the syntax of SENS. Transition label 0 in Σ

𝐶𝑖
corresponds

to 𝜏.

Transitions For 𝑀(𝐶
𝑖
). Consider a transition requirement

⟨𝑃 : 𝑒 : 𝑄, 𝐴⟩ where 𝑃 is precondition, 𝑒 is event, 𝑄 is
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main-class-file-declaration:: = import-declaration main-class-declaration
import-declaration:: = “Import” (‘”’file-name‘”’ “,”)+ “;”
main-class-declaration:: = “Class main”

(constant-declaration | data-declaration| env-instance-declaration
| channel-declaration | timer-declaration)+
(invariant-declaration)?

env-instance-declaration:: = “Var” (env-variable-declaration | instance-declaration)+
env-variable-declaration:: =

env-variable-name “:” type-name (“{” value “}”)? (test-declaration)? “;”
| env-variable-name “[” number “..” number “]” “:” type-name (“{“value (“,” value)∗ “}”)? (test-declaration)? “;”
| env-variable-name “:” (“int” | “double”)

(“[“min-value “,” max-value “]”)? (“{”value“}”)? (test-declaration)? “;”
| env-variable-name “[“number “..” number“]” “:” (“int” | “double”)

(“[”min-value “,” max-value “]”)? (“{”value (“,” value)∗ “}”)? (test-declaration)? “;”
instance-declaration::=

object-name “:” class-name (“(” parameter-value (“,” parameter-value)∗ “)”)? “;”
| object-name “[” number “..” number “]” “:” class-name
(“{” “(”value (“,” value)∗ “)” (“,” “(” value (“,” value)∗ “)”)∗ “}”)? “;”

invariant-declaration::= “Inv” (expr “;”)+

Pseudocode 5: BNF for main class declaration.

class-file-declaration::= class-declaration
(import-declaration | extern-declaration)?

class-declaration::= “Class” name (parameter-declaration)?
(constant-declaration | data-declaration | variable-declaration
| channel-declaration | timer-declaration)+
(function-declaration | invariant-declaration)+

extern-declaration::= “Extern”
(“Const” const-name (“,” const-name)∗ “;”
| “Data” type-name (“,” type-name)∗ “;”
| “Var” variable-name (“,” variable-name)∗ “;”
| “Timer” timer-name (“,” timer-name)∗ “;”
| “Channel” channel-name (“,” channel-name)∗ “;”)+

parameter-declaration:: = “(” parameter-name “:” type-name (“,” parameter-name (“:” type-name)∗ “)”
constant-declaration::= “Const” (const-name expr “;”)+

Pseudocode 6: BNF for class declaration.

data-declaration::= “Data” (type-name “{” value (“,”value)∗ “};”
variable-declaration::=“Var”

(variable-name “:” type-name (“{” value “}”)? (test-declaration)? “;”
| variable-name “[” number “..” number “]” “:” type-name (“{” value (“,” value)∗ “}”)? (test-declaration)? “;”
| variable-name “:” (“int” | “double”)
(“[” min-value “,” max-value “]”)? (“{” value “}”)? (test-declaration)? “;”

| variable-name “[” number “..” number “]” “:” (“int” | “double”)
(“[” min-value “,” max-value “]”) ? (“{”value (“,” value)∗“}”)? (test-declaration)? “;”

)+
test-declaration::= “testedwith” “{” (number | number “..” number (“(” number “)”)?)

(“,” (number | number “..” number (“(“ number “)”)?) )∗ “}”
channel-declaration::= “Channel” (channel-name “:” type-name “;”

| (channel-name “[” number “..” number “]” “:” type-name “;”) +
timer-declaration:: =

“Timer” (timer-name number unit “[” predicate “] “;”
|timer-name (number unit “[” predicate “],”)∗number unit “[” predicate “]”) “;”)+

unit::= “msec” | “sec” | “min” | “hour” | “day”

Pseudocode 7: BNF for variable, channel, and timer declarations.
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function-file-declaration::= “Bundled” class-name extern-declaration function-declaration
function-declaration::=

“Function” function-name
(constant-declaration | data-declaration | variable-declaration | timer-declaration)∗
“Require” (requirement-declaration “;”)+

requirement-declaration::= invariant | transition-requirement
invariant::= expr
transition-requirement::= pre-condition “:” event “:”

(post-condition | (action (“,” | action)∗) | (post-condition “,” (action (“,” | action)∗)))
precondition::= expr
postcondition::= expr
event::= channel-name “?” expr | timer-name “?” “over” | “null”
action::= channel-name “!” expr | timer-name “!” “clear” | timer-name “!” “start”

Pseudocode 8: BNF for function and requirement declerations.

expr::= expr “− >” expr | expr “||” expr | expr “&&” expr | expr “ == ” expr | expr expr “ != ” expr
| expr “<” expr | expr “<=” expr | expr “>” expr | expr “>=” expr | expr “+” expr | expr “−” expr
| expr “∗” expr | expr “/” expr | expr “%” expr | “+” expr | “−” expr | “!” expr
| number | const | variable | “∼” variable | “true” | “false” | “ (”expr“)”

Pseudocode 9: BNF for expression declaration.

postcondition, and 𝐴 is actions. We say that a transition 𝑠
𝑙

󳨀→

𝑠󸀠 satisfies a transition requirement ⟨𝑃 : 𝑒 : 𝑄, 𝐴⟩, if and only
if the following holds:

(𝑠 ⊨ 𝑃) ∧ (𝑒 ∈ 𝑙) 󳨀→ (𝑠
󸀠

⊨ 𝑄) ∧ (𝐴 ⊆ 𝑙) ; (B.2)

that is, if state 𝑠 satisfies the precondition 𝑃 and event 𝑒

is an input label of 𝑙, then next state 𝑠󸀠 should satisfy the
postcondition 𝑄 and actions 𝐴 should be output labels of 𝑙.
Hereafter 𝑠

𝑙

󳨀→ 𝑠󸀠 denotes a labeled transition (𝑠, 𝑙, 𝑠󸀠).

Definition 17 (transitions of𝑀(𝐶
𝑖
)). 𝑅
𝐶𝑖
is a set of all 𝑠

𝑙

󳨀→ 𝑠󸀠 ∈

𝑆
𝑐𝑖

× Σ
𝑐𝑖

× 𝑆
𝑐𝑖
that satisfies the following two conditions (we

say that such a transition satisfies the given specification):
(i) for each state variable ∼ V

𝑖
∈ 𝑠󸀠, 𝑠󸀠 ⊨ (∼ V

𝑖
= 𝑎
𝑖
), if and

only if 𝑠 ⊨ (V
𝑖

= 𝑎
𝑖
);

(ii) 𝑠
𝑙

󳨀→ 𝑠󸀠 satisfies all the transition requirements of the
requirement declaration in the class declaration for
subsystem 𝐶

𝑖
.

B.2. Modeling of Subsystems with Timers

Definition 18 (composition of a subsystem and a timer).
𝑀(𝐶
𝑖
) ‖ 𝑀(𝑇

𝑗
) is defined as follows. Hereafter, let 𝑚𝑔 ∈

{𝑐𝑙𝑒𝑎𝑟, 𝑠𝑡𝑎𝑟𝑡, 𝑟𝑖𝑛𝑔} and let 𝑝
𝑗
denote the condition for timer

𝑇
𝑗
:
(i) states: (𝑠, 𝑡) ∈ 𝑆

𝐶𝑖
× 𝑆
𝑇𝑗
;

(ii) labels: 𝐿 ⊆ (𝐿(𝐶
𝑖
) − Σ
𝑇𝑗

∪ {𝑐, 𝑇
𝑗

𝑚𝑔}), |in(𝐿)| ≤ 1;

(iii) transitions: for each 𝑠
𝑙𝑆

󳨀→ 𝑠󸀠 ∈ 𝑅
𝐶𝑖
and 𝑡

𝑙𝑇

󳨀→ 𝑡󸀠 ∈ 𝑅
𝑇𝑗
,

the following transitions exist:

(a1) (𝑠, 𝑡)
𝑙𝑆−{𝑇𝑗?𝑚𝑔}∪{𝑇𝑗 𝑚𝑔}

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ (𝑠
󸀠
, 𝑡
󸀠
),

if 𝑙
𝑆

∋ 𝑇
𝑗
?𝑚𝑔 and 𝑙

𝑇
=!𝑚𝑔;

(a2) (𝑠, 𝑡)
𝑙𝑆−{𝑇𝑗!𝑚𝑔}∪{𝑇𝑗 𝑚𝑔}

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ (𝑠󸀠, 𝑡󸀠),
if 𝑙
𝑆

∋ 𝑇
𝑗
!𝑚 and 𝑙

𝑇
=?𝑚𝑔;

(a3) (𝑠, 𝑡)
𝑙𝑆

󳨀→ (𝑠
󸀠
, 𝑡),

if 𝑙
𝑆

∩ {𝑇
𝑗
?𝑚𝑔, 𝑇

𝑗
!𝑚𝑔} = 0 and 𝑙

𝑇
= 𝑐;

(a4) (𝑠, 𝑡)
𝑐

󳨀→ (𝑠, 𝑡󸀠),
if 𝑙
𝑆

∩ {𝑇
𝑗
?𝑚𝑔, 𝑇

𝑗
!𝑚𝑔} = 0, 𝑙

𝑇
= 𝑐, and 𝑠 ⊨ 𝑝

𝑗
;

that is, the condition for timer 𝑇
𝑗
holds at state

𝑠.

The transitions of rules (a1) and (a2) represent the
composition of message synchronization. The transitions of
rules (a3) and (a4) represent the interleaving composition of
transitions of subsystem 𝐶

𝑖
and timer 𝑇

𝑗
, respectively. By this

interleaving composition with a subsystem and a timer, the
composed model can cover all combinations of time length
in the model.

Definition 19 (composition of a subsystem and timers).
𝑀(𝐶𝑇

𝑖
) ‖ 𝑀(𝑇

𝑘
) with 𝑀(𝐶𝑇

𝑖
) = 𝑀(𝐶

𝑖
) ‖ 𝑀(𝑇

1
) ‖

⋅ ⋅ ⋅ ‖ 𝑀(𝑇
𝑗
) is defined as follows. Note that 𝑚𝑔 ∈

{𝑐𝑙𝑒𝑎𝑟, 𝑠𝑡𝑎𝑟𝑡, 𝑟𝑖𝑛𝑔} and 𝑝
𝑘
denotes the condition for timer𝑇

𝑘
:

(i) states: (𝑠, 𝑡) ∈ 𝑆
𝐶𝑇𝑖

× 𝑆
𝑇𝑘
;

(ii) labels: 𝐿 ⊆ (Σ
𝐶𝑖

− Σ
𝑇𝑘

∪ {𝑐, 𝑇
𝑘

𝑚𝑔}), |in(𝐿)| ≤ 1;

(iii) transitions: for each 𝑠
𝑙𝑆

󳨀→ 𝑠󸀠 ∈ 𝑅
𝐶𝑖
and 𝑡

𝑙𝑇

󳨀→ 𝑡󸀠 ∈ 𝑅
𝑇𝑘
,

the following transitions exist:
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(b1) (𝑠, 𝑡)
𝑙𝑆−{𝑇𝑘?𝑚𝑔}∪{𝑇𝑘 𝑚𝑔}

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ (𝑠󸀠, 𝑡󸀠),
if 𝑙
𝑆

∋ 𝑇
𝑘
?𝑚𝑔 and 𝑙

𝑇
=!𝑚𝑔;

(b2) (𝑠, 𝑡)
𝑙𝑆−{𝑇𝑘!𝑚𝑔}∪{𝑇𝑘 𝑚𝑔}

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ (𝑠󸀠, 𝑡󸀠),
if 𝑙
𝑆

∋ 𝑇
𝑘
!𝑚𝑔 and 𝑙

𝑇
=?𝑚𝑔;

(b3) (𝑠, 𝑡)
𝑙𝑆

󳨀→ (𝑠󸀠, 𝑡),
if 𝑙
𝑆

∩ {𝑇
𝑘
?𝑚𝑔, 𝑇

𝑘
!𝑚𝑔, 𝑐} = 0 and 𝑙

𝑇
= 𝑐;

(b4) (𝑠, 𝑡)
𝑐

󳨀→ (𝑠, 𝑡
󸀠
),

if 𝑙
𝑆

∩ {𝑇
𝑘
?𝑚𝑔, 𝑇

𝑘
!𝑚𝑔, 𝑐} = 0, 𝑙

𝑇
= 𝑐, 𝑠 ⊨ 𝑝

𝑘
, and

𝑠 ⊭ 𝑝
1

∨ ⋅ ⋅ ⋅ ∨ 𝑝
𝑗
;

(b5) (𝑠, 𝑡)
𝑐

󳨀→ (𝑠󸀠, 𝑡󸀠),
if 𝑙
𝑆

= 𝑐, 𝑙
𝑇

= 𝑐, and 𝑠 ⊨ 𝑝
𝑘
.

The transitions of rules (b1) and (b2) represent the
composition of message synchronization. The transitions of
rules (b3) and (b4) represent the interleaving composition
of transitions of subsystem 𝐶𝑇

𝑖
and timer 𝑇

𝑘
, respectively.

Transition of rule (b5) represents the synchronization of
counting up timers. Therefore, the length relation of timers
can be modeled by using timer model 𝑀

1
in Section 3.3.1.

B.3. Composition of Subsystems

Definition 20 (composition of subsystem models). 𝑀
𝑇

(𝐶
𝑖
) ‖

𝑀
𝑇

(𝐶
𝑗
) for subsystems 𝐶

𝑖
and 𝐶

𝑗
is defined as follows:

(i) states: (𝑠, t) ∈ 𝑆
𝐶𝑇𝑖

× 𝑆
𝐶𝑇𝑗

, where 𝑆
𝐶𝑇𝑖

(𝑆
𝐶𝑇𝑗

) is the set
of states of 𝑀

𝑇
(𝐶
𝑖
)(𝑀
𝑇

(𝐶
𝑗
));

(ii) labels: for each 𝐿
𝑖
(∈ Σ
𝐶𝑇𝑖

) and 𝐿
𝑗
(∈ Σ
𝐶𝑇𝑗

),

𝐿 ⊆ 𝐿
𝑖

∪ 𝐿
𝑗

− {𝑐ℎ?𝑚𝑔, 𝑐ℎ!𝑚𝑔, 𝑐} ∪ {𝑐ℎ 𝑚𝑔} , (B.3)

where 𝑐ℎ?𝑚𝑔 and 𝑐ℎ!𝑚𝑔 are, respectively, input and
output labels representing receiving and sendingmas-
sage 𝑚𝑔 with communication channel 𝑐ℎ between
system 𝐶

𝑖
and 𝐶

𝑗
. Here, 𝑐ℎ 𝑚𝑔 denotes a label after

composing input and output labels with the same
name.

(iii) transitions: let 𝐿
𝐶

= {𝑐ℎ?𝑚𝑔, 𝑐ℎ!𝑚𝑔|𝑐ℎ be a com-
munication channel between 𝐶

𝑖
and 𝐶

𝑗
} and 𝐿

𝑁
=

{𝑐ℎ?𝑚𝑔, 𝑐ℎ!𝑚𝑔|𝑐ℎ is not a communication channel
between 𝐶

𝑖
and 𝐶

𝑗
}. in(𝐿) and out(𝐿), respectively,

denote a set of input labels and output labels in 𝐿. The

following transitions exist for each 𝑠
𝑙𝑖

󳨀→ 𝑠󸀠 ∈ 𝑅
𝐶𝑇𝑖

and

𝑢
𝑙𝑗

󳨀→ 𝑢󸀠 ∈ 𝑅
𝐶𝑇𝑗

:

(c1) (𝑠, 𝑢)
𝜏

󳨀→ (𝑠󸀠, 𝑢󸀠), if 𝑙
𝑖
, 𝑙
𝑗

⊂ {𝜏, 𝑐};

(c2) (𝑠, 𝑢)
𝑙𝑖

󳨀→ (𝑠󸀠, 𝑢), if 𝑙
𝑖

⊆ 𝐿
𝑁
;

(c3) (𝑠, 𝑢)
𝑙𝑗

󳨀→ (𝑠, 𝑢󸀠), if 𝑙
𝑗

⊆ 𝐿
𝑁
;

(c4) (𝑠, 𝑢)
𝑙

󳨀→ (𝑠󸀠, 𝑢), if 𝑙 = in(𝑙
𝑖
) ̸⊂ 𝐿
𝐶
;

(c5) (𝑠, 𝑢)
𝑙

󳨀→ (𝑠, 𝑢󸀠), if 𝑙 = in(𝑙
𝑗
) ̸⊂ 𝐿
𝐶
;

(c6) (𝑠, 𝑢
󸀠)
𝑙

󳨀→ (𝑠󸀠, 𝑢󸀠), if

(i) in(𝑙
𝑖
) = {𝑐ℎ?𝑚𝑔}, out(𝑙

𝑗
) ∋ 𝑐ℎ!𝑚𝑔,

(ii) out(𝑙
𝑖
) ∩ 𝐿
𝐶

= 0,
(iii) (out(𝑙

𝑗
) − 𝑐ℎ!𝑚𝑔) ∩ 𝐿

𝐶
= 0,

(iv) 𝑙 = out(𝑙
𝑖
) ∪ out(𝑙

𝑗
) ∪ {𝑐ℎ 𝑚𝑔} − {𝑐ℎ!𝑚𝑔};

(c7) (𝑠󸀠, 𝑢)
𝑙

󳨀→ (𝑠󸀠, 𝑢󸀠), if

(i) in(𝑙
𝑗
) = {𝑐ℎ?𝑚𝑔}, out(𝑙

𝑖
) ∋ 𝑐ℎ!𝑚𝑔,

(ii) out(𝑙
𝑗
) ∩ 𝐿
𝐶

= 0,
(iii) (out(𝑙

𝑖
) − 𝑐ℎ!𝑚𝑔) ∩ 𝐿

𝐶
= 0,

(iv) 𝑙 = out(𝑙
𝑖
) ∪ out(𝑙

𝑗
) ∪ {𝑐ℎ 𝑚𝑔} − {𝑐ℎ!𝑚𝑔}.

The transition of rule (c1) represents the composition
of internal transitions labeled with 𝜏 and 𝑐. The transitions
of rules (c2) and (c3) represent the composition of internal
transitions labeled with external communication channels.
The transitions of rules (c4)–(c7) are for the composition
of two transitions including message synchronization. In
the composition, we interpret the meaning of a transition
with input and output labels of subsystems as illustrated

in Figure 10. In the figure, transition (𝑠, 𝑢)
𝑙2
󸀠

󳨀󳨀→ (𝑠, 𝑢󸀠)

corresponds to rule (c4) where 𝑙2
󸀠

= in(𝑙2). Transition
(𝑠, 𝑢󸀠)

𝑚,𝑙3

󳨀󳨀󳨀→ (𝑠󸀠, 𝑢󸀠) corresponds to rule (c6) where 𝑙3 = 𝑙1∪𝑙2.

C. Translating SENS to Propositional Logic

Here, we explain how to translate given a SENS specification
to a propositional logic formula.

C.1. Variable Declaration. For each variable v and its value
t in the SENS specification, we introduce two auxiliary
propositional variables representing the value of v in the
current state as t (denoted by v#t) and the value ofv in
the next state as t (denoted by @v#t). In addition, if the
variable v appears in an expression in the form ∼v, then we
also introduce two auxiliary propositional variables such as
∼v#t and @∼v#t.The value t of v is an element in the domain
of v; the domain is defined by test declaration or the type of
the variable.

All variables of the SENS specification have the following
two constraints: (1) a variable must take a value in its domain
at any time and (2) a variable cannot take two values at the
same time. Moreover, if a variable with ∼ operator appears in
an expression, the variable has the following constraint: the
value of a variable with ∼ operator in the next state equals the
value of the variable without ∼operator in the current state.

In this translation, we need to represent these constraints
as logical formulas by using auxiliary propositional vari-
ables. For example, consider variable op of <A.cls> in
Pseudocode 1. The constraints to variable op are as follows:

(i) (op#on∨ op#off) ∧ (@op#on∨ @op#off);

(ii) (¬op#on∨ ¬op#off)∧ (¬@op#on∨ ¬@op#off);

(iii) (@∼op#on⇔op#on)∧(@∼op#off⇔op#off).
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Figure 10: A transition composition of subsystems.

C.2. Timer Declaration. We translate the timer declaration
step-by-step considering the three parts: a subsystem side,
a timer side, and a composition of the subsystem and the
timers.

First, on the subsystem side, we prepare four kinds of
propositional variables as follows:

(i) SubCountUp: a counting up event occurring in a
subsystem is prepared; there exists only one variable
of this kind for each subsystem;

(ii) t?ring: a subsystem receives a counting over event
from its timer t;

(iii) t!clear: a subsystem does an action by sending a
reset message to its timer t;

(iv) t!start: a subsystem does an action by sending a
startup message to its timer t.

We assume that no more than one event or action related
to the same timer t occurs at the same time.We represent this
constraint as follows:

(i) (¬t?ring ∨ ¬t!clear) ∧ (¬t?ring ∨ ¬t!start)

∧(¬t!clear ∨ ¬t!start)

∧(¬t?ring ∨ ¬SubCountUp)

∧(¬t!clear ∨ ¬SubCountUp)

∧(¬t!start ∨ ¬SubCountUp).

Next, on the timer side, we introduce auxiliary propo-
sitional variables for two events, an action, a counting-up
event, and the states of each timer.Thepropositional variables
prepared for timer t are as follows:

(i) t?clear/t?start: for reset/start-up event from the
subsystem,

(ii) t!ring: an action of sending the counting over
message,

(iii) t?CountUp: a counting-up event of the timer,
(iv) t#ready/t#run/t#over: the current timer state,
(v) @t#ready/@t#run/@t#over: the next timer state.

Timer t in the subsystem has the following constraints
andwe represent themusing prepared propositional variables
as follows:

(i) the events and action of timer t do not occur at the
same time:

(a) (¬t?clear ∨ ¬t?start)

∧(¬t?clear ∨ ¬t!ring)

∧(¬t?start ∨ ¬t!ring)

∧(¬t?clear ∨ ¬t?CountUp)

∧(¬t?start ∨ ¬t?CountUp)

∧(¬t!ring ∨ ¬t?CountUp);

(ii) at any time, the state of a timer is one of three states,
ready, run, and over:

(a) (t#ready ∨ t#run ∨ t#over)

∧(@t#ready∨ @t#run∨ @t#over),

(b) (¬t#ready ∨ ¬t#run)

∧(¬t#ready∨ ¬t#over)

∧(¬t#run∨ ¬t#over)

∧(¬@t#ready∨¬@t#run)

∧(¬@t#ready∨¬@t#over)

∧(¬@t#run∨¬@t#over);

(iii) the transition relation of the timer models is the same
as the one in Figure 5:

(a) t?clear→ @t#ready,

(b) t?start⇔(t#ready∧ @t#run),

(c) t!ring⇔(t#run∧@t#over),

(d) t?CountUp→ (t#run∧ @t#run),

(e) (t#ready∧¬t?clear∧¬t?start→@t#ready)

∧(t#run ∧ ¬t?clear ∧ ¬t!ring

∧¬t?CountUp→ @t#run)

∧(@t#over∧ ¬t?clear→ @t#over) ;

(iv) when the timer declaration has a condition for count-
ing up, that is, a logical formula cond, the following
two formulas are added:

(a) t?start → cond,

(b) t?CountUp → cond.

Finally, we describe constraints of composition between
a subsystem and timers.
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(i) Events and actions of a subsystem are associated with
actions and events of each timer t:

(a) t!clear ⇔ t?clear;

(b) t!start ⇔ t?start;

(c) t?ring ⇔ t!ring.

(ii) For timers of each subsystem, all the timers satisfying
their counting up conditions count up at the same
time:

(a) (t1?CountUp → SubCountUp)

∧(t2?CountUp → SubCountUp)

∧ ⋅ ⋅ ⋅ ∧ (tn?CountUp → SubCountUp);

(b) SubCountUp → (t1?CountUp ∨ t2?CountUp

∨ ⋅ ⋅ ⋅ ∨ tn?CountUp);

(c) SubCountUp → ((condt1) → t1?CountUp)

∧(condt2) → t2?CountUp)

∧ ⋅ ⋅ ⋅ ∧ (condtn) → tn?CountUp),

where condti is the counting up condition of
timer ti.

(iii) The counting up of timers in a subsystem and a
change of the values of variables in the subsystem
do not occur at the same time. Consider variable
op of <A.cls> in Pseudocode 1. This constraint is
represented by the following formula:

(a) (SubCountUp ∧ op# on → @op# on)

∧(SubCountUp ∧ op# off → @op# off).

C.3. Channel Declaration. For events through a channel,
we prepare propositional variables. A variable denoted by
c?m shows that the event of receiving message m through
channel c occurs. In addition, for each subsystem, prepare
one propositional variable representing that no event occurs
(denoted by null#true).

No more than one event occurs at the same time in a
subsystem where we consider the counting over of a timer
and the counting up of a subsystem as events. We need to
represent this constraint of event as logical formulas by using
prepared variables. For example, consider the subsystem
<A.cls> in Pseudocode 1. The subsystem has two events,
a timer-over event and a counting up the timer. So, the
constraint of events in <A.cls> is translated as follows:

(i) t?ring ∨ SubCountUp ∨ null#true ;

(ii) (¬t?ring ∨ ¬SubCountUp)

∧(¬t?ring ∨ ¬null#true)

∧(¬SubCountUp ∨ ¬null#true).

For actions as well as events, we prepare propositional
variables. A variable denoted by obj.c!m shows that a
subsystem takes the action of sending message m to a district
subsystem obj througha receiver’s channel c.

There is a constraint that a subsystem cannot take any
action, if its counting-up event occurs. For example, consider
the subsystem <A.cls>. Since it has two actions, the con-
straint of actions is expressed by the following formula:

(i) (¬arg1.ch!m∨¬SubCountUp)
∧(¬arg2.ch!m∨¬SubCountUp).

C.4. Requirements. Basically, in the translation of require-
ments of a SENS specification, we only have to replace the
requirements with logical formulas using the propositional
variables prepared above. A requirement represented as a
logical expression in SENS should be satisfied both in the
current state and in the next state. Therefore, we translate the
requirement into two logical formulas: one for the current
state and the other for the next state.

The transition requirement of SENS specifications, “P: e:
(Q, a),” represents a logical implication: “(P∧e) → (Q∧a).”
The postcondition Q is a constraint for the next state, so
we translate the condition into a logical formula using
propositional variables for the next state.

For example, consider the two requirements of <B.cls>

in Pseudocode 1. They are translated as follows:

(i) (op#on∧lamp#off∧ch?m)→ (@lamp#on);

(ii) op#off→ lamp#off, @op#off→ @lamp#off.

All the variables ofSENS including variables of numerical
types take only a finite number of values. We start explaining
the translation using the following examples,

Var a: int [0,2]; b: int [0,2];

(i) comparison between a variable of SENS and a numer-
ical value:

(a) the equation a==0 is denoted by a propositional
variable a#0, and the inequation a!=0 is denoted
by a literal ¬a#0;

(b) the inequality a<2 is translated to a logical
formula a#0∨a#1.

(ii) comparison between variables:

(a) the equation a==b is translated to a formula
(a#0∧ b#0)∨(a#1∧ b#1) ∨ (a#2∧ b#2);

(b) the inequation a!=b is translated to a formula
¬((a#0∧ b#0) ∨ (a#1∧ b#1)

∨ (a#2∧b#2));
(c) the inequality a<b is translated to a formula

(a#0∧ (b#1∨ b#2)) ∨ (a#1 ∧ b#2).

For general numerical comparison, we translate the
requirement inductively. In particular, let exp

1
∼ exp

2
be

a general numerical comparison in SENS, where ∼∈ {≤, ≥

, =, ̸= }, and exp
1
, exp
2
are expressions. We transform this

requirement to logical formula as follows. First, we introduce
two auxiliary variables V

1
and V

2
; these variables represent

exp
1
and exp

2
, respectively. The requirement exp

1
∼ exp

2

is reduced to V
1

∼ V
2
. Second, based on the domain of
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input variables, we can compute the domain (lower and upper
values) of V

1
and V
2
. Assume that V

1
∈ [𝑙
1
, 𝑢
1
] and V

2
∈ [𝑙
2
, 𝑢
2
].

The requirement V
1

∼ V
2
is translated to logical formula by a

similar way as in the example above.
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