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The effects of wavy geometry on natural convection in an enclosure with two wavy vertical walls and filled with fluid saturated
porous media are investigated numerically by using finite element method. The wavy enclosure is transformed to a unit square in
the computational domain and the finite element formulations are solved in terms of 𝜉𝜂-coordinate based on iterative method. In
order to investigate the effects of interested parameters, the values of wave amplitude (𝜆 = 0.05 and 0.1) and number of undulations
(n = 1 and 2) are chosen with constants Ra = 105, Da = 10−3, and Pr = 0.71. It is found that the increase in number of undulations has
small effect on natural convection inside the enclosure whereas the increase in wave amplitude reduces the strength of convection
because higher wave volume plays a barricade role.

1. Introduction

The study of natural convection in an enclosure filled
with fluid saturated porous media has received attention
because of many applications in science and engineering,
for example, geophysics, geothermal reservoirs, insulation of
building, heat exchanger design, building structure, and so
on.These applications motivate many researchers to perform
the numerical simulation for investigating the flow pattern,
temperature distribution, and heat flow. Literature reviews on
natural convection inside the rectangular and nonrectangular
enclosures having different temperature boundary conditions
and filled with porous medium are available in [1–4].

The geometrical complexity is increasedwhen the bound-
ary of the enclosure becomes wavy. Wang and Chen [5]
analyzed the rates of heat transfer for the flow in a complex
wavy channel transformed into a parallel-plate channel by
a simple coordinate transformation and solved the obtained
equations by the spline alternating direction implicit (SADI)
method. Liaw and Char [6] also used a simple coordinate
transformation to transform a complex wavy microtube into
a smooth circular tube in the computational domain and

solved the transformed governing equations by the finite
difference method to investigate the electroosmotic flow and
heat transfer.The study of natural convection in the enclosure
having two wavy walls (top and bottom) and containing
internal heat sources at different wave ratios is found in [7].
The enclosure geometry is transformed into computational
domain using algebraic coordinate transformation and the
transformed governing equations are solved using finite
volumemethod. Dalal and Das [8] were interested in a cavity
having three flat walls and wavy right vertical wall consisting
of one, two, and three undulations and the heat function
equation is utilized in [9] to visualize the heat transfer by fluid
flow. The governing equations are solved using finite volume
method in the nonorthogonal body-fitted coordinate system.
Non-Darcian effects on natural convection in the enclosure
with left wavy wall were studied by Khanafer et al. [10]. The
governing equations on the physical domain are discretized
by using finite element method based on the Galerkin weight
residualmethodwith biquadratic interpolation functions and
the equations resulting from the discretization are solved
using iterative method called segregate solution algorithm.
Hasan et al. [11] employed the six-node triangular elements
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to develop the finite element equations for a heated enclosure
with different sinusoidal corrugation frequencies of the top
surface and Newton’s method is used for solving the nonlin-
ear residual equations.Hasan et al. [12] used the finite element
method with the six-node triangular elements for solving
unsteady natural convection problem in the heated enclosure
with sinusoidally corrugated side walls.

In this study, the effects of wavy geometry on natural
convection in the enclosure with wavy side walls are inves-
tigated. The numerical solution procedure is based on the
finite element method and the finite element formulations
are solved in terms of 𝜉𝜂-coordinate in the computational
domain. The physical model, boundary conditions of wavy
enclosure, mathematical formulation, and solution proce-
dure are described in the next section and the results of
a variation in wavy geometry, number of undulations, and
wave amplitude are then presented.

2. Mathematical Formulation

2.1. Physical Model and Boundary Conditions. Figure 1 shows
the physical model and boundary conditions of the enclosure
having twowavy vertical walls.The expressions of the left and
the right walls are given by

𝑓
𝑙
(𝑦) = 𝜆 − 𝜆 cos (2𝜋𝑛𝑦) , (1)

𝑓
𝑟
(𝑦) = 1 − 𝜆 + 𝜆 cos (2𝜋𝑛𝑦) , (2)

respectively. The fluid saturated porous media considered
as incompressible and Newtonian is contained inside the
enclosure and its properties are constant except the density
variation. The enclosure is nonuniformly heated (𝑇(𝑥)) on
the bottom wall and cooled (𝑇

𝐶
) on the top wall while the

vertical walls are adiabatic. The temperature value assigned
to the bottom wall is

𝑇 (𝑥) = 𝑇
𝐶
+
𝑇
𝐻
− 𝑇
𝐶

2
(1 − cos(2𝜋𝑥

𝐿
)) , (3)

where 𝐿 is the length of the enclosure, 𝑥 and 𝑦 are distances
(m) in horizontal and vertical directions, respectively, 𝜆 is
wave amplitude, 𝑛 is number of undulations, and 𝑇

𝐻
and 𝑇

𝐶

are temperatures (K) of hot and cold walls, respectively. It is
assumed that there is no slip on a boundary.Thus, the velocity
components in 𝑥 and 𝑦 directions are 𝑢 = 0 and V = 0 for all
boundaries.

2.2. Governing Equations. The governing equations for
steady two-dimensional natural convection flow in a porous
enclosure can be expressed by the differential equations of

the conservation of mass, the conservation of momentum,
and the conservation of energy [13]:

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦

= 0,

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ ](

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) −

]
𝐾
𝑢,

𝑢
𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

= −
1

𝜌

𝜕𝑝

𝜕𝑦
+ ](

𝜕2V
𝜕𝑥2

+
𝜕2V
𝜕𝑦2

) −
]
𝐾
V

+ 𝑔𝛽 (𝑇 − 𝑇
𝐶
) ,

𝑢
𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
= 𝛼(

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) ,

(4)

where 𝜌 is the density (kgm−3), 𝑝 is the pressure (Pa), ] is
the kinematic viscosity (m2 s−1), 𝐾 is the permeability of the
porous medium, 𝑔 is the acceleration due to gravity (m s−1),
𝛽 and 𝛼 are volume expansion coefficient (K−1) and thermal
diffusivity (m2 s−1), respectively, and𝑇 is the temperature (K).
By using the following change of variables:

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝛼
,

𝑉 =
V𝐿
𝛼
, 𝜃 =

𝑇 − 𝑇
𝐶

𝑇
𝐻
− 𝑇
𝐶

, 𝑃 =
𝑝𝐿2

𝜌𝛼2
,

Pr = ]
𝛼
, Ra =

𝑔𝛽 (𝑇
𝐻
− 𝑇
𝐶
) 𝐿3Pr

]2
, Da = 𝐾

𝐿2
,

(5)

the governing equations in terms of dimensionless are

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
= 0, (6)

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ Pr(𝜕

2𝑈

𝜕𝑋2
+
𝜕2𝑈

𝜕𝑌2
) −

Pr
Da

𝑈,

𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ Pr(𝜕

2𝑉

𝜕𝑋2
+
𝜕2𝑉

𝜕𝑌2
)

−
Pr
Da

𝑉 + Ra Pr𝜃,

(7)

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=
𝜕2𝜃

𝜕𝑋2
+
𝜕2𝜃

𝜕𝑌2
, (8)

where 𝑋 and 𝑌 are dimensionless distance in horizontal and
vertical directions, respectively, 𝑈 and 𝑉 are dimensionless
velocity components in 𝑋 and 𝑌 directions, respectively, 𝑃
is dimensionless pressure, 𝜃 is dimensionless temperature,
and Pr, Da, and Ra are Prandtl, Darcy, and Rayleigh num-
bers, respectively. The transformed boundary conditions are
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Figure 1: (a) Physical model and boundary conditions of wavy enclosure, (b) a unit square in 𝜉𝜂-coordinate, and (c) node numbering for
biquadratic element.

changed to 𝑈 = 0 and 𝑉 = 0 for all boundaries and the
temperatures are

𝜃 =
1

2
(1 − cos (2𝜋𝑋)) for 0 ≤ 𝑋 ≤ 1, 𝑌 = 0,

𝜃 = 0 for 0 ≤ 𝑋 ≤ 1, 𝑌 = 1,

𝜕𝜃

𝜕n
= 0 for 0 ≤ 𝑌 ≤ 1, 𝑋 = 𝑓

𝑙
(𝑌) , 𝑋 = 𝑓

𝑟
(𝑌) .

(9)

The pressure 𝑃 is eliminated by using the penalty finite
element method with penalty parameter 𝛾 such that

𝑃 = −𝛾(𝜕𝑈/𝜕𝑋 + 𝜕𝑉/𝜕𝑌), where 𝛾 = 107 [14]. Substitution
of 𝑃 into (7) yields

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= 𝛾

𝜕

𝜕𝑋
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
)

+ Pr(𝜕
2𝑈

𝜕𝑋2
+
𝜕2𝑈

𝜕𝑌2
) −

Pr
Da

𝑈,

𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= 𝛾

𝜕

𝜕𝑌
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
)

+ Pr(𝜕
2𝑉

𝜕𝑋2
+
𝜕2𝑉

𝜕𝑌2
) −

Pr
Da

𝑉 + Ra Pr𝜃.

(10)
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In order to study the flow characteristic, the fluid motion is
displayed by using the stream function which is defined as
𝑈 = 𝜕𝜓/𝜕𝑌 and 𝑉 = −𝜕𝜓/𝜕𝑋 [15] and yields an equation

𝜕2𝜓

𝜕𝑋2
+
𝜕2𝜓

𝜕𝑌2
=
𝜕𝑈

𝜕𝑌
−
𝜕𝑉

𝜕𝑋
, (11)

with the boundary conditions 𝜓 = 0 for all boundaries. To
visualize the heat transfer by fluid flow, heat function for a
two-dimensional convection problem in dimensionless form
can be defined as [16]

𝜕2Π

𝜕𝑋2
+
𝜕2Π

𝜕𝑌2
=
𝜕 (𝑈𝜃)

𝜕𝑌
−
𝜕 (𝑉𝜃)

𝜕𝑋
, (12)

such that

Π = 𝜋 cos (𝜋𝑋) for 0 ≤ 𝑋 ≤ 1, 𝑌 = 0,

Π = 0 for 0 ≤ 𝑋 ≤ 1, 𝑌 = 1,

𝜕Π

𝜕n
= 0 for 0 ≤ 𝑌 ≤ 1, 𝑋 = 𝑓

𝑙
(𝑌) , 𝑋 = 𝑓

𝑟
(𝑌) .

(13)

Heat transfer rate can be measured in terms of the local
Nusselt number (Nu) defined by [13]

Nu = −𝜕𝜃
𝜕𝑛
, (14)

where 𝑛 represents the normal direction on a plane. The
local Nusselt number computed along heated bottom wall is
defined by

Nu = −
9

∑
𝑖=1

𝜃
𝑖

𝜕𝜙
𝑖

𝜕𝑌
, (15)

and the average Nusselt number at the bottom wall is

Nu = ∫
1

0

Nu 𝑑𝑋. (16)

2.3. Finite Element Equations. In order to obtain the finite
element equations of (8) to (12), the wavy enclosure in
𝑋𝑌-plane called physical domain is transformed to a unit
square in 𝜉𝜂-plane called computational domain and the
finite element equations are formulated in terms of 𝜉𝜂-
coordinate. Let 𝑇 = 𝑇(𝑋, 𝑌) be a coordinate transformation
in vector form mapping any point (𝑋,𝑌) in the physical
domain to the points (𝜉,𝜂) in the computational domain such
that 𝑇 = (𝜉, 𝜂)𝑇 and 𝑇(𝑋, 𝑌) = (𝑔(𝑋, 𝑌), ℎ(𝑋, 𝑌))𝑇. By using
an algebraic method, transfinite interpolation [17], we have
the transformation 𝑇, where 𝜉 and 𝜂 are related to 𝑋 and 𝑌
by the following equations:

𝜉 =
𝑋 − 𝜆 (1 − cos (2𝜋𝑛𝑌))
2𝜆 cos (2𝜋𝑛𝑌) − 2𝜆 + 1

,

𝜂 = 𝑌,

(17)

which transforms the wavy enclosure to a unit square in
the computational domain. The computational domain is

divided into equal square elements as shown in Figure 1(b)
in which nine-node biquadratic elements are used in this
study. Using the Galerkin weight residual method with the
approximations of 𝑈, 𝑉, 𝜃, 𝜓, and Π as

𝑈 =
9

∑
𝑖=1

𝜙
𝑖
(𝜉, 𝜂)𝑈

𝑖
= [𝜙]
𝑇

[𝑈] ,

𝑉 =
9

∑
𝑖=1

𝜙
𝑖
(𝜉, 𝜂) 𝑉

𝑖
= [𝜙]
𝑇

[𝑉] ,

𝜃 =
9

∑
𝑖=1

𝜙
𝑖
(𝜉, 𝜂) 𝜃

𝑖
= [𝜙]
𝑇

[𝜃] ,

𝜓 =
9

∑
𝑖=1

𝜙
𝑖
(𝜉, 𝜂) 𝜓

𝑖
= [𝜙]
𝑇

[𝜓] ,

Π =
9

∑
𝑖=1

𝜙
𝑖
(𝜉, 𝜂)Π

𝑖
= [𝜙]
𝑇

[Π] ,

(18)

where [⋅] represents column matrix and 𝜙
𝑖
(𝜉, 𝜂) are shape

functions defined for an individual element with node num-
bering shown in Figure 1(c), yields the element equations in
matrix form as follows:

energy equation:

∫
Ω
𝑒

([
𝜕𝜙

𝜕𝑋
][

𝜕𝜙

𝜕𝑋
]
𝑇

+ [
𝜕𝜙

𝜕𝑌
] [

𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝜃]

+ ∫
Ω
𝑒

[𝜙] [𝜙]
𝑇

([𝑈] [
𝜕𝜙

𝜕𝑋
]
𝑇

+ [𝑉] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝜃]

= ∮ [𝜙]
𝜕𝜃

𝜕n
𝑑Γ,

(19)

momentum equations:

∫
Ω
𝑒

[𝜙] [𝜙]
𝑇

([𝑈] [
𝜕𝜙

𝜕𝑋
]
𝑇

+ [𝑉] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑈]

+ ∫
Ω
𝑒

𝛾([
𝜕𝜙

𝜕𝑋
][

𝜕𝜙

𝜕𝑋
]
𝑇

)𝑑Ω
𝑒 [𝑈]

+ ∫
Ω
𝑒

𝛾([
𝜕𝜙

𝜕𝑋
][

𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑉]

+ ∫
Ω
𝑒

Pr([
𝜕𝜙

𝜕𝑋
][

𝜕𝜙

𝜕𝑋
]
𝑇

+ [
𝜕𝜙

𝜕𝑌
] [

𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑈]

+ ∫
Ω
𝑒

Pr
Da

([𝜙] [𝜙]
𝑇

) 𝑑Ω
𝑒 [𝑈] = 0,
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∫
Ω
𝑒

[𝜙] [𝜙]
𝑇

([𝑈] [
𝜕𝜙

𝜕𝑋
]
𝑇

+ [𝑉] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑉]

+ ∫
Ω
𝑒

𝛾([
𝜕𝜙

𝜕𝑌
] [

𝜕𝜙

𝜕𝑋
]
𝑇

)𝑑Ω
𝑒 [𝑈]

+ ∫
Ω
𝑒

𝛾([
𝜕𝜙

𝜕𝑌
] [

𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑉]

+ ∫
Ω
𝑒

Pr([
𝜕𝜙

𝜕𝑋
][

𝜕𝜙

𝜕𝑋
]
𝑇

+ [
𝜕𝜙

𝜕𝑌
] [

𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑉]

+ ∫
Ω
𝑒

Pr
Da

([𝜙] [𝜙]
𝑇

) 𝑑Ω
𝑒 [𝑉]

− ∫
Ω
𝑒

Ra Pr ([𝜙] [𝜙]𝑇) 𝑑Ω
𝑒 [𝜃] = 0,

(20)

stream function equation:

∫
Ω
𝑒

([
𝜕𝜙

𝜕𝑋
][

𝜕𝜙

𝜕𝑋
]
𝑇

+ [
𝜕𝜙

𝜕𝑌
] [

𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒
[𝜓]

+ ∫
Ω
𝑒

([𝜙] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑈]

− ∫
Ω
𝑒

([𝜙] [
𝜕𝜙

𝜕𝑋
]
𝑇

)𝑑Ω
𝑒 [𝑉] = 0,

(21)

heat function equation:

∫
Ω
𝑒

[𝜙] [𝜙]
𝑇

([𝑈] [
𝜕𝜙

𝜕𝑋
]
𝑇

+ [𝑉] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [Π]

+ ∫
Ω
𝑒

[𝜙] [𝜙]
𝑇

([𝑉] [
𝜕𝜙

𝜕𝑋
]
𝑇

− [𝑈] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝜃]

− ∫
Ω
𝑒

([𝜙] [𝜙]
𝑇

[𝜃] [
𝜕𝜙

𝜕𝑌
]
𝑇

)𝑑Ω
𝑒 [𝑈]

+ ∫
Ω
𝑒

([𝜙] [𝜙]
𝑇

[𝜃] [
𝜕𝜙

𝜕𝑋
]
𝑇

)𝑑Ω
𝑒 [𝑉] = ∮ [𝜙]

𝜕Π

𝜕n
𝑑Γ.

(22)

Due to the fact that the solutions (18) are approximated on
a computational domain, the change of variables in double
integrals is used and 𝜕𝜙

𝑖
/𝜕𝑋, 𝜕𝜙

𝑖
/𝜕𝑌 can be computed by the

following relations:

𝜕𝜙
𝑖

𝜕𝑋
=
1

𝐽
(
𝜕𝜙
𝑖

𝜕𝜉

𝜕𝑌

𝜕𝜂
−
𝜕𝜙
𝑖

𝜕𝜂

𝜕𝑌

𝜕𝜉
) ,

𝜕𝜙
𝑖

𝜕𝑌
=
1

𝐽
(−

𝜕𝜙
𝑖

𝜕𝜉

𝜕𝑋

𝜕𝜂
+
𝜕𝜙
𝑖

𝜕𝜂

𝜕𝑋

𝜕𝜉
) ,

(23)

where 𝐽 is Jacobian:

𝐽 =
𝜕 (𝑋, 𝑌)

𝜕 (𝜉, 𝜂)
=



𝜕𝑋

𝜕𝜉

𝜕𝑋

𝜕𝜂

𝜕𝑌

𝜕𝜉

𝜕𝑌

𝜕𝜂



, (24)

and 𝑑𝑋𝑑𝑌 = 𝐽𝑑𝜉𝑑𝜂 (𝑑Ω
𝑒
= 𝑑𝑋𝑑𝑌). The shape functions

𝜙
𝑖
for biquadratic element with node numbering shown in

Figure 1(c) are defined as

𝜙
1
(𝜉, 𝜂) = 𝐿

1
(𝜉) 𝐿
1
(𝜂) , 𝜙

2
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3
(𝜉) 𝐿
1
(𝜂) ,

𝜙
3
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3
(𝜉) 𝐿
3
(𝜂) , 𝜙

4
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1
(𝜉) 𝐿
3
(𝜂) ,

𝜙
5
(𝜉, 𝜂) = 𝐿

2
(𝜉) 𝐿
1
(𝜂) , 𝜙

6
(𝜉, 𝜂) = 𝐿

3
(𝜉) 𝐿
2
(𝜂) ,

𝜙
7
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2
(𝜉) 𝐿
3
(𝜂) , 𝜙

8
(𝜉, 𝜂) = 𝐿

1
(𝜉) 𝐿
2
(𝜂) ,

𝜙
9
(𝜉, 𝜂) = 𝐿

2
(𝜉) 𝐿
2
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(25)

where

𝐿
𝑖
(𝜉) =

3

∏
𝑗=1,𝑗 ̸= 𝑖

(𝜉 − 𝜉
𝑗
)

(𝜉
𝑖
− 𝜉
𝑗
)
,

𝐿
𝑖
(𝜂) =

3

∏
𝑗=1,𝑗 ̸= 𝑖

(𝜂 − 𝜂
𝑗
)

(𝜂
𝑖
− 𝜂
𝑗
)
.

(26)

These finite element equations are assembled to form the
global equations and boundary conditions are applied prior
to solving for new solutions at nodal point.

2.4. Solution Procedure. The finite element equations for-
mulated in terms of 𝜉𝜂-coordinate in previous section are
solved by iterativemethod.The values of velocity components
at the nodal points are first initiated and the new temper-
ature values are obtained by solving the energy equation
with the initiated velocity. The new temperature values are
substituted into the nonlinear momentum equations and
Newton-Raphson method is applied to obtain the new nodal
velocity components. The nodal velocity components are
then updated and again substituted into the energy equation
for new temperature values in the next iteration.The iterative
process is continued until the relative error is satisfied:

∑
𝑚

𝑗=1

Φ
(𝑖)

𝑗
− Φ(𝑖−1)
𝑗



∑
𝑚

𝑗=1

Φ
(𝑖)

𝑗



≤ 10
−5
. (27)

Φ(𝑖) represents the unknown variables 𝑈, 𝑉, and 𝜃 at the 𝑖th
iteration. After the process is terminated with the conver-
gence criteria (27), the values of 𝑈, 𝑉, and 𝜃 are substituted
into the stream function and heat function equations to
obtain the values of 𝜓 and Π, respectively.

3. Results and Discussion

The finite element method and solution procedure proposed
in previous section are performed on the computational
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Figure 2: Streamlines (𝜓) for (a) 𝑛 = 1, 𝜆 = 0.05, (b) 𝑛 = 2, 𝜆 = 0.05, (c) 𝑛 = 1, 𝜆 = 0.1 and (d) 𝑛 = 2, 𝜆 = 0.1.

domain based on 30 × 30 biquadratic elements to obtain
numerical solutions presented by streamlines, isotherms, and
heatlines. Figures 2–4 show the effects of the variations in
wave amplitude (𝜆 = 0.05 and 0.1) and undulations (𝑛 = 1
and 2) on the flow field, temperature distribution, and heat
transfer within the enclosure having two wavy vertical walls
for Ra = 105, Da = 10−3, and Pr = 0.71. Streamlines
presented in Figure 2 illustrate the effects on fluid motion
when 𝜆 and 𝑛 are changed. It can be seen that two main
circulations are formed inside a cavity and symmetric with
respect to the vertical center line. As seen from values
of streamlines (𝜓), the left half is positive and the right
half is negative indicating that flow circulations rotate in
anticlockwise and clockwise directions, respectively. Because
the enclosure is heated from below and the buoyancy force
generated is strong enough to initiate fluid convection, fluid

moves upwards and impinges to the top of the enclosure and
then flows down along the wavy side walls. Due to surface
waviness on side walls, the shape of fluid circulation near that
region is corrugated. It is observed that the shape of fluid flow
for 𝜆 = 0.1with 𝑛 = 1 is squeezed due to higher wave volume
inmiddle portion of the enclosure and flow intensity is found
to be lesser compared to that of 𝜆 = 0.05.The strength of flow
circulation for 𝜆 = 0.1 can be decreased by increasing surface
waviness to 𝑛 = 2 and the magnitude of circulation becomes
smaller compared to the other cases.

The effects of wave amplitude and surface waviness on
temperature distribution are presented in Figure 3. As seen
from temperature contour, a variation of temperature is high
in lower region and less in upper region. For 𝜆 = 0.05,
temperature distribution with 𝑛 = 1 shows similar trend with
𝑛 = 2, the temperature contours 𝜃 ≥ 0.4 which disperse
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Figure 3: Isotherms (𝜃) for (a) 𝑛 = 1, 𝜆 = 0.05, (b) 𝑛 = 2, 𝜆 = 0.05, (c) 𝑛 = 1, 𝜆 = 0.1 and (d) 𝑛 = 2, 𝜆 = 0.1.

frommiddle portion of bottom wall push the isotherms with
𝜃 ≤ 0.3 towards the upper portion of the enclosure due to the
influence of convection. The temperature lines 𝜃 ≤ 0.3 also
appear in a small area of bottom corners. As 𝜆 is increased
to 0.1, the temperature distribution is smooth curve because
flow intensity is obstructed by wave volume and the area of
temperature distribution in lower portion of the enclosure
is found to be smaller because of the change in size of flow
circulation.

Figure 4 shows heatlines pattern for different wave ampli-
tudes and undulations. It can be seen that heat transfer occurs
from the bottom towards the side walls and heatlines pattern
is symmetric with respect to the middle line resulting from
the symmetry of flow pattern and temperature distribution.
The results of increasing number of undulations for 𝜆 = 0.05
show similar trend with 𝜆 = 0.1 in which heatlines along

wavy side walls are little distorted, whereas the increase of
wave amplitude from 0.05 to 0.1 causes smaller region of heat
transfer.

The local Nusselt number in Figure 5 is plotted to show
the heat transfer rate along bottom wall for different wave
amplitude and number of undulations. The distribution of
local Nusselt number is symmetric with respect to the line
𝑋 = 0.5 and the value of local Nusselt number is negative
near the left and right edges of the bottom wall for all cases.
Figure 5 illustrates that heat transfer rate increases from both
edges towards the central region. For 𝜆 = 0.05 with 𝑛 = 1
and 𝑛 = 2, heat transfer rate is maximum at 𝑋 = 0.4 and
𝑋 = 0.6 and then slightly decreases to the center. It can be
seen that the local Nusselt numbers for all cases are almost the
same at 𝑋 = 0.5. Table 1 shows the average Nusselt number
(Nu) for different wave amplitude and number of undulations
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Figure 4: Heatlines (Π) for (a) 𝑛 = 1, 𝜆 = 0.05, (b) 𝑛 = 2, 𝜆 = 0.05, (c) 𝑛 = 1, 𝜆 = 0.1 and (d) 𝑛 = 2, 𝜆 = 0.1.

Table 1: AverageNusselt number of bottomwall for 𝜆= 0.05, 0.1 and
𝑛 = 1, 2.

𝜆 𝑛 Nu

0.05 1 0.7626
2 0.7400

0.1 1 0.5645
2 0.5242

calculated for heated bottom wall. The values of Nu indicate
that heat transfer is decreased when 𝜆 is increased from 0.05
to 0.1 for both 𝑛 = 1 and 𝑛 = 2. It is observed that the increase
in surface undulations has small effect on Nu.

4. Conclusion

The effects of wavy geometry on natural convection in an
enclosure having two wavy vertical walls and filled with fluid
saturated porous media have been investigated numerically
by using finite element method. The wavy enclosure was
transformed to a unit square in computational domain and
the finite element formulations in terms of 𝜉𝜂-coordinate
were derived and solved by iterative method in which
Newton-Raphson method was used for nonlinear equations
system.Thenumerical solutions are presented by streamlines,
isotherms, and heatlines. In order to investigate the effects of
interested parameters, the values of wave amplitude (𝜆 = 0.05
and 0.1) and number of undulations (𝑛 = 1 and 2) were
chosen with constant Ra = 105, Da = 10−3, and Pr = 0.71.
From the study results, it is found that
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(i) as wave amplitude is constant, the flow intensity can
be decreased by increasing number of undulations;

(ii) the increase inwave amplitude reduces the strength of
convection inside the enclosure because higher wave
volume plays a barricade role;

(iii) temperature distribution in lower portion of the
enclosure and region of heat transfer becomes smaller
when wave amplitude is increased;

(iv) the local Nusselt number is found to be larger for
𝜆 = 0.05 and 𝑛 = 1 compared to the other cases
due to lower surface waviness; there is a little change
in average Nusselt number for increasing number of
undulations;

(v) the increase in number of undulations has small
influence on natural convection compared to the
increase in wave amplitude.
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