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This paper considers several estimators for estimating the stochastic restricted ridge regression estimators. A simulation study has
been conducted to compare the performance of the estimators.The result from the simulation study shows that stochastic restricted
ridge regression estimators outperform mixed estimator. A numerical example has been also given to illustrate the performance of
the estimators.

1. Introduction

In regression analysis, researchers often encounter the prob-
lem of multicollinearity. Multicollinearity leads to high
variance and instable parameter estimates when estimating
linear regression models using ordinary least squares (OLS).
So many researchers propose many ways to overcome this
problem.

One method to overcome multicollinearity is to consider
biased estimator, such as principal component regression
estimator [1], ridge estimator [2], and Liu estimator (Liu,
1993). Ridge estimator is used by many researchers. When we
use ridge estimator, how to choose the parameter 𝑘 is very
important. A lot of ways of estimating the ridge parameter 𝑘
have been proposed. To mention a few, Hoerl and Kennard
[2], Hoerl and Kennard [3], Hoerl et al. [4], McDonald and
Galarneau [5], Kibria [6], Kibria et al. [7], and Najarian et al.
[8].

Another method to overcome multicollinearity is to
consider the restrictions. In the literature, the authors usually
discuss two restrictions; one is linear restriction and the other
is stochastic linear restriction. For the linear model with
linear restriction, Sarkar [9], Kaciranlar et al. [10], andXu and
Yang [11–13] combined the restricted least squares estimator
with the ridge estimator, the Liu estimator, almost unbiased
ridge and Liu estimator, and 𝑟 − 𝑘 and 𝑟 − 𝑑 class estimator
and proposed the restricted ridge estimator, restricted Liu

estimator, restricted almost unbiased ridge and Liu estimator,
and restricted 𝑟 − 𝑘 and 𝑟 − 𝑑 class estimator. For the linear
model with stochastic linear restriction, Özkale [14] and Yang
and Xu [15] proposed the stochastic restricted ridge estimator
and the stochastic restricted Liu estimator.

The main objective of this paper is to propose some
stochastic restricted ridge estimators. These estimators are
introduced since they are expected to reduce the mean
squared error (MSE) of the mixed method. In order to judge
the performance of the estimators, the MSE is calculated. In
this paper, we give a Monte simulation study to show the
performance of the stochastic restricted ridge estimators. We
will also analyze some important properties of the different
estimators of the ridge parameter 𝑘.

The paper is organized as follows. In Section 2, we
describe the statistical methodology. The simulation results
are discussed in Section 3 and a numerical example is given
in Section 4. In Section 5 we give a brief summary and
conclusions.

2. Methodology

In this section we introduce some stochastic restricted ridge
estimators for estimating the ridge parameter 𝑘 based on the
work of Hoerl and Kennard [2], Hoerl et al. [4], Schaeffer et
al. [16], Kibria [6], and Kibria et al. [7].
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2.1. Stochastic Restricted Ridge Estimator. Consider the fol-
lowing linear model:

𝑦 = 𝑋𝛽 + 𝜀, (1)

where 𝑦 is an 𝑛 × 1 vector of observation, 𝑋 is an 𝑛 × 𝑝
designmatrix of rank𝑝, 𝛽 is a𝑝 ×1 vector denoting unknown
coefficients, and 𝜀 is an 𝑛 ×1 random error vector with 𝐸(𝜀) =
0 and Cov(𝜀) = 𝜎2𝐼.

Suppose that 𝛽 satisfies the following stochastic restric-
tion; that is,

𝑟 = 𝑅𝛽 + 𝑒, (2)

where 𝑅 is a 𝑗 × 𝑝 nonzero matrix with rank(𝑅) = 𝑗 and 𝑟 is a
known vector, and 𝐸(𝑒) = 0 and Cov(𝑒) = 𝜎2𝑊. In this paper,
we assumed that 𝜀 is independent of 𝑒.

Using the mixed approach, Durbin [17], Theil and Gold-
berger [18], and Theil [19] introduced the mixed estimator
(ME), which is defined as follows:

𝛽 = (𝑋

𝑋 + 𝑅


𝑊
−1
𝑅)
−1

(𝑋

𝑦 + 𝑅

𝑊
−1
𝑟) . (3)

Themixed estimator is an unbiased estimator.However, when
multicollinearity exists, the mixed estimator is no longer a
good estimator.

Özkale [14] proposed the following stochastic restricted
ridge estimator (SRRE):

𝛽 (𝑘) = (𝑋

𝑋 + 𝑅


𝑊
−1
𝑅 + 𝑘𝐼)

−1

(𝑋

𝑦 + 𝑅

𝑊
−1
𝑟) , 𝑘 > 0.

(4)

For any particular estimator 𝛽 of 𝛽, the total MSE is
defined as

MSE (𝛽) = 𝐸(𝛽 − 𝛽)


(𝛽 − 𝛽) . (5)

Thus we have

MSE (𝛽 (𝑘)) = 𝜎2 tr {𝑀−1
𝑘
𝑀
0
𝑀
−1

𝑘
} + 𝑘
2 tr {𝑀−1

𝑘
𝛽𝛽

𝑀
−1

𝑘
} ,

(6)

where𝑀
𝑘
= 𝑋

𝑋 + 𝑅


𝑊
−1
𝑅 + 𝑘𝐼.

2.2. Estimating 𝑘. Themost classical ridge estimator for linear
regression is the following:

𝐾1 =
�̂�
2

�̂�2max
, (7)

proposed byHoerl and Kennard [2, 3], where �̂�2max denote the
maximum element of 𝑄𝛽OLS, 𝑄


𝑋

𝑋𝑄 = diag(𝜆

1
, . . . , 𝜆

𝑝
),

𝛽OLS = (𝑋

𝑋)
−1
𝑋

𝑦, and �̂�2 is the estimator of 𝜎2. Hoerl et

al. [4] introduce an alternative of the estimator of 𝑘, which is
defined as follows:

𝐾2 =
𝑝�̂�
2

𝛽OLS𝛽OLS
. (8)

In Schaeffer et al. [16] a modified version of this estimator
is proposed as follows:

𝐾3 =
1

�̂�2max
. (9)

In Kibria et al. [7], a new estimator is proposed as follows:

𝐾4 = median(√
�̂�
2

𝑖

�̂�2
) . (10)

Finally the following estimators are considered:

𝐾5 =
1

𝑝
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𝑖
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1/𝑝
,

𝐾6 =
�̂�
2

∑
𝑝

𝑖=1
𝜆
𝑖
�̂�2
𝑖

.

(11)

3. The Monte Carlo Simulation

The main purpose of this paper is to see the effect of
multicollinearity on mixed estimator and SRRE.

3.1. Simulation Technique. To achieve different degrees of
collinearity, following McDonald and Galarneau [5] and Liu
[20], the explanatory variables were generated using the
following method:

𝑥
𝑖𝑗
= (1 − 𝛾

2
)
1/2

𝑧
𝑖𝑗
+ 𝛾𝑧
𝑖𝑝
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝,

(12)

where 𝑧
𝑖𝑗
are independent standard normal pseudorandom

numbers and 𝛾 is specified so that the correlation between
any two explanatory variables is given by 𝛾2. These variables
are then standardized so that𝑋𝑋 and𝑋𝑦 are in correlation
forms. Four different sets of correlations corresponding to
𝛾 = 0.75, 0.85, 0.95, 0.99 are discussed. Then the dependent
variable are determined by

𝑦
𝑖
= 𝛽
1
𝑥
𝑖1
+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝑥
𝑖𝑝
+ 𝜀
𝑖
, (13)

where 𝜀
𝑖
are independent normal (0, 𝜎2) pseudorandom

numbers. In this paper, we consider 𝜎2 = 0.5, 1, 2, 5, 10, 𝑛 =
50, 100, 150, and 𝑝 = 4, 6, 8. Suppose that

𝑟 = 𝑅𝛽 + 𝑒, 𝑒 ∼ 𝑁 (0, 𝜎
2
𝐼
2
) , (14)

where

𝑅 = (
1 1 3 1

0 1 1 1
) ,

𝑅 = (
1 1 0 3 1 0

0 1 1 1 1 1
) ,

𝑅 = (
1 1 0 1 3 1 0 0

0 1 1 1 1 1 1 1
) .

(15)
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Table 1: Estimated MSE with 𝑛 = 50, 𝑝 = 4, and 𝛾 = 0.75.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0159 0.0157 0.0156 0.0157 0.0157 0.0159 0.0159

𝜎
2
= 1 0.0637 0.0605 0.0594 0.0608 0.0629 0.0636 0.0637

𝜎
2
= 2 0.2549 0.2099 0.1989 0.2412 0.2532 0.2543 0.2545

𝜎
2
= 5 1.5934 0.6732 0.0604 1.5035 1.5891 1.5605 1.5771

𝜎
2
= 10 6.3734 0.9396 0.8603 6.0119 6.3649 5.8729 6.1203

Table 2: Estimated MSE with 𝑛 = 50, 𝑝 = 4, and 𝛾 = 0.85.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0167 0.0165 0.0164 0.0165 0.0164 0.0167 0.0167

𝜎
2
= 1 0.0669 0.0633 0.0621 0.0637 0.0659 0.0668 0.0668

𝜎
2
= 2 0.2675 0.2183 0.2066 0.2524 0.2656 0.2666 0.2670

𝜎
2
= 5 1.6720 0.6863 0.6157 1.5732 1.6673 1.6358 1.6352

𝜎
2
= 10 6.6879 0.9442 0.8661 6.2905 6.6785 6.1384 6.3959

Table 3: Estimated MSE with 𝑛 = 50, 𝑝 = 4, and 𝛾 = 0.95.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0198 0.0195 0.0193 0.0193 0.0194 0.0198 0.0198

𝜎
2
= 1 0.0791 0.0753 0.0725 0.0757 0.0782 0.0790 0.0790

𝜎
2
= 2 0.3164 0.2625 0.2349 0.3013 0.3146 0.3155 0.3157

𝜎
2
= 5 1.9774 0.8369 0.6546 1.8802 1.9730 1.9421 1.9507

𝜎
2
= 10 7.9098 1.0976 0.8844 7.5192 7.9009 7.3696 7.4955

Table 4: Estimated MSE with 𝑛 = 50, 𝑝 = 4, and 𝛾 = 0.99.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0244 0.0240 0.0237 0.0238 0.0239 0.0244 0.0244

𝜎
2
= 1 0.0977 0.0919 0.0879 0.0926 0.0964 0.0976 0.0976

𝜎
2
= 2 0.3907 0.3114 0.2743 0.3678 0.3880 0.3893 0.3893

𝜎
2
= 5 2.4416 0.9010 70.7006 2.2944 2.4349 2.3879 2.3910

𝜎
2
= 10 9.7665 1.1034 0.9042 9.1752 9.7530 8.9516 8.9960

3.2. Results and Discussion. Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 present the results of
our Monte Carlo experiment concerning the MSEs of the
different proposed stochastic restricted ridge estimators and
the mixed estimator.

3.2.1. The Performance as a Function of 𝑛. Increasing the
number of observations has a negative effect on all of the
estimators. With the increasing of observations, the MSE of
SRRE andME are decreasing, although SRRE is always better
than the ME. However, the performance of the SSRE over
the ME is not very obvious. Thus, both measurements of
performances show that the advantage of SRRE decreases
with the increase of the number of observations.

3.2.2. The Performance as a Function of 𝑝. Increasing the
independent variables has a positive effect on all of the
estimators. With the increasing of observations, the MSE of

SRRE and ME are increasing. When increasing the inde-
pendent variables, the SRRE is better than the ME, and
the performance of the SRRE over the ME is very obvious.
Thus, both measurements of performances show that the
advantage of SRRE increases with the increase of the number
of observations.

3.2.3. The Performance as a Function of 𝛾. Increasing the
degree of correlation has a clear negative impact on the ME
and SRRE. MSEs of these estimators actually increase as 𝛾
increases. Thus, the gain of applying SRRE increases as the
degree of correlation increases.

3.2.4. The Performance as a Function of 𝜎2. Increasing 𝜎2 has
a clear negative impact on the ME and SRRE. MSEs of these
estimators actually increase as 𝜎2 increases. When 𝜎2 is big,
the performance of the SRRE over the ME is very obvious.
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Table 5: Estimated MSE with 𝑛 = 100, 𝑝 = 4, and 𝛾 = 0.75.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0129 0.0128 0.0127 0.0127 0.0128 0.0129 0.0129

𝜎
2
= 1 0.0516 0.0499 0.0482 0.0508 0.0514 0.0516 0.0516

𝜎
2
= 2 0.2063 0.1821 0.1619 0.2030 0.2060 0.2061 0.2062

𝜎
2
= 5 1.2893 0.6857 0.5110 1.2683 1.2886 1.2804 1.2845

𝜎
2
= 10 5.1572 1.0328 0.7930 5.0731 5.1557 5.0179 5.0806

Table 6: Estimated MSE with 𝑛 = 100, 𝑝 = 4, and 𝛾 = 0.85.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0135 0.0134 0.0133 0.0134 0.0135 0.0135 0.0135

𝜎
2
= 1 0.0541 0.0523 0.0504 0.0533 0.0540 0.0541 0.0541

𝜎
2
= 2 0.2166 0.1901 0.1683 0.2129 0.2163 0.2163 0.2164

𝜎
2
= 5 1.3537 0.7025 0.5222 1.3305 1.3529 1.3439 1.3481

𝜎
2
= 10 5.4147 1.0382 0.8007 5.3220 5.4131 5.2613 5.3261

Table 7: Estimated MSE with 𝑛 = 100, 𝑝 = 4, and 𝛾 = 0.95.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0160 0.0159 0.0157 0.0158 0.0159 0.0160 0.0160

𝜎
2
= 1 0.0642 0.0617 0.0590 0.0629 0.0639 0.0641 0.0641

𝜎
2
= 2 0.2567 0.2202 0.1919 0.2516 0.2562 0.2563 0.2564

𝜎
2
= 5 1.6043 0.7599 0.5612 1.5719 1.6032 1.5906 1.5950

𝜎
2
= 10 6.4172 1.0533 08258 6.2874 6.4150 6.2028 6.2700

Table 8: Estimated MSE with 𝑛 = 100, 𝑝 = 4, and 𝛾 = 0.99.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0199 0.0197 0.0193 0.0194 0.0197 0.0199 0.0199

𝜎
2
= 1 0.0795 0.0749 0.0717 0.0771 0.0791 0.0794 0.0794

𝜎
2
= 2 0.3179 0.2544 0.2248 0.3081 0.3171 0.3168 0.3175

𝜎
2
= 5 1.9866 0.7464 0.6094 1.9247 1.9847 1.9470 1.9713

𝜎
2
= 10 7.9465 0.9623 0.8539 7.6984 7.9427 7.3423 7.7064

Table 9: Estimated MSE with 𝑛 = 150, 𝑝 = 4, and 𝛾 = 0.75.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032

𝜎
2
= 1 0.0128 0.0127 0.0126 0.0127 0.0128 0.0128 0.0128

𝜎
2
= 2 0.0512 0.0499 0.0484 0.0508 0.0512 0.0512 0.0512

𝜎
2
= 5 0.3200 0.2740 0.2355 0.3174 0.3199 0.3192 0.3199

𝜎
2
= 10 1.2802 0.7474 0.5404 1.2697 1.2800 1.2604 1.2774

Table 10: Estimated MSE with 𝑛 = 150, 𝑝 = 4, and 𝛾 = 0.85.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0034 0.0034 0.0033 0.0034 0.0033 0.0034 0.0034

𝜎
2
= 1 0.0134 0.0133 0.0132 0.0133 0.0134 0.0134 0.0134

𝜎
2
= 2 0.0538 0.0517 0.0506 0.0530 0.0537 0.0537 0.0538

𝜎
2
= 5 0.3361 0.2686 0.2442 0.3317 0.3359 0.3340 0.3359

𝜎
2
= 10 1.3445 0.6541 0.5522 1.3267 1.3440 1.3113 1.3408
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Table 11: Estimated MSE with 𝑛 = 150, 𝑝 = 4, and 𝛾 = 0.95.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040

𝜎
2
= 1 0.0160 0.0158 0.0157 0.0158 0.0159 0.0159 0.0160

𝜎
2
= 2 0.0638 0.0618 0.0594 0.0632 0.0637 0.0637 0.0637

𝜎
2
= 5 0.3988 0.3294 0.2761 0.3947 0.3956 0.3974 0.3984

𝜎
2
= 10 1.5951 0.8382 0.5927 1.5788 1.5947 1.5737 1.5897

Table 12: Estimated MSE with 𝑛 = 150, 𝑝 = 4, and 𝛾 = 0.99.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049

𝜎
2
= 1 0.0198 0.0195 0.0193 0.0194 0.0197 0.0198 0.0198

𝜎
2
= 2 0.0791 0.0744 0.0725 0.0775 0.0789 0.0790 0.0790

𝜎
2
= 5 0.4946 0.3508 0.3197 0.4837 0.4941 0.4927 0.4938

𝜎
2
= 10 1.9782 0.7271 0.6421 1.9345 1.9773 1.9486 1.9660

Table 13: Estimated MSE with 𝑛 = 50, 𝑝 = 6, and 𝛾 = 0.75.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0181 0.0178 0.0176 0.0175 0.0178 0.0180 0.0180

𝜎
2
= 1 0.0722 0.0684 0.0651 0.0682 0.0715 0.0721 0.0721

𝜎
2
= 2 0.2889 0.2358 0.2053 0.2710 0.2875 0.2885 0.2885

𝜎
2
= 5 1.8058 0.7359 0.5831 1.6902 1.8022 1.7895 1.7886

𝜎
2
= 10 7.2233 0.9977 0.8417 6.7591 7.2160 6.9678 6.9535

Table 14: Estimated MSE with 𝑛 = 50, 𝑝 = 6, and 𝛾 = 0.85.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0189 0.0188 0.0184 0.0184 0.0186 0.0188 0.0188

𝜎
2
= 1 0.0758 0.0716 0.0680 0.0714 0.0750 0.0757 0.0757

𝜎
2
= 2 0.3031 0.2452 0.2127 0.2834 0.3015 0.3026 0.3026

𝜎
2
= 5 1.8944 0.7497 0.5943 1.7676 1.8904 1.8764 1.8764

𝜎
2
= 10 7.5775 1.0016 0.8479 7.0682 7.5694 7.2969 7.2666

Table 15: Estimated MSE with 𝑛 = 50, 𝑝 = 6, and 𝛾 = 0.95.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0224 0.0221 0.0216 0.0216 0.0220 0.0223 0.0223

𝜎
2
= 1 0.0895 0.0850 0.0790 0.0847 0.0886 0.0894 0.0894

𝜎
2
= 2 0.3581 0.2944 0.2400 0.3373 0.3562 0.3573 0.3574

𝜎
2
= 5 2.2380 0.9162 0.6324 2.1053 2.2333 2.2068 2.2102

𝜎
2
= 10 8.9518 1.1747 0.8681 8.4195 8.9425 8.4697 8.5206

Table 16: Estimated MSE with 𝑛 = 50, 𝑝 = 6, and 𝛾 = 0.99.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0276 0.0270 0.0265 0.0264 0.0269 0.0275 0.0275

𝜎
2
= 1 0.1104 0.1017 0.0950 0.1013 0.1087 0.1103 0.1103

𝜎
2
= 2 0.4415 0.3288 0.2775 0.4009 0.4381 0.4404 0.4400

𝜎
2
= 5 2.7591 0.8493 0.6783 2.4979 2.7506 2.7213 2.6973

𝜎
2
= 10 11.0363 1.0223 0.8903 9.9873 11.0193 10.4518 10.1007
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Table 17: Estimated MSE with 𝑛 = 50, 𝑝 = 8, and 𝛾 = 0.75.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0694 0.0648 0.0621 0.0631 0.0685 0.0692 0.0692

𝜎
2
= 1 0.2778 0.2162 0.1940 0.2469 0.2759 0.2776 0.2775

𝜎
2
= 2 1.1112 0.5257 0.4531 0.9819 1.1074 1.1079 1.1065

𝜎
2
= 5 6.9449 0.8932 0.8221 6.1268 6.9354 6.8179 6.7664

𝜎
2
= 10 27.7795 0.9781 0.9476 24.5017 2.77606 25.8426 25.1061

Table 18: Estimated MSE with 𝑛 = 50, 𝑝 = 8, and 𝛾 = 0.85.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0729 0.0678 0.0649 0.0660 0.0719 0.0728 0.0728

𝜎
2
= 1 0.2915 0.2244 0.2010 0.2576 0.2894 0.2912 0.2911

𝜎
2
= 2 1.1658 0.5382 0.4642 1.0243 1.1617 1.1622 1.1605

𝜎
2
= 5 7.2865 0.8989 0.8291 6.3908 7.2761 7.1469 7.0805

𝜎
2
= 10 29.1462 0.9794 0.9500 25.5570 29.1253 27.0208 26.0808

Table 19: Estimated MSE with 𝑛 = 50, 𝑝 = 8, and 𝛾 = 0.95.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.0861 0.0830 0.0754 0.0815 0.0855 0.0869 0.0860

𝜎
2
= 1 0.3446 0.2994 0.2267 0.3248 0.3432 0.3445 0.3442

𝜎
2
= 2 1.3782 0.8508 0.5033 1.2979 1.3756 1.3768 1.3725

𝜎
2
= 5 8.6138 1.5585 0.8517 8.1096 8.6072 8.5589 8.3965

𝜎
2
= 10 34.4552 1.3911 0.9575 32.4371 34.4419 33.5908 31.1970

Table 20: Estimated MSE with 𝑛 = 50, 𝑝 = 8, and 𝛾 = 0.99.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

𝜎
2
= 0.5 0.1063 0.1009 0.0906 0.0984 0.1048 0.1062 0.1062

𝜎
2
= 1 0.4252 0.3494 0.2622 0.3908 0.4222 0.4251 0.4243

𝜎
2
= 2 1.7009 0.8972 0.5531 1.5603 1.6949 1.6988 1.6857

𝜎
2
= 5 10.6308 1.3896 0.8768 9.7471 10.6157 10.5469 10.0593

𝜎
2
= 10 42.5233 1.2263 0.9656 38.9855 42.4929 41.2088 34.5263

4. Numerical Example

In this example, we discuss the dataset on Portland cement
originally due to Woods et al. [21], and the dataset has then
been widely analyzed in the literature such as Kaciranlar et al.
[10]. Firstly, we assemble the data as follows:

𝑋 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

7 26 6 60

1 29 15 52

11 56 8 20

11 31 8 47

7 52 6 33

11 55 9 22

3 71 17 6

1 31 22 44

2 54 18 22

21 47 4 26

1 40 23 34

11 66 9 12

10 68 8 12

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑟 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

78.5

74.3

104.3

87.6

95.9

109.2

102.7

72.5

93.1

115.9

83.8

113.3

109.4

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (16)

Consider the following matrix restriction:

𝑟 = 𝑅𝛽 + 𝑒, 𝑒 ∼ 𝑁 (0, 𝜎
2
𝐼
2
) , (17)

where

𝑅 = (
1 1 3 1

0 1 1 1
) ,

𝑟 = (
1

1
) .

(18)

The estimated regression coefficients along with the MSE are
presented in Table 21.

From Table 21, we can see that the proposed SRRE are
performing better than the ME in the sense of smaller MSE.
We also noted that the estimator 𝐾1 performed the best
followed by 𝐾5.
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Table 21: Comparative performance of the estimators.

ME 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6

MSE 0.0611 0.0604 0.0609 0.0609 0.0610 0.0608 0.0611
𝛽
1

2.1172 2.1056 2.0762 2.1152 2.1165 2.1130 2.1172
𝛽
2

1.1741 1.1767 1.1834 1.1745 1.1742 1.1751 1.7740
𝛽
3

0.6830 0.6749 0.6543 0.6816 0.6825 0.6800 0.6829
𝛽
4

0.5006 0.5023 0.5067 0.5009 0.5007 0.5012 0.5006

5. Concluding Remarks

In this paper, we discussed the usefulness of the RR to obtain
better parameter estimators in linear regressions model with
stochastic restrictions when the independent variables are
highly correlated. By a Monte Carlo experiment, we evaluate
some recently proposed methods of estimating the ridge
parameter that we apply in linear regressions model. The
results show that the newly proposed estimators outperform
the mixed estimator.
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