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The solvability theory of an important self-adjoint polynomialmatrix equation is presented, including the boundary of itsHermitian
positive definite (HPD) solution and some sufficient conditions under which the (unique or maximal) HPD solution exists. The
algebraic perturbation analysis is also given with respect to the perturbation of coefficient matrices. An efficient general iterative
algorithm for the maximal or unique HPD solution is designed and tested by numerical experiments.

1. Introduction

In this paper, we consider the following self-adjoint polyno-
mial matrix equation:

𝑋
𝑠

− 𝐴
∗

𝑋
𝑡

𝐴 = 𝑄, (1)

where 𝑠, 𝑡 are positive integers, 𝐴,𝑄 ∈ C𝑛×𝑛, and 𝑄 > 0. As
far as we know, the solvability of (1) is not completely solved
untill now.

In many fields of applied mathematics, engineering, and
economic sciences, (1) plays an important role. The famous
discrete-time algebraic Lyapunov equation (DALE) is exactly
(1) with 𝑠 = 𝑡 = 1. Undoubtedly, DALE is one of the
most important mathematical problems in signal processing,
system, and control theory and many others (e.g., see the
monographs [1, 2]). If 𝐴 is stable (with respect to the unit
circle), DALEhas a uniqueHermitian positive definite (HPD)
solution. Such strong relation between the spectral property
of 𝐴 and the solvability theory is fortunately owned by (1),
which can be considered as a nonlinear DALE if 𝑠 ̸= 1 or 𝑡 ̸= 1.
What about the following algebraic Riccati equation:

𝑌
2

+ 𝐵
∗

𝑌 + 𝑌𝐵 − 𝐴
∗

𝑌𝐴 − 𝑅 = 0, (2)

where 𝐴, 𝐵, 𝑅 ∈ C𝑛×𝑛, 𝐵∗ = 𝐵 ≥ 0, and 𝑅∗ = 𝑅 > 0? Defining
𝑋 := 𝑌 + 𝐵 and 𝑄 := 𝑅 + 𝐵

2

− 𝐴
∗

𝐵𝐴, we can immediately

get (1) with 𝑠 = 2 and 𝑡 = 1 as an equivalent form of
(2). As we all know, solving algebraic Riccati equations is
an important task in the linear-quadratic regulator problem,
Kalman filtering, 𝐻

∞
-control, model reduction problems,

and so forth. See [1, 3–5] and the references therein. Many
numerical methods have been proposed, such as invariant
subspacemethods [6], Schurmethod [7], doubling algorithm
[8], and structure-preserving doubling algorithm [9, 10]. At
the same time the perturbation theory was developed in
[11–15], as well as the unified methods for the discrete-time
and continuous-time algebraic Riccati equations [16, 17]. A
general iteration method for (1) given in this paper can be
seen as a new algorithm for the algebraic Riccati equation (2),
setting 𝑠 = 2 and 𝑡 = 1.

Apart from the above applications, (1) is appealing from
the mathematical viewpoint since it unifies a large class of
systems of polynomial matrix equations. Many nonlinear
matrix equations are special cases of (1). For example,
nonlinear matrix equations, 𝑋 − 𝐴

∗

𝑋
𝑞

𝐴 = 𝑄 (see, e.g.,
[18, 19]), are equivalence models of 𝑌𝑠 − 𝐴∗𝑌𝑡𝐴 = 𝑄 and
𝑌 = 𝑋

1/𝑠, where 𝑠, 𝑡 are positive integers and 𝑞 = 𝑡/𝑠. In a
rather general form, Ran and Reurings [18] investigated 𝑋 +

𝐴
∗F(𝑋)𝐴 = 𝑄 (𝑄 > 0) for its positive semidefinite solutions

under the assumption that the functionF(⋅) ismonotone and
𝑄−𝐴
∗F(𝑄)𝐴 is positively definite. Besides, Lee and Lim [20]
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proved that (1) has a unique HPD solution when |𝑠| ≥ 1 ≥ |𝑡|
and |𝑡/𝑠| < 1. See [21–25] formore recent results on nonlinear
matrix equations. To the best of our knowledge, (1) with 𝑠 < 𝑡
(without monotony in hand) has not been discussed. These
facts motivate us to study polynomial matrix equation (1).

This paper is organized as follows. In Section 2 we deduce
the existence and uniqueness conditions of HPD solutions
of (1); in Section 3 we derive the algebraic perturbation
theory for the unique or maximal solution of (1); finally
in Section 4, we provide an iterative algorithm and two
numerical experiments.

We begin with some notations used throughout this
paper. F𝑚×𝑛 stands for the set of𝑚×𝑛matrices with elements
on field F (F is R or C). If 𝐻 is a Hermitian matrix on
F𝑛×𝑛, 𝜆min(𝐻) and 𝜆max(𝐻) stand for the minimal and the
maximal eigenvalues, respectively. Denote the singular values
of a matrix 𝐴 ∈ F𝑚×𝑛 by 𝜎

1
(𝐴) ≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑙
(𝐴) ≥ 0,

where 𝑙 = min{𝑚, 𝑛}. Suppose that 𝑋 and 𝑌 are Hermitian
matrices; we write 𝑋 ≥ 𝑌(𝑋 > 𝑌) if 𝑋 − 𝑌 is positively
semidefinite (definite) and denote the matrices set {𝑋 | 𝑋 −

𝛼𝐼 ≥ 0 and 𝛽𝐼 − 𝑋 ≥ 0} by [𝛼𝐼, 𝛽𝐼].

2. Solvability of Self-Adjoint Polynomial
Matrix Equation

In this section, we study the solvability theory of (1) assuming
that 𝐴 is nonsingular; that is, 𝜆min(𝐴

∗

𝐴) > 0. To do this, we
need two simple but useful functions defined on the positive
abscissa axis:

𝑔
1
(𝑥) = 𝑥

𝑠

− 𝜆max (𝐴
∗

𝐴) 𝑥
𝑡

− 𝜆max (𝑄) ,

𝑔
2
(𝑥) = 𝑥

𝑠

− 𝜆min (𝐴
∗

𝐴) 𝑥
𝑡

− 𝜆min (𝑄) .
(3)

The following two famous inequalities will be used
frequently in the remaining of this paper.

Lemma 1 (Löwner-Heinz inequality [26, Theorem 1.1]). If
𝐴 ≥ 𝐵 ≥ 0 and 0 ≤ 𝑟 ≤ 1, then 𝐴𝑟 ≥ 𝐵𝑟.

Lemma 2 (see [27, Theorem 2.1]). Let 𝐴 and 𝐵 be positive
operators on a Hilbert space 𝐻, such that𝑀

1
𝐼 ≥ 𝐴 ≥ 𝑚

1
𝐼 >

0,𝑀
2
𝐼 ≥ 𝐵 ≥ 𝑚

2
𝐼 > 0, and 0 < 𝐴 ≤ 𝐵. Then

𝐴
𝑡

≤ (
𝑀
1

𝑚
1

)

𝑡−1

𝐵
𝑡

, 𝐴
𝑡

≤ (
𝑀
2

𝑚
2

)

𝑡−1

𝐵
𝑡 (4)

hold for any 𝑡 ≥ 1.

2.1. Maximal Solution of (1) with 𝑠 < 𝑡. Now we derive a
necessary condition and a sufficient condition for existence
of HPD solutions of (1) with 𝑠 < 𝑡. With 𝑔

1
(𝑥) and 𝑔

2
(𝑥) in

hand, we can easily get the distribution of eigenvalues of the
HPD solution𝑋 of (1).

Theorem 3. Suppose that 𝜆max(𝐴
∗

𝐴) ≤ (𝑠/𝑡)((𝑡 − 𝑠)/

𝜆max(𝑄)𝑡)
(𝑡−𝑠)/𝑠 and 𝑋 ∈ C𝑛×𝑛 is an HPD solution of (1); then

for any eigenvalue 𝜆(𝑋) of𝑋,

𝛽
1
≤ 𝜆 (𝑋) ≤ 𝛼

1
or 𝛼
2
≤ 𝜆 (𝑋) ≤ 𝛽

2
, (5)

where 𝛼
1
, 𝛼
2
are two positive roots of 𝑔

1
(𝑥) and 𝛽

1
, 𝛽
2
are two

positive roots of 𝑔
2
(𝑥).

Proof. From Theorem 3.3.16(d) in Horn and Johnson [28],
one can see that

𝜎
𝑖
(𝐴
∗

𝑋
𝑡

𝐴) ≤ 𝜎
𝑖
(𝑋
𝑡

) 𝜎
2

1
(𝐴) , that is,

𝜆
𝑖
(𝐴
∗

𝑋
𝑡

𝐴) ≤ 𝜆
𝑖
(𝑋
𝑡

) 𝜆max (𝐴
∗

𝐴) ,

𝑖 = 1, . . . , 𝑛.

(6)

If 𝐴 is nonsingular,

𝜎
𝑖
(𝑋
𝑡

) = 𝜎
𝑖
((𝐴
−1

)
∗

𝐴
∗

𝑋
𝑡

𝐴𝐴
−1

) ≤ 𝜎
−2

𝑛
(𝐴) 𝜎
𝑖
(𝐴
∗

𝑋
𝑡

𝐴) .

(7)

That means

𝜎
𝑖
(𝐴
∗

𝑋
𝑡

𝐴) ≥ 𝜎
𝑖
(𝑋
𝑡

) 𝜎
2

𝑛
(𝐴) , that is,

𝜆
𝑖
(𝐴
∗

𝑋
𝑡

𝐴) ≥ 𝜆
𝑖
(𝑋
𝑡

) 𝜆min (𝐴
∗

𝐴) ,

𝑖 = 1, . . . , 𝑛.

(8)

The above equations still hold if𝐴 is singular, since𝜎
𝑛
(𝐴) = 0,

that is, 𝜆min(𝐴
∗

𝐴) = 0, in this case. Applying Weyl theorem
in Horn and Johnson [29],𝑋𝑠 = 𝑄 + 𝐴

∗

𝑋
𝑡

𝐴 implies

𝜆(𝑋)
𝑠

− 𝜆max (𝐴
∗

𝐴) 𝜆(𝑋)
𝑡

𝜆max (𝑄) ≤ 0,

𝜆(𝑋)
𝑠

− 𝜆min (𝐴
∗

𝐴) 𝜆(𝑋)
𝑡

− 𝜆min (𝑄) ≥ 0.
(9)

Define a function 𝑓(𝑥) = 𝑥
𝑠

− 𝑎
2

𝑥
𝑡

− 𝑞, 𝑎 > 0, 𝑞 >

0. Then the only positive stationary point of 𝑓(𝑥) is 𝑥
0
=

((𝑡/𝑠)𝑎
2

)
1/(𝑠−𝑡). If 𝑎2 ≤ (𝑠/𝑡)((𝑡 − 𝑠)/𝑞𝑡)

(𝑡−𝑠)/𝑠, 𝑓(𝑥) has two
positive roots, 𝑥

1
and 𝑥

2
, with 𝑞1/𝑠 < 𝑥

1
≤ 𝑥
0
≤ 𝑥
2
< 𝑎
2/(𝑠−𝑡).

So 𝜆max(𝐴
∗

𝐴) ≤ (𝑠/𝑡)(𝑡−𝑠)/𝜆max(𝑄)𝑡
(𝑡−𝑠)/𝑠 implies that 𝑔

1
(𝑥)

has two roots 𝛼
1
, 𝛼
2
> 0 and 𝑔

2
(𝑥) has two roots 𝛽

1
, 𝛽
2
> 0.

Since 𝑔
2
(𝑥) ≥ 𝑔

1
(𝑥), (𝜆min(𝑄))

1/𝑠

≤ 𝛽
1
≤ 𝛼
1
≤ 𝛼
2
≤ 𝛽
2
≤

(𝜆min(𝐴
∗

𝐴))
1/(𝑠−𝑡). Then from (9) we obtain (5).

If (1) has an HPD solution, its eigenvalues may skip
between [𝛽

1
, 𝛼
1
] and [𝛼

2
, 𝛽
2
]. Next, what we take more atten-

tion on is the HPD solution with its eigenvalues distributed
only on one interval.

Theorem 4. Suppose that 𝜆max(𝐴
∗

𝐴) ≤ (𝑠/𝑡)((𝑡 − 𝑠)/

𝜆max(𝑄)𝑡)
(𝑡−𝑠)/𝑠.

(1) Equation (1) has an HPD solution,𝑋 ∈ [𝛽
1
𝐼, 𝛼
1
𝐼], and

if 𝜆min(𝐴
∗

𝐴) > 𝑠𝛼
𝑠−1

1
(𝑡𝛽
𝑡−1

1
)
−1 such𝑋 exists uniquely.

(2) Equation (1) has an HPD solution, 𝑍 ∈ [𝛼
2
𝐼, 𝛽
2
𝐼], and

if 𝜆min(𝐴
∗

𝐴) > 𝑠𝛽
𝑠−1

2
(𝑡𝛼
𝑡−1

2
)
−1 such 𝑍 exists uniquely.
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Proof. (1) Let ℎ
1
(𝑋) = (𝑄 + 𝐴

∗

𝑋
𝑡

𝐴)
1/𝑠, where 𝑋 ∈

[(𝜆min(𝑄))
1/𝑠

𝐼, (𝑠/(𝜆max(𝐴
∗

𝐴)𝑡))
1/(𝑡−𝑠)

𝐼]. Lemmas 1 and 2
and 𝑡 − 𝑠 > 0 imply

(𝜆min (𝑄))
1/𝑠

𝐼 ≤ ℎ
1
(𝑋)

≤ {𝜆max (𝑄) + 𝜆max (𝐴
∗

𝐴)[
𝑠

(𝜆max (𝐴
∗𝐴) 𝑡)

]

𝑡/(𝑡−𝑠)

}

1/𝑠

𝐼

≤ [
𝑠

𝜆max (𝐴
∗𝐴) 𝑡

]

𝑠/(𝑡−𝑠)×1/𝑠

𝐼 = [
𝑠

𝜆max (𝐴
∗𝐴) 𝑡

]

1/(𝑡−𝑠)

𝐼.

(10)

Applying Brouwer’s fixed-point theorem, ℎ
1
(𝑋) has a fixed

point 𝑋 ∈ [(𝜆min(𝑄))
1/𝑠

𝐼, (𝑠/(𝜆max(𝐴
∗

𝐴)𝑡))
1/(𝑡−𝑠)

𝐼]. Then
fromTheorem 3,𝑋 ∈ [𝛽

1
𝐼, 𝛼
1
𝐼].

We now prove the uniqueness of 𝑋 under the addi-
tional condition that 𝜆min(𝐴

∗

𝐴) > 𝑠𝛼
𝑠−1

1
(𝑡𝛽
𝑡−1

1
)
−1. Suppose

𝑌 ∈ [(𝜆min(𝑄))
1/𝑠

𝐼, (𝑠/(𝜆max(𝐴
∗

𝐴)𝑡))
1/(𝑡−𝑠)

𝐼] is another HPD
solution of (1) and 𝑌 ̸=𝑋. It has been known that

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑡

− 𝑌
𝑡
󵄩󵄩󵄩󵄩󵄩𝐹
=
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐴
−1

)
∗

(𝑋
𝑠

− 𝑌
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩󵄩𝐹

≤ (𝜆min (𝐴
∗

𝐴))
−1󵄩󵄩󵄩󵄩𝑋
𝑠

− 𝑌
𝑠󵄩󵄩󵄩󵄩𝐹
.

(11)

Then from ‖𝑋
𝑠

− 𝑌
𝑠

‖
𝐹
≤ 𝑠𝛼
𝑠−1

1
‖𝑋 − 𝑌‖

𝐹
and ‖𝑋𝑡 − 𝑌𝑡‖

𝐹
≥

𝑡𝛽
𝑡−1

1
‖𝑋 − 𝑌‖

𝐹
,

‖𝑋 − 𝑌‖
𝐹

≤ 𝑠𝛼
𝑠−1

1
[𝑡𝛽
𝑡−1

1
𝜆min (𝐴

∗

𝐴)]
−1

‖𝑋 − 𝑌‖
𝐹
< ‖𝑋 − 𝑌‖

𝐹
,

(12)

which is impossible. Hence,𝑋 = 𝑌.
(2) Let ℎ

2
(𝑍) = [(𝐴

−1

)
∗

(𝑍
𝑠

− 𝑄)𝐴
−1

]
1/𝑡, where 𝑍 ∈

[𝛼
2
𝐼, 𝛽
2
𝐼]. ℎ
2
(𝑍) is continuous, and

ℎ
2
(𝛼
2
𝐼) ≤ ℎ

2
(𝑍) ≤ ℎ

2
(𝛽
2
𝐼) (13)

because (𝐴
−1

)
∗

(𝛼
𝑠

2
𝐼 − 𝑄)𝐴

−1

≤ (𝐴
−1

)
∗

(𝑍
𝑠

− 𝑄)𝐴
−1

≤

(𝐴
−1

)
∗

(𝛽
𝑠

2
𝐼−𝑄)𝐴

−1. By Lemmas 1 and 2 and Brouwer’s fixed-
point theorem, it is sufficient to prove ℎ

2
(𝛼
2
𝐼) ≥ 𝛼

2
𝐼 and

ℎ
2
(𝛽
2
𝐼) ≤ 𝛽

2
𝐼 in order for an HPD solution 𝑍 ∈ [𝛼

2
𝐼, 𝛽
2
𝐼]

to exist. The existence of such 𝑍 follows from inequalities

ℎ
2
(𝛼
2
𝐼)

= [(𝐴
−1

)
∗

(𝛼
𝑠

2
𝐼 − 𝑄)𝐴

−1

]

1/𝑡

≥ [(𝐴
−1

)
∗

(𝛼
𝑠

2
𝐼 − 𝜆max (𝑄) 𝐼) 𝐴

−1

]

1/𝑡

≥ [(𝜆max (𝐴
∗

𝐴))
−1

(𝛼
𝑠

2
𝐼 − 𝜆max (𝑄) 𝐼)]

1/𝑡

= 𝛼
2
𝐼,

ℎ
2
(𝛽
2
𝐼)

= [(𝐴
−1

)
∗

(𝛽
𝑠

2
𝐼 − 𝑄)𝐴

−1

]

1/𝑡

≤ [(𝐴
−1

)
∗

(𝛽
𝑠

2
𝐼 − 𝜆min (𝑄) 𝐼) 𝐴

−1

]

1/𝑡

≤ [(𝜆min (𝐴
∗

𝐴))
−1

(𝛽
𝑠

2
𝐼 − 𝜆min (𝑄) 𝐼)]

1/𝑡

= 𝛽
2
𝐼.

(14)

Next we prove the uniqueness of 𝑍 under the additional
condition that 𝜆min(𝐴

∗

𝐴) > 𝑠𝛽
𝑠−1

2
(𝑡𝛼
𝑡−1

2
)
−1. Suppose (1) has

two different HPD solutions 𝑍 and 𝑌 on [𝛼
2
𝐼, 𝛽
2
𝐼]. Then

󵄩󵄩󵄩󵄩󵄩
𝑍
𝑡

− 𝑌
𝑡
󵄩󵄩󵄩󵄩󵄩𝐹
=
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐴
−1

)
∗

(𝑍
𝑠

− 𝑌
𝑠

)𝐴
−1
󵄩󵄩󵄩󵄩󵄩󵄩𝐹

≤ (𝜆min (𝐴
∗

𝐴))
−1󵄩󵄩󵄩󵄩𝑍
𝑠

− 𝑌
𝑠󵄩󵄩󵄩󵄩𝐹

≤ (𝜆min (𝐴
∗

𝐴))
−1

𝑠𝛽
𝑠−1

2
‖𝑍 − 𝑌‖

𝐹
.

(15)

Moreover, if 𝜆min(𝐴
∗

𝐴) > 𝑠𝛽
𝑠−1

2
(𝑡𝛼
𝑡−1

2
)
−1, applying the

inequality ‖𝑍𝑡 − 𝑌𝑡‖
𝐹
≥ 𝑡𝛼
𝑡−1

2
‖𝑍 − 𝑌‖

𝐹
, we have

‖𝑍 − 𝑌‖
𝐹
≤ (𝑡𝛼
𝑡−1

2
𝜆min (𝐴

∗

𝐴))
−1

𝑠𝛽
𝑠−1

2
‖𝑍 − 𝑌‖

𝐹
< ‖𝑍 − 𝑌‖

𝐹
,

(16)

which is impossible. Hence, 𝑌 = 𝑍.

The maximal solution (see, e.g., [30, 31]) of (1) is defined
as follows.

Definition 5. An HPD solution 𝑋
𝑀

∈ C𝑛×𝑛 of (1) is the
maximal solution if, for any HPD solution 𝑌 ∈ C𝑛×𝑛 of (1),
there is𝑋

𝑀
≥ 𝑌.

So the second term of Theorem 4 implies that the maxi-
mal solution of (1) is on [𝛼

2
𝐼, 𝛽
2
𝐼].

Theorem 6. Suppose that 𝜆max(𝐴
∗

𝐴) ≤ (𝑠/𝑡)(𝑡/(𝑡 −

𝑠)𝜆max(𝑄))
(𝑠−𝑡)/𝑠 and𝜆min(𝐴

∗

𝐴) > 𝑠𝛽
𝑠−1

2
(𝑡𝛼
𝑡−1

2
)
−1; then (1) has

a maximal solution 𝑋max ∈ [𝛼2𝐼, 𝛽2𝐼] which can be computed
by

𝑋
𝑖
= [(𝐴

−1

)
∗

(𝑋
𝑠

𝑖−1
− 𝑄)𝐴

−1

]

1/𝑡

, 𝑖 = 1, 2, . . . . (17)

with the initial value𝑋
0
= 𝛽
2
𝐼.

Proof. Let 𝜉 = (𝑡𝛼
𝑡−1

2
𝜆min(𝐴

∗

𝐴))
−1

𝑠𝛽
𝑠−1

2
; then 𝜉 < 1. From

the proof of Theorem 4 (2),

𝑡𝛼
𝑡−1

2

󵄩󵄩󵄩󵄩𝑋𝑖+1 − 𝑋𝑖
󵄩󵄩󵄩󵄩𝐹
≤
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑡

𝑖+1
− 𝑋
𝑡

𝑖

󵄩󵄩󵄩󵄩󵄩𝐹

=
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐴
−1

)
∗

(𝑋
𝑠

𝑖
− 𝑋
𝑠

𝑖−1
)𝐴
−1
󵄩󵄩󵄩󵄩󵄩󵄩𝐹

≤ (𝜆min (𝐴
∗

𝐴))
−1󵄩󵄩󵄩󵄩𝑋
𝑠

𝑖
− 𝑋
𝑠

𝑖−1

󵄩󵄩󵄩󵄩𝐹

≤ (𝜆min (𝐴
∗

𝐴))
−1

𝑠𝛽
𝑠−1

2

󵄩󵄩󵄩󵄩𝑋𝑖 − 𝑋𝑖−1
󵄩󵄩󵄩󵄩𝐹
.

(18)
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Then
󵄩󵄩󵄩󵄩𝑋𝑖+1 − 𝑋𝑖

󵄩󵄩󵄩󵄩𝐹
≤ 𝜉

󵄩󵄩󵄩󵄩𝑋𝑖 − 𝑋𝑖−1
󵄩󵄩󵄩󵄩𝐹
≤ 𝜉
𝑖󵄩󵄩󵄩󵄩𝑋1 − 𝑋0

󵄩󵄩󵄩󵄩𝐹
, (19)

which indicates the convergence of matrix series {𝑋
0
, 𝑋
1
,

𝑋
2
, . . .}, generated by (17).
Set 𝑋

0
= 𝛽
2
𝐼. Assuming 𝑋

𝑖
∈ [𝛼
2
𝐼, 𝛽
2
𝐼], then from

inequalities (14) we have

𝛼
2
𝐼 ≤ ℎ (𝛼

2
𝐼) ≤ 𝑋

𝑖+1

= [(𝐴
−1

)
∗

(𝑋
𝑠

𝑖
− 𝑄)𝐴

−1

]

1/𝑡

≤ ℎ (𝛽
2
𝐼) ≤ 𝛽

2
𝐼.

(20)

That means, for any 𝑖 = 0, 1, 2, . . . , 𝑋
𝑖
∈ [𝛼
2
𝐼, 𝛽
2
𝐼]. By

Theorem 4 (2), we can see that 𝑋max = lim
𝑖→+∞

𝑋
𝑖
is the

unique HPD solution of (1) on [𝛼
2
𝐼, 𝛽
2
𝐼].

Now we prove the maximality of 𝑋max. Suppose that 𝑋
is an arbitrary HPD solution of (1); then 𝑋

0
≥ 𝑋, and

Theorem 3 implies𝑋𝑡
0
≥ 𝑋
𝑡 (since𝑋

0
= 𝛽
2
𝐼). Assuming that

𝑋
𝑡

𝑖
≥ 𝑋
𝑡, Lemma 1 with 𝑠/𝑡 < 1 implies

𝑋
𝑡

𝑖+1
= (𝐴
−1

)
∗

[(𝑋
𝑡

𝑖
)
𝑠/𝑡

− 𝑄]𝐴
−1

≥ (𝐴
−1

)
∗

[(𝑋
𝑡

)
𝑠/𝑡

− 𝑄]𝐴
−1

= 𝑋
𝑡

.

(21)

Then𝑋𝑡max = lim
𝑖→+∞

𝑋
𝑡

𝑖
≥ 𝑋
𝑡, which implies that𝑋max ≥ 𝑋

by the Löwner-Heinz inequality.

Note that similar iteration formula ever appeared in some
papers such as [20, 21] for other nonlinear matrix equations.
Here we firstly proved that the iteration form (17) preserves
the maximality of𝑋

𝑖
over all HPD solutions of (1).

2.2. Unique Solution of (1) with 𝑠 ≥ 𝑡. If 𝑠 > 𝑡, Lee and Lim
[20, Theorem 9.4] show that (1) always has a unique HPD
solution, denoted by 𝑋

𝑢
. Now we give an upper bound and

a lower bound of 𝑋
𝑢
and suggest an iteration method for

computing𝑋
𝑢
.

As defined in (3), 𝑔
1
(𝑥) and 𝑔

2
(𝑥) with 𝑠 > 𝑡 have unique

positive roots, denoted by 𝛾
1
and 𝛾
2
, respectively.

Since 𝑔
1
(𝜆(𝑋
𝑢
)) ≤ 0 and 𝑔

2
(𝜆(𝑋
𝑢
)) ≤ 0, 𝛾

2
≤ 𝜆(𝑋

𝑢
) ≤ 𝛾
1
.

Theorem 7. If 𝑠 > 𝑡, (1) has a unique HPD solution
𝑋
𝑢
∈ [𝛾
2
𝐼, 𝛾
1
𝐼]. Let 𝑋

0
= 𝛾
1
𝐼 or 𝛾

2
𝐼, then matrix series

{𝑋
0
, 𝑋
1
, 𝑋
2
, . . .} generated by

𝑋
𝑖
= (𝑄 + 𝐴

∗

𝑋
𝑡

𝑖−1
𝐴)
1/𝑠

, 𝑖 = 0, 1, 2, . . . (22)

will converge to𝑋
𝑢
.

Proof. Weonly need to prove the convergence ofmatrix series
{𝑋
0
, 𝑋
1
, 𝑋
2
, . . .}. Set𝑋

0
= 𝛾
1
𝐼. From (22) we have

𝑋
1
= (𝑄 + 𝛾

𝑡

1
𝐴
∗

𝐴)
1/𝑠

≤ (𝜆max (𝑄) + 𝛾
𝑡

1
𝜆max (𝐴

∗

𝐴))
1/𝑠

𝐼 = 𝛾
1
𝐼,

(23)

and then𝑋𝑠
1
≤ 𝑋
𝑠

0
. Assuming that𝑋𝑠

𝑖
≤ 𝑋
𝑠

𝑖−1
,

𝑋
𝑠

𝑖+1
= 𝑄 + 𝐴

∗

𝑋
𝑡

𝑖
𝐴 = 𝑄 + 𝐴

∗

(𝑋
𝑠

𝑖
)
𝑡/𝑠

𝐴

≤ 𝑄 + 𝐴
∗

(𝑋
𝑠

𝑖−1
)
𝑡/𝑠

𝐴 = 𝑋
𝑠

𝑖
.

(24)

Then for any 𝑖 = 0, 1, 2, . . ., we have 𝑋𝑠
𝑖+1

≤ 𝑋
𝑠

𝑖
and then

𝑋
𝑖+1

≤ 𝑋
𝑖
by Löwner-Heinz inequality. On the other hand,

𝑋
0
≥ 𝛾
2
𝐼 implies 𝑋

𝑖
≥ 𝛾
2
𝐼 for any 𝑖 = 0, 1, 2, . . ., because if

𝑋
𝑖−1

≥ 𝛾
2
𝐼, then

𝑋
𝑖
= (𝑄 + 𝐴

∗

𝑋
𝑡

𝑖−1
𝐴)
1/𝑠

≥ (𝑄 + 𝛾
𝑡

2
𝐴
∗

𝐴)
1/𝑠

≥ (𝜆min (𝑄) + 𝛾
𝑡

2
𝜆min (𝐴

∗

𝐴))
1/𝑠

𝐼 = 𝛾
2
𝐼.

(25)

Then {𝑋
0
, 𝑋
1
, 𝑋
2
, . . .} with 𝑋

0
= 𝛾
1
𝐼 is a decreasingly

monotone matrix series with a lower bound 𝛾
2
𝐼. Similarly we

can prove that {𝑋
0
, 𝑋
1
, 𝑋
2
, . . .} generated by (22) with 𝑋

0
=

𝛾
2
𝐼 is an increasingly monotone matrix series with an upper

bound 𝛾
1
𝐼.Therefore, the convergence of {𝑋

0
, 𝑋
1
, 𝑋
2
, . . .} has

been proved.

From the above proof, we can see that the iteration form
(22) preserves the minimality (𝑋

0
= 𝛾
1
𝐼) or maximality

(𝑋
0
= 𝛾
2
𝐼) of𝑋

𝑖
in process.

If 𝑠 = 𝑡, (1) can be reduced to a linear matrix equation
𝑌−𝐴
∗

𝑌𝐴 = 𝑄, which is the discrete-time algebraic Lyapunov
equation (DALE) or Hermitian Stein equation, [1, Page 5],
assuming that 𝑌 = 𝑋

𝑠. It is well known that if 𝐴 is d-stable
(see [1]), 𝑌 − 𝐴

∗

𝑌𝐴 = 𝑄 has a unique solution, and matrix
series {𝑌

0
, 𝑌
1
, 𝑌
2
, . . .}, generated by 𝑌

𝑖+1
= 𝑄+𝐴

∗

𝑌
𝑖
𝐴 with an

initial value 𝑌
0
, will converge to the unique solution. Besides,

it is not difficult to get an expression of the unique solution
𝑋
𝑢
= (∑
∞

𝑗=0
(𝐴
∗

)
𝑗

𝑄𝐴
𝑗

)
1/𝑠, applying [32, Theorem 1, Section

13.2], [1, Theorem 1.1.18], and the results in Section 6.4 [28].
Now we have presented the solvability theory of the self-

adjoint polynomial matrix equation (1) in three cases. A
general iterative algorithm for its maximal solution (𝑠 < 𝑡)
or unique solution (𝑠 ≥ 𝑡) will be given in Section 4. Before it,
we study the algebraic perturbation of themaximal or unique
solution of (1).

3. Algebraic Perturbation Analysis

In this section, we present the algebraic perturbation analysis
of the HPD solution of (1) with respect to the perturbation
of its coefficient matrices. Similar to [30], we define the
perturbed matrix equation of (1) as

𝑋
𝑠

− 𝐴
∗

𝑋
𝑡

𝐴 = 𝑄, (26)

where 𝐴 = 𝐴 + Δ𝐴 ∈ C𝑛×𝑛 and 𝑄 = 𝑄 + Δ𝑄 ∈ C𝑛×𝑛. We
always suppose that (1) has a maximal (or unique) solution,
denoted by 𝑋

𝑀
∈ [𝛼
2
𝐼, 𝛽
2
𝐼], and (26) has a maximal (or

unique) solution, denoted by𝑋
𝑀
∈ [𝛼̂
2
𝐼, 𝛽
2
𝐼].

Now we present the perturbation bound for 𝑋
𝑀

when
𝑠 ̸= 𝑡. Define a function 𝜏:

𝜏 (𝛼, 𝛽) = 𝑠𝛼
𝑠−1

− 𝑡𝛽
𝑡−1

‖𝐴‖
2

2
, (𝛼, 𝛽) ∈ R

2

. (27)
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Theorem 8. Let 𝜀 > 0 be an arbitrary real number, and 𝜏(𝛼̂
2
,

𝛽
2
) ≥ 0. If

‖Δ𝐴‖
𝐹
< (‖𝐴‖

2

2
+
2𝜀

3
𝜏 (𝛼̂
2
, 𝛽
2
)
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

−𝑡

2

)

1/2

− ‖𝐴‖
2
,

‖ Δ𝑄‖
𝐹
<
1

3
𝜏 (𝛼̂
2
, 𝛽
2
) 𝜀,

(28)

then
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
< 𝜀. (29)

Proof. It is easy to induce that

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

𝑀
− 𝑋
𝑠

𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
≥ (

𝑠−1

∑

𝑘=0

𝛼̂
𝑠−1−𝑘

2
𝛼
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹

≥ 𝑠𝛼̂
𝑠−1

2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
,

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑡

𝑀
− 𝑋
𝑡

𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
≤ (

𝑡−1

∑

𝑘=0

𝛽
𝑡−1−𝑘

2
𝛽
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹

≤ 𝑡𝛽
𝑡−1

2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
.

(30)

Then from (1) and (26), we have

𝜏 (𝛼̂
2
, 𝛽
2
)
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹

≤ 2‖𝐴‖
2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑡

2

‖Δ𝐴‖
𝐹
+
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑡

2

‖Δ𝐴‖
2

𝐹
+ ‖Δ𝑄‖

𝐹
.

(31)

Since 𝜏(𝛼̂
2
, 𝛽
2
) > 0,

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹

≤ (𝜏 (𝛼̂
2
, 𝛽
2
))
−1

(2‖𝐴‖
2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑡

2

‖Δ𝐴‖
𝐹

+
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑡

2

‖Δ𝐴‖
2

𝐹
+ ‖Δ𝑄‖

𝐹
) .

(32)

Then for an arbitrary 𝜀 > 0, if ‖Δ𝐴‖
𝐹

< (‖𝐴‖
2

2
+

(2𝜀/3)𝜏(𝛼̂
2
, 𝛽
2
)‖𝑋
𝑀
‖
−𝑡

2
)
1/2

− ‖𝐴‖
2

and ‖Δ𝑄‖
𝐹

<

(1/3)𝜏(𝛼̂
2
, 𝛽
2
)𝜀, we have (29).

If 𝑠 = 𝑡, for an arbitrary 𝜀 > 0, define

󰜚 (𝜀) = ‖𝐴‖
2
+ (‖𝐴‖

2

2
+
2𝜀

3𝜌
)

1/2

, (33)

where

𝜌 =
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑠

2

[𝑠𝛼̂
𝑠−1

2
(1 − ‖𝐴‖

2

2
)]
−1

. (34)

Theorem9. Let 𝜀 > 0 be an arbitrary real number, and ‖𝐴‖
2
<

1. If

‖Δ𝐴‖
𝐹
<
2𝜀

3
(𝜌󰜚 (𝜀))

−1

, ‖Δ𝑄‖
𝐹
<

𝜀

3𝜌

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑠

2

, (35)

then
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
< 𝜀. (36)

Table 1: Iteration, CPU time (seconds) and residue for solving (1)
with 𝑠 ̸= 𝑡.

(𝑠, 𝑡)
Algorithm 1 MONO

Ite CPU Res Ite CPU Res
(2, 1) 9 0.0541 4.5275𝑒 − 13 200 2.1031 0.0016
(1, 2) 200 1.0275 2.0297𝑒 − 07 — — —
(8, 5) 10 0.0716 5.9909𝑒 − 13 200 2.2284 0.0034
(5, 8) 200 1.1048 3.1059𝑒 − 05 — — —
(30, 15) 9 0.0743 5.2317𝑒 − 13 200 2.3051 0.0029
(15, 30) 200 1.2865 2.0838𝑒 − 08 — — —
(300, 150) 10 0.0886 7.9960𝑒 − 13 200 2.2683 0.0031
(150, 300) 200 1.4187 2.8384𝑒 − 07 — — —

Proof. Similar to the proof of Theorem 8, we can induce that

(1 − ‖𝐴‖
2

2
)
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

𝑀
− 𝑋
𝑠

𝑀

󵄩󵄩󵄩󵄩󵄩𝐹

≤ 2‖𝐴‖
2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑠

2

‖Δ𝐴‖
𝐹
+
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑠

2

‖Δ𝐴‖
2

𝐹
+ ‖Δ𝑄‖

𝐹
.

(37)

Then
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠

𝑀
− 𝑋
𝑠

𝑀

󵄩󵄩󵄩󵄩󵄩𝐹

≤ (1 − ‖𝐴‖
2

2
)
−1

(2‖𝐴‖
2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑠

2

‖Δ𝐴‖
𝐹

+
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩

𝑠

2

‖Δ𝐴‖
2

𝐹
+ ‖Δ𝑄‖

𝐹
) .

(38)

With the help of (30) and (34), (38) implies
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑀
− 𝑋
𝑀

󵄩󵄩󵄩󵄩󵄩𝐹
≤ 𝜌 (‖Δ𝐴‖

𝐹
+ 2‖𝐴‖

2
‖Δ𝐴‖
𝐹
+ ‖Δ𝑄‖

𝐹
) . (39)

Then if ‖Δ𝐴‖
𝐹
< (2𝜀/3)(𝜌󰜚(𝜀))

−1 and ‖Δ𝑄‖
𝐹
< (𝜀/3𝜌)‖𝑋

𝑀
‖
𝑠

2
,

we have (36).

Theorems 8 and 9 make sure that the perturbation of𝑋
𝑀

can be controlled if Δ𝐴 and Δ𝑄 have a proper upper bound.

4. Algorithm and Numerical Experiments

In this section we give a general iterative algorithm for the
maximal or unique solutions of (1) and two numerical exper-
iments. All reported results were obtained using MATLAB-
R2012b on a personal computer with 2.4GHz Intel Core i7
and 8GB 1600MHz DDR3.

Example 10. Let matrices 𝐴 = rand(100) × 10−2 and 𝑄 =

eye(100). With tol = 10−12 and not more than 200 iterations,
we apply Algorithm 1 to compute the maximal or unique
HPD solutions of (1) with 𝑠 ̸= 𝑡 and compare the results with
those by the iteration method from [33] (denoted by MONO
in Table 1).

Table 1 shows iterations, CPU times before convergence,
and the residues of the computed HPD solution 𝑋, defined
by

𝑒 (𝑠, 𝑡) =

󵄩󵄩󵄩󵄩𝑋
𝑠

− 𝐴
∗

𝑋
𝑡

𝐴 − 𝑄
󵄩󵄩󵄩󵄩𝐹

‖[𝐴, 𝑄]‖
𝐹

. (40)
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Table 2: Iteration, CPU time (seconds) and residue for solving (1) with 𝑠 = 𝑡 and different initial solutions.

(𝑠, 𝑡, 𝑋
0
)

Algorithm 1 MONO
Ite CPU Res Ite CPU Res

(1, 1, 𝛿
1
𝐼
𝑛
) 20 0.0223 3.4947𝑒 − 13 20 0.0202 3.4947𝑒 − 13

(1, 1, 𝛿
2
𝐼
𝑛
) 31 0.0258 7.3027𝑒 − 13 31 0.0305 7.3027𝑒 − 13

(2, 2, 𝛿
1
𝐼
𝑛
) 20 0.1170 8.9978𝑒 − 13 200 2.6421 0.0037

(2, 2, 𝛿
2
𝐼
𝑛
) 43 0.5475 9.6421𝑒 − 13 200 2.7224 0.0037

(10, 10, 𝛿
1
𝐼
𝑛
) 29 0.1890 2.9296𝑒 − 13 200 2.9717 0.0059

(10, 10, 𝛿
2
𝐼
𝑛
) 157 3.0859 7.1154𝑒 − 13 200 2.9788 0.0059

Step 1. Compute 𝜆max(𝐴
∗

𝐴), 𝜆min(𝐴
∗

𝐴), 𝜆max(𝑄), 𝜆min(𝑄).
Step 2. Input (3).
Step 3. If 𝑠 < 𝑡, run Steps 4-5; if 𝑡 < 𝑠, run Steps 6-7; otherwise, run Steps 8-9.
Step 4. Compute the roots 𝛼

1
, 𝛼
2
of 𝑔
1
(𝑥), and 𝛽

1
, 𝛽
2
of 𝑔
2
(𝑥), respectively.

Step 5. Let 𝑋
0
= 𝛽
2
𝐼, run (17).

Step 6. Compute the root 𝛾
1
of 𝑔
1
(𝑥) and the root 𝛾

2
of 𝑔
2
(𝑥), respectively.

Step 7. Let 𝑍
0
= 𝛾
1
𝐼, run (22).

Step 8. Compute the root 𝛿
1
of 𝑔
1
(𝑥) and the root 𝛿

2
of 𝑔
2
(𝑥), respectively.

Step 9. If 𝜆max(𝐴
∗

𝐴) < 1 and 𝛿
1
≥ 𝛿
2
, then let 𝑋

0
= 𝛿
1
𝐼 and run (22).

Algorithm 1: Given matrices 𝐴,𝑄 ∈ C𝑛×𝑛 and positive integers 𝑠, 𝑡.

From Table 1, we can see that it takes more iterations and
CPU times to solve themaximal solution of (1) with 𝑠 < 𝑡 than
to solve the unique solution of (1) with 𝑠 > 𝑡. At the same time,
the accuracy of the latter is better than the former.MONOcan
not be used to solve (1) with 𝑠 < 𝑡, and it costs more iterations
and CPU times than Algorithm 1 when solving (1) with 𝑠 > 𝑡.

Now we use Example 4.1 of [33] to test our method.

Example 11. Let 𝐴 = 0.5𝐵/‖𝐵‖
∞

with 𝐵 = [𝐵
𝑖𝑗
]
𝑛×𝑛
, 𝑏
𝑖𝑗
= 𝑖 +

𝑗 + 1 and let 𝑄 = eye(𝑛), with 𝑛 = 100. We solve (1) with
𝑠 = 𝑡 and with two different initial solutions. The iterations,
CPU times, and the residues of the computation are reported
in Table 2.

Table 2 shows that for Algorithm 1 the choice 𝑋
0
= 𝛿
1
𝐼
𝑛

is better than 𝑋
0
= 𝛿
2
𝐼
𝑛
. When 𝑠 and 𝑡 rise, MONO might

lose its efficiency. It seems not proper to apply the iteration
method designed for 𝑌 − 𝐴∗𝑌𝑡/𝑠𝐴 = 𝑄 with 𝑌 = 𝑋

𝑠 to solve
𝑋
𝑠

− 𝐴
∗

𝑋
𝑡

𝐴 = 𝑄, although they are equivalent to each other
in theory.

5. Conclusion

In this paper, we considered the solvability of the self-adjoint
polynomial matrix equation (1). Sufficient conditions were
given to guarantee the existence of the maximal or unique
HPD solutions of (1). The algebraic perturbation analysis
including perturbation bounds was also developed for (1)
under the perturbation of given coefficient matrices. At last
a general iterative algorithm with maximality preserved in
process was presented for the maximal or unique solution
with two numerical experiments reported.
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