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An enhanced differential evolution based algorithm, named multi-objective differential evolution with simulated annealing
algorithm (MODESA), is presented for solving multiobjective optimization problems (MOPs).The proposed algorithm utilizes the
advantage of simulated annealing for guiding the algorithm to explore more regions of the search space for a better convergence to
the true Pareto-optimal front. In the proposed simulated annealing approach, a new acceptance probability computation function
based on domination is proposed and some potential solutions are assigned a life cycle to have a priority to be selected entering
the next generation. Moreover, it incorporates an efficient diversity maintenance approach, which is used to prune the obtained
nondominated solutions for a good distributed Pareto front.The feasibility of the proposed algorithm is investigated on a set of five
biobjective and two triobjective optimization problems and the results are compared with three other algorithms.The experimental
results illustrate the effectiveness of the proposed algorithm.

1. Introduction

Many real world problems are MOPs and it has prompted
a wide research boom about the MOPs over the past few
decades. A lot of multiobjective evolutionary algorithms
(MOEAs) have been suggested such as these famous algo-
rithms in [1–4]. For comprehensive overviews, the reader can
refer to [5–7].

In the present study, we emphasize on the differential
evolution (DE) for solving MOPs. DE, one of the most
popular evolutionary algorithms, was initially presented by
Storn and Price [8, 9]. DE has a simple principle and is easy
to be implemented. DE was originally used for solving single
objective optimization problems in [10]. In 2001, Abbass
et al. [11] presented a Pareto-frontier differential evolution
algorithm (PDE) for solving MOPs. In 2002, Abbass [12]
further improved the PDE with self-adaptive crossover and
mutation operator. In the same year, the nondominated
sorting and the concept of ranking used in NSGA-II are
incorporated in the DE to solve MOPs in [13]. Xue et al. [14]

proposed an algorithmcalledPareto basedmultiobjective dif-
ferential evolution (MODE), which incorporates the concept
of Pareto optimal into the mutation operator. Parsopoulos
et al. [15] presented a vector evaluated differential evolution
(VEDE) for solving MOPs. A domination selection operator
is adopted to improve the performance of the algorithm.
Kukkonen and Lampinen [16, 17] proposed a generalized
differential evolution (GDE) and an improved version ofGDE
for solvingMOPs with constraints. In 2006, Hernández-Dı́az
et al. [18] combined the DE and the rough set theory for
MOPs. Wang et al. [19] proposed a self-adapted differential
evolution algorithm, which adopts an external elitist and
a crowding entropy diversity measure tactic. Huang et al.
[20, 21] improved their self-adaptive differential evolution
(SaDE) to solve MOPs by a multiobjective adaptive differen-
tial evolution (MOSaDE). Moreover, they further extended
MOSaDE by objective-wise learning strategies and called
it as WO-MOSaDE. Ali et al. [22] proposed a modified
differential evolution (MDE) for solving MOPs. In 2012, they
[23] further continued their research by giving an enhanced
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version of MDE, named multiobjective differential evolution
algorithm (MODEA), which incorporates the opposition-
based learning [24] and the concept of random localization
in mutation.

Besides the DE method, in this paper, the concept of
simulated annealing is utilized for controlling the acceptance
of the candidate solutions. Simulated annealing, proposed by
Kirkpatrick et al. [25] is a popular probabilistic metaheuristic
for solving the optimization problems. Simulated annealing
is inspired by the annealing in metallurgy, a technique
of controlling the temperature of a material from a high
temperature to low one in a probability for increasing the
volume of its crystals and reducing their defects. The sim-
ulated annealing algorithm works for finding minimal cost
solutions by minimizing the associated energy function. In
the process, the temperature is first in a high level (𝑇max)
and then decreases gradually, if the cooling is sufficiently
slow, the global minimum will be reached. The viewpoint
has been proven by S. Geman and D. Geman in [26].
There are some attempts of adopting simulated annealing to
solve MOPs. Especially, there have been a few studies that
utilize the concept of Pareto-dominance in themultiobjective
simulated annealing, the reader can refer to [27] for a
review about this research. In [28], an archivedmultiobjective
simulated annealing algorithm named AMOSA is proposed.
The algorithm incorporates the concept of archive and adopts
a domination status to determine the acceptance of a new
solution.

The rest of the paper is organized as follows. In Section 2,
the problem formulation is introduced. The proposed algo-
rithm is presented in Section 3. In Section 4, some numerical
examples are given to show the performance of the proposed
algorithm with the other algorithms, while the conclusion is
reached in Section 5.

2. Problem Formulation

We assume that the MOPs given in this paper are mini-
mization problems, while eachmaximization problem can be
transformed into a minimization problem. A MOP can be
formally described as follows:

min 𝐹 (x) = (𝑓
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dominates y which can be denoted as x ≺ y. A solution

x is called a Pareto-optimal solution if there is not another
solution x satisfying x ≺ x. A set containing all the Pareto-
optimal solutions is called the Pareto-optimal set (PS). A set
containing all the Pareto-optimal objective vectors is called
the Pareto front (PF) such that PF = {𝐹(x) | x ∈ PS} [29].

3. The Proposed Algorithm

The proposed algorithm is an extension of MODEA algo-
rithm proposed by Ali et al. [23]. In the proposed MODESA,
we focus on improving the convergence of the obtained
solution towards the Pareto-optimal front, and the diversity
and distribution of the solutions. Besides using the simulated
annealing process to control the acceptance of the candidate
solutions, an efficient diversity maintenance mechanism [30]
is also adopted to improve the distribution of these obtained
solutions.

3.1. Population Initialization. In MODESA, initial popula-
tion is generated in the same way as that of MODEA
[23]. Because of the lack of a prior information about the
solution, its corresponding opposite estimate is considered
for getting a better solution. Here, the concept of oppo-
site solution is given. Suppose that the current solution is
x(𝑥
1
, 𝑥
2
, . . . , 𝑥
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[23].

The advantage of doing this is that we can choose the
better one between the solution and the opposite one as the
initial solution. The procedure of initialization in the paper
is given as follows. A population with 𝑁 solutions is gen-
erated using uniform random distribution and a population
containing their opposite solutions is constructed too. Next,
a combined population with the population and the opposite
population is constructed and the best N solutions of the
combined population are selected by using the nondomi-
nated sorting in NSGA-II [2] and the diversity maintenance
mechanism based on vicinity distance [30].

3.2. Differential Evolution (DE). Differential Evolution (DE)
presented by Storn and Price [8, 9] is an easy and effi-
cient evolutionary algorithm. DE maintains a population of
𝑁 solutions and contains three main operators: mutation,
crossover, and selection.

The mutation operation is defined as follows:

z = xr1 + 𝑓 ∗ (xr2 − xr3) , (4)

where xr1, xr2, and xr3 are randomly selected from the current
population and 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖. 𝑓 is a control parameter
which is set in (0, 2] in Storn and Price [8, 9]. For the
sake of convenient description, the solution which is selected
to plus a perturbed value is called as the base vector. xr1
(the base vector) is perturbed by adding to it the product
of the control parameter and the difference of xr2 between
xr3. z(𝑧1, 𝑧

2
, . . . ,𝑧

𝑛
) is the generated perturbed solution. It

is important to note that if 𝑧
𝑖
is out of bounds, it must be

repaired. Asmentioned above, the lower and upper bounds of
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variable 𝑧
𝑖
are V
𝑖,min and V𝑖,max, respectively. In this study, if 𝑧

𝑖

is less than V
𝑖,min, 𝑧𝑖 is set to V𝑖,min; if 𝑧𝑖 exceeds V𝑖,max, 𝑧𝑖 is set to

V
𝑖,max. Ali et al. [23] have proved that using the one having the
best fitness value in these three randomly selected individuals
as the base vector has two advantages. The first advantage is
that it is neither merely random nor merely greedy.The other
one is that it can offer a localized effect to help in findingmore
different regions of the search space around the underlying
solutions [23]. Therefore, in MODESA, after choosing the
three individuals, we select the best one of them to be the base
vector.

After the perturbed solution is generated, a trial solution
w is produced by the crossover operation which can be
defined as follows. For each variable 𝑗,

𝑤
𝑗

= {
𝑧
𝑗
, rand

𝑗
≤ cr ∨ 𝑗 = 𝑗𝑗

𝑥
𝑗
, otherwise,

(5)

where 𝑗𝑗 ∈ {1, . . . , 𝑛} is a random number and cr ∈ [0, 1]

is the crossover rate. In general DE, the selection operator
is utilized to decide whether the trial solution w replaces
the target solution x.The selection operation can be defined
according to the following:

x = {
w, w ≺ x
x, otherwise.

(6)

In the proposed MODESA, the target individual x is
not simply replaced by the trial solution w. A simulated
annealing procedure introduced in Section 3.3 is employed
to determine the acceptance of the trial solution.

3.3. Simulated Annealing Procedure. After the mutation
phase, the crossover operator is performed, and the algorithm
enters the selection phase. In MODESA, we incorporate the
principle of simulated annealing into the selection phase.
Before introducing the proposed selection phase, we first give
a concept of domination in simulated annealing.

3.3.1.TheConcept of Domination. To calculate the acceptance
probability of a new solution, the amount of domination used
in AMOSA [28] is adopted here. Given two solutions x and
y, the amount of domination is calculated by the following
equation:

Δdom
𝑎,𝑏

=

𝑚

∏

𝑖=1,𝑓𝑖(x) ̸= 𝑓𝑖(y)

(

𝑓𝑖 (x) − 𝑓
𝑖
(y)



𝑅
𝑖

) , (7)

where 𝑚 is the number of objectives and 𝑅
𝑖
is the range of

the 𝑖th objective. When 𝑅
𝑖
is unknown, the solutions in the

current population are used for calculating it.

3.3.2. Simulated Annealing Used in the Selection Operator of
the ProposedMODESA. As (6), if the trial solution dominates
the current solution, the general DE simply replaces the
current solution by the trial solution. However, doing this
may make the algorithm over converge and easy to trap into
local optimal. As is known, there are three possibilities when

comparing two solutions, the current solution x and the new
solution y, as follows:

(1) x dominates y;
(2) x is dominated by y;
(3) x and y are incomparable.

If x dominates y, it is obvious that y is not better than
x, so that we can simply replace y by x. If x is dominated
by y, we accept the new solution y distinctly. If x and y
are incomparable, the solution y may have the potential to
guide the solutions towards an unreached area of the search
space. Therefore, in the DE process, we use the simulated
annealing to accept y under a certain probability. Meanwhile,
we need to control the acceptance probability, and the reason
is that if we do not control the acceptance probability, all these
potential solutions which are not absolutely good will enter
to the next generation which will confuse the algorithm and
make it unable to have a right direction towards the Pareto-
optimal front.That is to say, we must decrease the acceptance
probability. In simulated annealing, with the decreasing of
the temperature, the acceptance probability is decreased too,
which will avoid the algorithm producing toomuch potential
solutions in the end. It is worth mentioning that if we allow
some potential solutions existing during the procedure, the
next nondominated sorting procedure may again remove
these potential solutions, which will make the purpose of
allowing some potential solutions to search more areas of the
searching space fail. Therefore, in the proposed MODESA,
each individual is assigned a prior life cycle. The number of
prior life cycles means how many times the individual can
be selected preferentially in the nondominated sorting. For
the sake of convenience, the life cycle value of solution 𝑥

𝑖
is

denoted as 𝑙𝑖𝑓𝑒
𝑖
. Once the individual is selected preferentially

in the nondominated sorting, the prior life cycle of the
individual isminus onewhen it is greater than zero.Note that,
in the population initialization, the prior life cycle of each
individual is set to zero.

In this paper, given a temperature temp, the new solution
is selected with a probability prob as follows:

prob = exp(−

Δdomavg

temp
) , (8)

Δdomavg =
∑
𝑘

𝑖=1
Δdom

𝑖,new-solution

𝑘
, (9)

where 𝑘 is the number of solutions that dominates the new
solution. It is worth mentioning that Δdomavg represents the
average amount of domination of the new solution and the 𝑘

solutions that dominate it. Suppose that Δdomavg is constant,
the acceptance probability decreases when the temperature
decreases. The simulated annealing used in the selection
operator of MODESA is as shown in Algorithm 1.

3.4. Diversity Maintenance Mechanism. The diversity main-
tenance mechanism adopted in the paper is presented by
Kukkonen and Deb [30] for pruning of nondominated
solutions. Instead of using the crowding distance in Deb
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input: 𝑥
𝑖
, 𝑤
𝑖
, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇min, 𝑇max, 𝑃𝑡, 𝑃temp, 𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑖𝑐𝑙𝑒

If (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 𝑇min) {

Compute the value of Δdomavg by (9).
Calculate the acceptance probability prob:

prob = exp(−Δdomavg/𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

With a probability prob Do
Put the current individual 𝑥

𝑖
to the temporary population: 𝑃temp = 𝑃temp ∪ 𝑥

𝑖
.

Replace the current individual 𝑥
𝑖
by the trial individual 𝑤

𝑖
: 𝑥
𝑖
= 𝑤
𝑖
.

Assign the life value 𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 to the new individual 𝑥
𝑖
: 𝑙𝑖𝑓𝑒
𝑖
= 𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒,

where 𝑙𝑖𝑓𝑒
𝑖
represents the life cycle value of solution 𝑥

𝑖
.

otherwise
Put the current individual 𝑥

𝑖
to the temporary population: 𝑃temp = 𝑃temp ∪ 𝑥

𝑖
.

}// End If

Algorithm 1: The proposed simulate annealing algorithm.

et al. [2], the method proposed a new crowding estimation
called vicinity distance using nearest neighbors. In this paper,
we call this method as the vicinity distance based pruning
method for convenience. The basic process of the method is
to remove the most crowded solutions in the nondominated
solution one by one. Moreover, after each removal, the
vicinity distance values of the remaining solutions must
be updated again. The vicinity distance is used to get an
estimate of the density of solutions surrounding a particular
solution, it calculates the product of 𝑘 nearest neighbors of
the particular solution. The solutions with the smallest value
of vicinity distance are considered to be the most crowded
ones. In [30], the value of 𝑘 is assigned to the number of
objectives; that is, 𝑘 = 𝑚. The reader can refer to [30] to get
more information about this method.

3.5. The Framework of the Proposed MODESA Algorithm

3.5.1. The Framework of the Proposed MODESA Algorithm.
As mentioned before, the proposed algorithm first uses the
population initialization phase to generate a population with
𝑁 solutions. After the nondominated sorting, each solution
has a ranking value.Next, themain loop begins.We introduce
the 𝑡th generation of MODESA in the following.

At the 𝑡th generation, an empty temporary population is
created first. The temporary population is going to store the
new good solutions generated by the DE in the loop.Then for
each individual in the current population, the DE operators
are used to generate a trial individual. Next, there are three
possibilities when comparing the current individual and the
trail individual. If the trial individual dominates the current
individual, we simply replace the current solution by the trial
solution. If the trial individual and the current solution are
incomparable, the proposed simulated annealing process is
adopted to determinewhether the trial individual is accepted.
If the trial individual is dominated by the current solution, we
also put the trial individual into the temporary population
as MODEA does. After all the individuals are handled,
the current population and the temporary population are
combined as a union population. Note that, if the current
generation is the last generation, the members that are

dominated by any other individuals must be removed in the
union population. The reason of doing this is that, because
we allow some potential solutions which are not absolutely
good and have a positive life cycle to exist in the population;
therefore, at the end of the generation, these solutions must
be removed or they will influence the effectiveness of the
results. Finally, the nondominated sorting and the vicinity
distance based pruning approach are used for getting the best
𝑁 solutions.

In this paper, the parameters that need to be set a priori
are listed inTable 1 and the Pseudocode ofMODESA is shown
in Pseudocode 1.

3.5.2.The Computational Complexity Analysis. The proposed
MODESA approach is a simple algorithm to be implemented.
In the following, the overall computational complexity of
MODESA is analyzed. Basic operations and their worst case
complexities are given as follows.

(1) The initialization phase is selecting𝑁 solutions out of
2𝑁 solutions by using nondominated sorting and the
vicinity distance base pruning method:𝑂(𝑚 × 4𝑁

2
) +

𝑂(𝑚
2

× 2𝑁 log(2𝑁)).
(2) The procedure of mutation is 𝑂(𝑚 × 2𝑁).
(3) The procedure of checking the domination status of

the trial solution and the current solution is𝑂(𝑚×𝑁),
and the procedure of simulated annealing is 𝑂((𝑚 +

𝑚 × 𝑁) × 𝑁).
(4) The procedure of selecting 𝑁 solutions out of 2𝑁

solutions by using nondominated sorting and the
vicinity distance base pruning method:𝑂(𝑚 × 4𝑁

2
) +

𝑂(𝑚
2

× 2𝑁 log(2𝑁)).

Here,𝑚 and𝑁 represent the number of objectives and the
population size, respectively.We can see that the overall worst
case complexity of the MODESA is 𝑂(𝑚

2
𝑁 log𝑁 + 𝑚𝑁

2
).

3.5.3. The Difference between MODESA and MODEA. Con-
sidering that the proposed algorithm MODESA is an
improvement of MODEA, it is necessary to provide the
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Table 1: The parameters used in the proposed algorithm.

Parameter’s name Description Value
𝑁 The population size 100
𝑚 Number of objectives As the test problem
𝑛 Number of variables in a solution As the test problem
𝑇 Maximum number of generations 250
cr The crossover rate used in DE 0.3
𝑓 The control parameter used in DE 0.5
𝑇max Maximum temperature in simulated annealing 100
𝑇min Minimal temperature in simulated annealing 1𝑒 − 7

𝛾 The cooling rate in simulated annealing 0.6
𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑖𝑐𝑙𝑒 Maximum prior life cycle value of the individual 1

difference between MODESA and MODEA. There are two
main differences betweenMODESA andMODEA as follows.

(1) When comparing the new solution and the current
solution, there exist two processing ways according
to two different results of comparison. If the new
solution dominates the current solution, theMODEA
replaces the current solution with the new solution
and puts the current solution into the temporary
population; otherwise, the new solution is taken into
the temporary population. After each solution in
the population is handled, the two populations are
combined. It indicates that the new solutions are all
retained. However, MODESA works in three kinds
of ways according to different results. If the new
solution dominates the current solution, the current
solution is replaced with the new solution and the
current solution is removed directly, which means
that if the current solution is worse than the new
solution, it would not be retained. If the new solu-
tion and the current solution are incomparable, the
proposed simulated annealing algorithm is adopted
to determine the acceptance of the current solution;
moreover, the usage of a prior life cycle enables some
potential solutions preferentially to be selected in the
next generation. Otherwise, the new solution is added
to the temporary population and the current solution
is retained in the current population.

(2) The diversity maintenance mechanism is different.
In MODEA, the diversity preserving strategy based
on crowding distance in NSGA-II is utilized, while
in MODESA, the vicinity distance based pruning
method in [30] is adopted.

4. Results and Discussion

4.1. Test Problems. The performance of the proposed algo-
rithm is tested on a set of five biobjective and two triobjective
optimization problems. The first five problems are ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6, which were described in
[31]. The two triobjective optimization problems: DTLZ1 and
DTLZ2 are taken from Deb [32]. None of these problems has
any constraint. All objective functions are to be minimized.

The number of variables, their bounds, the Pareto-optimal
solutions, and the characteristics of the Pareto-optimal front
of these test problems are also shown in Table 2 [2]. For the
test problems DTLZ1 and DTLZ2, the number of objectives
is set to 3. Therefore, the number of variables for DTLZ1 and
DTLZ2 is equal to 7 and 12, respectively.

4.2. Performance Measures. In this section, three perfor-
mance measures will be introduced to evaluate the effective-
ness of the proposed algorithm MODESA with the other
algorithms. Here, let 𝑃

∗ and 𝑃 denote the Pareto-optimal
front and the Pareto front which are obtained by the algo-
rithm, respectively. In this study, three performancemeasures
are used for evaluating the convergence, the diversity, and
both of them, separately. It is worth mentioning that all
the three performance measures can be used only when the
Pareto-optimal front of the particular test problem is known.
In this paper, 500 evenly distributed solutions in PF are
selected as𝑃

∗ for each biobjective problem, and 990 solutions
for triobjective problem, which is the same as that in [33].
The reader can download these solutions from the website
http://dces.essex.ac.uk/staff/qzhang/index.html.

4.2.1. Inverted Generational Distance (IGD). The concept of
inverted generational distance (IGD) is proposed by Coello
and Cortés in [34]. The metric can be formally described as
follows:

IGD =
∑
𝑥∈𝑃
∗ 𝑚𝑖𝑛 𝑒𝑑 (x, 𝑃)

|𝑃
∗
|

, (10)

where 𝑚𝑖𝑛 𝑒𝑑(x, 𝑃) is the minimum Euclidean distance
between the solution x and the solutions in 𝑃. The IGD-
metric value can evaluate both the convergence and diversity
of𝑃 to a certain degree. Algorithmswith smaller value of IGD
are satisfying.

4.2.2. Generational Distance (GD). vanVeldhuizen and Lam-
ont [35] proposed the concept of generational distance (GD).
The metric calculates the distance between 𝑃 and 𝑃

∗. It can
be defined as follows:

GD =

√∑
𝑥∈𝑃

𝑚𝑖𝑛 𝑒𝑑 (x, 𝑝∗)
2

|𝑃|
,

(11)
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Step 1. Initialization
Initialize the values of the parameters in Table 1.
Generate the initial population 𝑃

0
using uniform distribution.

Generate 𝑁 opposite solutions denoted as 𝑃obl by using OBL operation on 𝑃
0
.

Select 𝑁 best individuals as the current population by using non-dominated sorting and the
vicinity distance based pruning method on 𝑃

0
∪ 𝑃obl.

For (𝑖 = 0; 𝑖 < 𝑁; ++𝑖) {

𝑙𝑖𝑓𝑒
𝑖
= 0.

}// End For
𝑡 = 0

Step 2. Main loop
While (𝑡 ≤ 𝑇) {

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑇max.
Construct a temporary population which is denoted as 𝑃temp and set 𝑃temp = 0.
For (𝑖 = 0; 𝑖 < 𝑁; ++𝑖) {

Randomly select three distinct individuals: 𝑥
1
, 𝑥
2
and 𝑥

3
, which are different

from the current individual 𝑥
𝑖
from the current population.

Select the best individual 𝑥best from the three distinct individuals as the base vector
for the next mutation operation.
Produce a trial individual 𝑤

𝑖
:

generate a random number 𝑗𝑗 ∈ {1, . . . , 𝑛}

For each variable 𝑗 of 𝑤
𝑖

{

With a probability cr or 𝑗 is equal to 𝑗𝑗

do
𝑤
𝑗,𝑖

= 𝑥
𝑗,1

+ 𝑓 ∗ (𝑥
𝑗,2

− 𝑥
𝑗,3

).
otherwise

𝑤
𝑗,𝑖

= 𝑥
𝑗,best.

If (𝑤
𝑗,𝑖

> V
𝑗,max) 𝑤

𝑗,𝑖
= V
𝑗,max.

If (𝑤
𝑗,𝑖

< V
𝑗,min) 𝑤

𝑗,𝑖
= V
𝑗,min.

}// End For
Check the domination status of the trial individual 𝑤

𝑖
and the current individual 𝑥

𝑖
.

If (𝑤
𝑖
dominates 𝑥

𝑖
) {

Replace the current individual 𝑥
𝑖
by the trial individual 𝑤

𝑖
: 𝑥
𝑖
= 𝑤
𝑖
.

}

Else if (𝑤
𝑖
and 𝑥

𝑖
are incomparable) {

Use the proposed simulated annealing to allocate the two individuals: 𝑤
𝑖
and 𝑥

𝑖
.

SimulateAnnealing (𝑥
𝑖
, 𝑤
𝑖
, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇min, 𝑇max, 𝑃𝑡, 𝑃temp, 𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑖𝑐𝑙𝑒).

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝛾 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.
}

Else if (𝑤
𝑖
is dominated by 𝑥

𝑖
) {

Put the trial individual 𝑤
𝑖
to the temporary population.

}// End If
}// End For
Union the two population: 𝑃

𝑡
∪ 𝑃adv.

If (𝑡 == 𝑇) {

Use the non-dominated sorting to the union population to remove the individuals that
are dominated by any other solutions.

}// End If
Select 𝑁 individuals as the next population from the union population by using the
non-dominated sorting.
For (𝑖 = 0; 𝑖 < 𝑁; ++𝑖) {

If (𝑙𝑖𝑓𝑒
𝑖
> 0)

𝑙𝑖𝑓𝑒
𝑖
− −;

}// End For
Apply the vicinity distance based pruning method.

}// End While

Pseudocode 1: Pseudocode of MODESA.
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Table 3: The mean and standard deviation IGD-metric values of nondominated solutions in 10 runs on ZDTs where 𝑁 = 100 and 𝑇 = 250.

IGD NSGA-II (mean ± std) MODEA (mean ± std) MODESA (mean ± std)
ZDT1 0.00564974 ± 0.000254893 0.00436863 ± 0.000243648 0.00403528 ± 7.01666e − 05
ZDT2 0.00557228 ± 0.000242512 0.00451929 ± 0.000134666 0.00408871 ± 4.65746e − 05
ZDT3 0.00592808 ± 0.000205118 0.00521698 ± 0.000159453 0.00494596 ± 0.000126657
ZDT4 0.0069977 ± 0.00102386 0.0301279 ± 0.0752722 0.0171826 ± 0.0362604

ZDT6 0.0137079 ± 0.00170579 0.00304881 ± 0.000125906 0.0022843 ± 0.00014073

Table 4: The mean and standard deviation Δ-metric values of nondominated solutions in 10 runs on ZDTs where 𝑁 = 100 and 𝑇 = 250.

Spread NSGA-II (mean ± std) MODEA (mean ± std) MODESA (mean ± std)
ZDT1 0.372425 ± 0.0513842 0.333973 ± 0.0772084 0.297395 ± 0.0308609
ZDT2 0.385209 ± 0.0291848 0.336548 ± 0.0181084 0.296842 ± 0.0282846
ZDT3 0.389909 ± 0.0557332 0.355518 ± 0.0370526 0.266801 ± 0.0211668
ZDT4 0.399555 ± 0.0786079 0.377719 ± 0.0574188 0.352871 ± 0.107095
ZDT6 0.407279 ± 0.0276428 0.407335 ± 0.0487992 0.368972 ± 0.0463564

where 𝑚𝑖𝑛 𝑒𝑑(x, 𝑃
∗
) is the minimum Euclidean distance of

solution x and the solutions in𝑃
∗. GD evaluates the closeness

of the obtained Pareto front and the Pareto-optimal front.
Algorithms with smaller value of GD are desirable.

4.2.3. Spread (Δ). The spread metric Δ was firstly proposed
by Deb et al. [2] to measure the spread effect of the non-
dominated solutions obtained by the algorithm. However,
it is only suitable for biobjective problems. Wang et al. [19]
further extended themetricΔ andmade it suitable tomeasure
problems that have more than two objectives. The improved
Δ can be stated mathematically as follows:

Δ =

∑
𝑚

𝑖=1
𝑑 (𝐸
𝑖
, Ω) + ∑

Χ∈Ω


𝑑 (𝑋, Ω) − 𝑑



∑
𝑚

𝑖=1
𝑑 (𝐸
𝑖
, Ω) + (|Ω| − 𝑚) 𝑑

𝑑 (𝑋, Ω) = min
𝑌∈Ω,𝑌 ̸=𝑋

‖𝐹 (𝑋) − 𝐹 (𝑌)‖

𝑑 =
1

|Ω|
∑

𝑋∈Ω

𝑑 (𝑋, Ω) ,

(12)

where Ω is a set of solutions, 𝑚 is the number of objectives,
and (𝐸

1
, . . . , 𝐸

𝑚
) are 𝑚 extreme solutions in the set of true

Pareto front (PF). The smaller the value of Δ, the better
the distribution and diversity of the obtained nondominated
solutions.

4.3. Experimental Setup. In this paper, the population size
and the number of generations are set to 100 and 250,
respectively. For the other parameters in NSGA-II and
MODEA, they have remained the same with their original
studies [3, 23]. For MODESA, there are four parameters:
𝑇max, 𝑇min, 𝛾, and 𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑖𝑐𝑙𝑒 that need to be set. Here
we set 𝑇max = 100, 𝑇min = 1𝑒 − 7, 𝛾 = 0.6, and
𝑚𝑎𝑥 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 = 1 for the study. Each algorithm runs 10
times independently for each problem. All the test problems
have been executed on Microsoft Window XP Intel core 2
Duo CPU E8400 3.00GHz, with 2GB RAM. All methods
have been implemented in C++.

4.4. Discussion of the Results

4.4.1. Results of Biobjective Optimization Problems. Tables 3
and 4 show themean and standard deviation IGD-metric and
Δ-metric values of the obtained nondominated solutions in
10 runs on the group of ZDTs. It is obvious from Tables 3
and 4 that the IGD-metric values of MODESA achieve the
best value in the three algorithms except for the test problem
ZDT4.

The test problems ZDT1 and ZDT2 may be the most
simple problems in the series of ZDTs. The Pareto-optimal
front of ZDT1 is convex while that of ZDT2 is nonconvex. It
is clear from Tables 3 and 4 that both the values of the IGD
metric and the spreadmetric ofMODESA are better than that
of NSGA-II and MODEA. Figures 1 and 2 demonstrate that
MODESA converges to the Pareto-optimal front and has a
good spread over the entire front on the test problems ZDT1
and ZDT2. It can be concluded that the proposed MODESA
can well deal with these two kinds of test problems.

The third test problem ZDT3 is different from the above
two test problems.The Pareto-optimal front of ZDT3 consists
of five disjoint curves. From Figure 3, it is obvious that the
nondominated solutions obtained by the MODESA almost
converge to the Pareto-optimal front and have a good distri-
bution over the entire front. From Tables 3 and 4, MODESA
obtains the best values of IGD-metric and spread-metric
between the three algorithms.

The fourth test problem is ZDT4 which is perhaps
the most difficult problem in the five problems. It has
21
9 different local Pareto-optimal fronts that confuse the

multiobjective optimization algorithm [2]. From Tables 3
and 4, NSGA-II obtains the best values on the IGD-metric
and the spread-metric in these three algorithms. In fact,
in the 10 independent runs, some results of MODEA and
MODESA are better than that ofNSGA-II; however,MODEA
and MODESA get bad results in a few runs which affects
the mean value of the 10 runs. Indeed, the best IGD-metric
value of MODESA in the 10 runs is 0.0044915, which is
better than NSGA-II. Figure 4 demonstrates the plots of
the nondominated solutions with the lowest IGD-metric
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Figure 1: Plots of the nondominated solutions with the lowest IGD-
metric values found by MODESA in 10 runs in the objective space
on ZDT1 where 𝑁 = 100 and 𝑇 = 250.
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Figure 2: Plots of the nondominated solutions with the lowest IGD-
metric values found by MODESA in 10 runs in the objective space
on ZDT2 where 𝑁 = 100 and 𝑇 = 250.

values found by MODESA in the 10 runs. It is clear from
Figure 4 that MODESA can get quite good convergence and
distribution over the Pareto-optimal front, which reveals that
the proposed algorithm is a promising but unstable algorithm
for solving the test problemZDT4.Wewill leave this problem
for future work.

The last test problem ZDT6 is such a problem with thin
density and nonuniformed spread of solutions [23]. We can
observe from Tables 3 and 4 that MODESA finds the best
convergence and spread in comparison to the other two
algorithms. To show the superiority ofMODESA, plots of the
nondominated solutions found by MODESA and MODEA
on ZDT 6 are shown in Figures 5 and 6, respectively. It is clear
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Figure 3: Plots of the nondominated solutions with the lowest IGD-
metric values found by MODESA in 10 runs in the objective space
on ZDT3 where 𝑁 = 100 and 𝑇 = 250.
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Figure 4: Plots of the nondominated solutions with the lowest IGD-
metric values found by MODESA in 10 runs in the objective space
on ZDT4 where 𝑁 = 100 and 𝑇 = 250.

from Figures 5 and 6 that MODESA gets a better spread than
MODEA.

4.4.2. Results of Triobjective Optimization Problems. In this
section, to show the effectiveness of the proposed MODESA
for solving problems that have more than two objectives, we
choose two triobjective optimization problems DTLZ1 and
DTLZ2 for comparison. The results of NSGA-II, MODEA,
and MODESA are given in Table 5. It is obvious from Table 5
thatMODESA performs better than the other two algorithms
in terms of both the IGD-metric and spread-metric. Figures
7, 8, 9, and 10 show the nondominated solutions obtained
by MODEA and MODESA, and it is obvious that MODESA
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Table 5: The mean and standard deviation IGD-metric and Δ-metric values of nondominated solutions in 10 runs on DTLZ1 and DTLZ2
where 𝑁 = 100 and 𝑇 = 250.

Metric IGD Spread
Problem DTLZ1 DTLZ2 DTLZ1 DTLZ2
NSGA-II (mean ± std) 0.025008 ± 0.001199 0.077375 ± 0.021572 0.60056 ± 0.076489 0.530832 ± 0.029126

MODEA (mean ± std) 0.022851 ± 0.000557 0.060254 ± 0.001664 0.41962 ± 0.019617 0.425707 ± 0.033528

MODESA (mean ± std) 0.020602 ± 0.00035 0.055011 ± 0.000799 0.26489 ± 0.045448 0.260335 ± 0.02856
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Figure 5: Plots of the nondominated solutions with the lowest IGD-
metric values found by MODESA in 10 runs in the objective space
on ZDT6 where 𝑁 = 100 and 𝑇 = 250.

outperforms MODEA on both of the two triobjective opti-
mization problems. In particular, it is clear that MODESA
has a better distribution than MODEA, the reason is that the
vicinity distance based pruningmethod performs better than
the crowding distance of Deb in maintaining diversity and
distribution of the nondominated solutions.

4.5. Effect of the Proposed Simulated Annealing Procedure.
As mentioned in Section 3.5.3, one of the main differences
of MODEA and MODESA is the employment of the pro-
posed simulated annealing procedure. To show the effect of
the proposed simulated annealing procedure, a version of
MODESA: MODESA-CD (multiobjective differential evolu-
tion with crowding distance) is proposed for comparison.
The MODESA-CD is analogous to MODESA except that
it replaces the vicinity distance based pruning method in
MODESA with the crowding distance based approach in
NSGA-II. In other words, the difference between MODEA
and MODESA-CD is the using of the proposed simulated
annealing procedure. Table 6 shows the mean and standard
deviation GD-metric values of nondominated solutions in 10
runs where 𝑁 = 100 and 𝑇 = 250. It is obvious fromTable 6
that all the GD-metric values of MODESA-CD are better
than that of MODEA. The reason of the bad performance
of MODEA is that MODEA always accepts the current and
the new solutions to the next generation and that makes
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Figure 6: Plots of the nondominated solutions with the lowest IGD-
metric values found byMODEA in 10 runs in the objective space on
ZDT6 where 𝑁 = 100 and 𝑇 = 250.

it chaotic and unable to have a right direction towards the
Pareto-optimal front. In MODESA-CD, we remove the bad
solutions and only accept some potential solutions in an
alterable probability.

5. Conclusion

In this paper, an enhanced differential evolution based
algorithm with simulated annealing, named MODESA, is
presented for solving MOPs. During the selection, MODESA
employs a procedure of simulated annealing to control the
acceptance of every candidate solution, and a concept of
the prior life circle is proposed to allow some potential
solutions entering the next generation to escape from the
local optimum. Finally, a fast and efficient diversity main-
tenance mechanism is adopted. The proposed algorithm is
tested on five biobjective and two triobjective optimization
problems in terms of IGD-metric and spread metric, and
the experimental results show that MODESA outperforms
the other two algorithms on these test problems except on
ZDT4. Furthermore, the effect of convergence is also tested
in comparison to MODEA, the computational results show
the superiority of the proposed MODESA.

Improvement can be made further in the performance of
the proposedMODESAon the test problemZDT4. In aword,
MODESA is an easy and efficient method for solving MOPs.
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Figure 7: Plots of the nondominated solutions with the lowest IGD-
metric values found byMODEA in 10 runs in the objective space on
DTLZ1 where 𝑁 = 100 and 𝑇 = 250.
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Figure 8: Plots of the nondominated solutions with the lowest IGD-
metric values found by MODESA in 10 runs in the objective space
on DTLZ1 where 𝑁 = 100 and 𝑇 = 250.

Table 6: The mean and standard deviation GD-metric values of
nondominated solutions in 10 runs where 𝑁 = 100 and 𝑇 = 250.

GD MODEA (mean ± std) MODESA-CD (mean ± std)
ZDT1 0.000124 ± 8.236𝑒 − 06 0.000116 ± 1.437e − 05
ZDT2 4.819𝑒 − 05 ± 1.642𝑒 − 06 4.771e − 05 ± 2.596e − 06
ZDT3 0.00035 ± 6.128𝑒 − 06 0.000345 ± 2.714e − 05
ZDT4 0.002812 ± 0.008057 0.001365 ± 0.003738
ZDT6 0.000429 ± 1.78𝑒 − 05 0.000404 ± 2.614e − 05
DTLZ1 0.000308 ± 7.454𝑒 − 05 0.00029 ± 2.129e − 05
DTLZ2 0.000677 ± 0.000103 0.000633 ± 3.871e − 05

In the near future, applying MODESA for constrainedMOPs
and real-life application problems are our work.
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