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The asymptotic behavior of the solution of the singularly perturbed boundary value problem𝐿
𝜀
𝑦 = ℎ (𝑡) 𝜆, 𝐿

𝑖
𝑦+𝜎
𝑖
𝜆 = 𝑎

𝑖
, 𝑖 = 1, 𝑛 + 1

is examined.The derivations prove that a unique pair (𝑦 (𝑡, �̃� (𝜀) , 𝜀) , �̃� (𝜀)) exists, in which components𝑦(𝑡, �̃� (𝜀) , 𝜀) and �̃�(𝜀) satisfy
the equation 𝐿

𝜀
𝑦 = ℎ(𝑡)𝜆 and boundary value conditions 𝐿

𝑖
𝑦 + 𝜎

𝑖
𝜆 = 𝑎

𝑖
, 𝑖 = 1, 𝑛 + 1. The issues of limit transfer of the perturbed

problem solution to the unperturbed problem solution as a small parameter approaches zero and the existence of the initial jump
phenomenon are studied. This research is conducted in two stages. In the first stage, the Cauchy function and boundary functions
are introduced. Then, on the basis of the introduced Cauchy function and boundary functions, the solution of the restoration
problem 𝐿

𝜀
𝑦 = ℎ (𝑡) 𝜆, 𝐿

𝑖
𝑦+ 𝜎
𝑖
𝜆 = 𝑎

𝑖
, 𝑖 = 1, 𝑛 + 1 is obtained from the position of the singularly perturbed problem with the initial

jump.Through this process, the formula of the initial jump and the asymptotic estimates of the solution of the considered boundary
value problem are identified.

1. Introduction

One of the fundamental theorems of singular perturbations
theories is Tikhonov’s theorem [1, 2] on the limit transition
that establishes the limit equations, expressing the relations
between the solutions of a degenerate problem and an orig-
inal singularly perturbed initial problem, and this theorem
allows us to obtain the leading member of asymptotics.

For a wide class of the singularly perturbed problems,
effective asymptotic methods were developed, allowing for
the development of uniform approximations with any level
of precision. The methods of Višik and Lyusternik [3] and
Vasilyeva [4] were the first methods to be developed, which
are called methods of boundary functions. Butuzov [5]
developed a method of angular boundary functions, which
was a significant development for the boundary functions
method.

Each of these methods has a certain area of applicability;
that is, they are successful in solving some problems and
are invalid when solving other problems. For example, there
were some fundamental difficulties in the realization of

the boundary functions method in problems with initial
jumps. The beginning of the mathematical solution of the
initial jump phenomenon was considered in the studies of
Višik and Lyusternik [6] and Kasymov [7], in which the
method of zone integration for nonlinear singularly per-
turbed initial tasks with unbounded initial data when a small
parameter approaches zero. The research efforts of Višik,
Lyusternik, and Kasymov were continued in [8, 9] and other
studies.

Simultaneously, there were problems in practice that
extended beyond the scope of traditional research, in
which ready-made asymptotic methods were inapplicable
and required modification or generalization. For example,
in the study of Něımark and Smirnova [10], a new rationale
of the physical and mathematical nature of the Painleve
paradox was introduced, which enriched the possible types
of movements and dynamics of the system as a whole. At this
point, we saw the races and contrasting structures. Butuzov
andVasiliyeva studiedmathematical solutions of the question
of contrast structures [11], and the phenomenon of the initial
jump requires additional mathematical research.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 956402, 11 pages
http://dx.doi.org/10.1155/2014/956402

http://dx.doi.org/10.1155/2014/956402


2 Journal of Applied Mathematics

Boundary value problems for ordinary differential equa-
tions containing parameters in the right-hand side and in the
boundary conditions were examined [12, 13]. In these studies,
a restoration problem of the right-hand side of the differential
equations and boundary conditions is solved with the well-
known structure of the differential equation and additional
information.

The following natural generalization in this direction is to
study the solutions of singularly perturbed boundary value
problems with an additional parameter having the initial
jump phenomenon. Such a study has not yet been reported.
This study considers such problems. It studies the problems
of solution building, restoring the right-hand side of the
equation and boundary conditions of the perturbed problem,
the limit solution passing of the perturbed problem solution
to the unperturbed problem solution.

2. Statement of the Problem

Let 𝑅 = (−∞, ∞), 𝑇 = [0, 1], where 𝑡 belongs to 𝑇 = [0, 1].
We consider

𝐿
𝜀
𝑦 ≡ 𝜀𝑦

(𝑛)

+ 𝐴
1
(𝑡) 𝑦
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝐴
𝑛
(𝑡) 𝑦 = ℎ (𝑡) 𝜆 (1)

with nonseparated boundary conditions

𝐿
𝑖
𝑦 + 𝜎
𝑖
𝜆 = 𝑎
𝑖
, 𝑖 = 1, 𝑛 + 1, (2)

where

𝐿
𝑖
𝑦 ≡

𝑚𝑖

∑

𝑗=0

𝛼
𝑖𝑗
𝑦
(𝑗)

(0, 𝜀) +

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
𝑦
(𝑗)

(1, 𝜀) , (3)

𝜀 > 0 is a small parameter, 𝜆 is an unknown parameter,
𝛼
𝑖𝑗
, 𝛽
𝑖𝑗
, 𝑎
𝑖
, 𝜎
𝑖
∈ 𝑅 are known constants, and 𝑚

𝑖
, 𝑟
𝑖
= fix ∈

{0, 1, . . . , 𝑛 − 1}. Let the matrix

𝑃 = (

𝛼
10

𝛼
11

⋅ ⋅ ⋅ 𝛼
1𝑚1

𝛽
10

𝛽
11

. . . 𝛽
1𝑟1

𝛼
20

𝛼
21

. . . 𝛼
2𝑚2

𝛽
20

𝛽
21

. . . 𝛽
2𝑟2

. . . . . . ⋅ ⋅ ⋅ . . . . . . . . .

𝛼
𝑛+1,0

𝛼
𝑛+1,1

. . . 𝛼
𝑛+1,𝑚𝑛+1,

𝛽
𝑛+1,0

𝛽
𝑛+1,1

. . . 𝛽
𝑛+1,𝑟𝑛+1,

) (4)

have a rank equal to 𝑛, where 𝑛 is the maximum number of
linearly independent rows of matrix 𝑃. To the certainty, let
the first 𝑛 rows of the matrix be linearly independent. Then,
the linear forms 𝐿

𝑖
𝑦, 𝑖 = 1, 𝑛, as the functions of 𝑦(𝑗)(0, 𝜀), 𝑗 =

0,𝑚
𝑖
and 𝑦

(𝑗)

(1, 𝜀), 𝑗 = 0, 𝑟
𝑖
are linearly independent of each

other.
Consider that

(a) 𝐴
𝑖
(𝑡) ∈ 𝐶

𝑛

(𝑇 ), 𝑖 = 1, 𝑛, ℎ(𝑡) ∈ 𝐶
1

(𝑇),
(b) a constant 𝛾 is independent of 𝜀 and is

𝐴
1
(𝑡) ≥ 𝛾 > 0, 0 ≤ 𝑡 ≤ 1, (5)

(c) inequalities

𝛼
1𝑚1

̸= 0, 𝑛 ≥ 3,

𝑛 − 1 > 𝑚
1
> 𝑚
2
≥ ⋅ ⋅ ⋅ ≥ 𝑚

𝑛
,

𝑛 − 1 > 𝑟
𝑖
, 𝑖 = 1, 𝑛, 𝐽

01
̸= 0

(6)

are valid, where 𝐽
01
is a determinant of (𝑛−1)th order, which is

obtained from the rectangular matrix 𝐿
𝑖
𝑦
𝑗0

(𝑖 = 1, . . . , 𝑛, 𝑗 =

1, . . . , 𝑛 − 1) as follows:

𝐽 = (

𝐿
1
𝑦
10

⋅ ⋅ ⋅ 𝐿
1
𝑦
𝑛−1,0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐿
𝑛
𝑦
10

⋅ ⋅ ⋅ 𝐿
𝑛
𝑦
𝑛−1,0

) , (7)

by deleting the first line, and 𝑦
𝑖0
(𝑡), 𝑖 = 1, 𝑛 − 1 is the funda-

mental system of the solutions of the following homogeneous
unperturbed (degenerate) equation:

𝐿
0
𝑦
0
≡ 𝐴
1
(𝑡) 𝑦
(𝑛−1)

0
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
(𝑡) 𝑦
0
= 0. (8)

Corresponding to (1),

(d) 𝐷 = 𝐷
𝑛+1

− ∑
𝑛

𝑖=2
𝐷
𝑖
𝐿
𝑛+1

𝐽
𝑖−1,1

(𝑡)/𝐽
01

̸= 0 is valid,

where𝐷
𝑖
= 𝜎
𝑖
+∑
𝑟𝑖

𝑗=0
𝛽
𝑖𝑗
∫
1

0

(ℎ(𝑠)𝑊
(𝑞)

𝑡
(1, 𝑠)/𝐴

1
(𝑠)𝑊(𝑠))𝑑𝑠 (𝑖 =

1, 𝑛 + 1), 𝐽
𝑖−1,1

(𝑡) is the (𝑛 − 1)th-order determinant
obtained from 𝐽

01
by replacing the (𝑖 − 1)th row with the

𝑦
10
(𝑡), 𝑦
20
(𝑡), . . . , 𝑦

𝑛−1,0
(𝑡) row, and 𝑊(𝑠) is the Wronskian

of the solution system 𝑦
𝑖0
(𝑠), 𝑖 = 1, 𝑛 − 1, 𝑊(𝑞)

𝑡
(𝑡, 𝑠) and the

(𝑛−1)th-order determinant obtained from𝑊(𝑠) by replacing
the (𝑖 − 1)th row with the 𝑦(𝑞)

10
(𝑡), . . . , 𝑦

(𝑞)

𝑛−1,0
(𝑡) row.

(e) Consider

𝑛

∑

𝑖=1

(−1)
1+𝑖

𝐽
0𝑖

× (𝑎
𝑖
− 𝜆
0
𝜎
𝑖
− 𝜆
0

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

ℎ (𝑠)

𝐴
1
(𝑠)

𝑊
(𝑞)

𝑡
(1, 𝑠)

𝑊 (𝑠)

𝑑𝑠) ̸= 0,

(9)
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where 𝐽
0𝑖
is the (𝑛−1)th-order determinant, which originates

from 𝐽 by deleting the 𝑖th row, and 𝜆
0

= (1/𝐷)(𝑎
𝑛+1

−

∑
𝑛

𝑖=1
𝑎
𝑖
𝐿
𝑛+1

𝐽
𝑖−1,1

(𝑡)/𝐽
01
).

The problem lies in determining the pair
(𝑦(𝑡, �̃�(𝜀), 𝜀), �̃�(𝜀)), where 𝑦(𝑡, �̃�(𝜀), 𝜀) and �̃�(𝜀) satisfy
(1) and the boundary conditions in (2), in building the
asymptotic estimates of (1) and (2) problem solutions and in
the study of the initial jump phenomenon.

The following study is conducted according to a specific
rule. In the first stage, we build the recovery problem
solutions (1) and (2) from the position of a singularly
perturbed problemwith the initial jump on the basis of initial
and boundary functions. In the next stage, we study the
asymptotic behavior of the boundary value problem solutions
(1) and (2).

3. Fundamental Solution System

Along with (1), we consider the following corresponding
homogeneous perturbed equation:

𝐿
𝜀
𝑦 = 0. (10)

We seek a fundamental solution system of (10) in the
following form:

𝑦
𝑖
(𝑡, 𝜀) = 𝑦

𝑖0
+ 𝜀𝑦
𝑖1
+ 𝜀
2

𝑦
𝑖2
+ ⋅ ⋅ ⋅ , 𝑖 = 1, 𝑛 − 1,

𝑦
𝑛
(𝑡, 𝜀) = exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥) (𝑦
𝑛0
+ 𝜀𝑦
𝑛1
+ 𝜀
2

𝑦
𝑛2
+ ⋅ ⋅ ⋅ ) ,

(11)

where 𝑦
𝑖𝑗
(𝑡) represents unknown functions to be found and

𝜇(𝑡) = −𝐴
1
(𝑡).

By substituting (11) into (10) and by matching the coef-
ficients of like powers of 𝜀 on both sides of the resulting
relation, we obtain a sequence of equations for all terms in
expansion (11). For our aim, however, it suffices to consider
the zero approximation. So, for the zero approximation (for
𝑦
𝑖0
(𝑡), 𝑖 = 1, 𝑛 − 1), we have the following problems:

𝐿
0
𝑦
𝑖0
= 𝐴
1
(𝑡) 𝑦
(𝑛−1)

𝑖0
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
(𝑡) 𝑦
𝑖0
= 0, 𝑖 = 1, 𝑛 − 1,

𝑦
(𝑗)

𝑖0
(0) = 1, 𝑗 = 𝑖 − 1, 𝑦

(𝑗)

𝑖0
(0) = 0, 𝑗 ̸= 𝑖 − 1,

𝑗 = 0, 𝑛 − 2, 𝑖 = 1, 𝑛 − 1,

𝐴
1
(𝑡) 𝑦


𝑛0
(𝑡) + [(𝑛 − 1)𝐴



1
(𝑡) − 𝐴

2
(𝑡)] 𝑦
𝑛0
(𝑡) = 0,

𝑦
𝑛0
(0) = 1.

(12)

Unique solutions exist for the problems (12) on the
interval 0 ≤ 𝑡 ≤ 1, and they form the fundamental solution
system 𝑦

𝑖0
(𝑡), 𝑖 = 1, 𝑛 − 1 for the following homogeneous

equation:

𝐿
0
𝑦
0
≡ 𝐴
1
(𝑡) 𝑦
(𝑛−1)

0
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
(𝑡) 𝑦
0
= 0, (13)

where 𝑦
𝑛0
(𝑡) is presented in the following form:

𝑦
𝑛0
(𝑡) = (

𝐴
1
(0)

𝐴
1
(𝑡)

)

𝑛−1

exp(∫
𝑡

0

(
𝐴
2
(𝑥)

𝐴
1
(𝑥)

) 𝑑𝑥) . (14)

Lemma 1. Let conditions (a) and (b) be satisfied. Then, the
fundamental solution system 𝑦

𝑖
(𝑡, 𝜀), 𝑖 = 1, 𝑛 of the singularly

perturbed equation (10) permits the following asymptotic
representations:

𝑦
(𝑞)

𝑖
(𝑡, 𝜀) = 𝑦

(𝑞)

𝑖0
(𝑡) + 𝑂 (𝜀) , 𝑖 = 1, 𝑛 − 1, 𝑞 = 0, 𝑛 − 1,

𝑦
(𝑞)

𝑛
(𝑡, 𝜀) =

1

𝜀𝑞
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

⋅ 𝑦
𝑛0
(𝑡) 𝜇
𝑞

(𝑡) (1 + 𝑂 (𝜀)) , 𝑞 = 0, 𝑛 − 1,

(15)

as 𝜀 → 0.

The proof of the lemma is readily obtained from the well-
known theorems of Schlesinger [14] and Birkhoff [15] (e.g.,
see [16]).

Let us introduce the Wronskian determinant 𝑊(𝑡, 𝜀) for
the fundamental solution system 𝑦

𝑖
(𝑡, 𝜀), 𝑖 = 1, 𝑛 of (9) and

expand it in entries of the 𝑛th column:

𝑊(𝑡, 𝜀) = (−1)
1+𝑛

𝑦
𝑛
(𝑡, 𝜀)𝑊

1
(𝑡, 𝜀) + ⋅ ⋅ ⋅

+ (−1)
2𝑛

𝑦
(𝑛−1)

𝑛
(𝑡, 𝜀)𝑊

𝑛
(𝑡, 𝜀) ,

(16)

where𝑊
𝑖
(𝑡, 𝜀), 𝑖 = 1, 𝑛 is (𝑛 − 1)th order.

With regard to (15), we obtain

𝑊
𝑖
(𝑡, 𝜀) = 𝑊

𝑖0
(𝑡) + 𝑂 (𝜀) , 𝑖 = 1, 𝑛, (17)

for sufficiently small 𝜀 for 𝑊
𝑖
(𝑡, 𝜀), where 𝑊

𝑖0
(𝑡) is obtained

from the rectangular matrix (𝑦
(𝑖−1)

𝑗0
(𝑡)) (𝑖 = 1, . . . , 𝑛, 𝑗 =

1, . . . , 𝑛 − 1) by deleting the 𝑖th row. In particular, the
determinant 𝑊

𝑛0
(𝑡) ≡ 𝑊(𝑡) is the Wronskian of the

fundamental solution system 𝑦
10
(𝑡), 𝑦
20
(𝑡), . . . , 𝑦

𝑛−1,0
(𝑡) of

(13). With regard to (15) and (17), the expression (16) acquires
the following form:

𝑊(𝑡, 𝜀) = (−1)
1+𝑛 exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

× 𝑦
𝑛0
(𝑡) (𝑊

10
(𝑡) + 𝑂 (𝜀))

+
(−1)
2+𝑛

𝜀
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

⋅ 𝑦
𝑛0
(𝑡) 𝜇 (𝑡) (𝑊

20
(𝑡) + 𝑂 (𝜀)) + ⋅ ⋅ ⋅

+ (−1)
2𝑛−1

1

𝜀𝑛−2
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

⋅ 𝑦
𝑛0
(𝑡) 𝜇
𝑛−2

(𝑡) ⋅ (𝑊
𝑛−1,0

(𝑡) + 𝑂 (𝜀))

+ (−1)
2𝑛

1

𝜀𝑛−1
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

⋅ 𝑦
𝑛0
(𝑡) 𝜇
𝑛−1

(𝑡) (𝑊 (𝑡) + 𝑂 (𝜀)) .

(18)
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Hence, considering that the last summand is dominant, when
𝜀 → 0 for the Wronskian determinant, it implies the
asymptotic representation

𝑊(𝑡, 𝜀) =
𝑊 (𝑡)

𝜀𝑛−1
𝑦
𝑛0
(𝑡) 𝜇
𝑛−1

(𝑡) ⋅ exp(1
𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

× (1 + 𝑂 (𝜀)) ̸= 0, 0 ≤ 𝑡 ≤ 1,

(19)

where 𝑦
𝑛0
(𝑡) is given by (14).

4. Cauchy Function and Boundary Functions

Following previous work [17], let us introduce the Cauchy
function.

Definition 2. Function 𝐾(𝑡, 𝑠, 𝜀), defined at 0 ≤ 𝑠 ≤ 𝑡 ≤

1, is called the Cauchy function of (10), if it satisfies the
homogeneous equation (10) according to 𝑡 and within 𝑡 = 𝑠

initial conditions:

𝐾
(𝑗)

(𝑠, 𝑠, 𝜀) = 0, 𝑗 = 0, 𝑛 − 2, 𝐾
(𝑛−1)

(𝑠, 𝑠, 𝜀) = 1.

(20)

The following theorem is valid.

Theorem 3. Let conditions (a) and (b) be satisfied. Then, for
sufficiently small 𝜀, the Cauchy function𝐾(𝑡, 𝑠, 𝜀) with 0 ≤ 𝑠 ≤

𝑡 ≤ 1 exists, is unique, and is expressed as follows:

𝐾 (𝑡, 𝑠, 𝜀) =
𝑊 (𝑡, 𝑠, 𝜀)

𝑊 (𝑠, 𝜀)
, (21)

where𝑊(𝑡, 𝑠, 𝜀) is the 𝑛th order determinant obtained from the
Wronskian𝑊(𝑠, 𝜀) by replacing the 𝑛th row of the fundamental
solution system with 𝑦

1
(𝑡, 𝜀), 𝑦

2
(𝑡, 𝜀), . . . , 𝑦

𝑛
(𝑡, 𝜀) of (10).

Lemma 4. If conditions (a) and (b) are satisfied, then, for
sufficiently small 𝜀, the Cauchy function𝐾(𝑡, 𝑠, 𝜀) with 0 ≤ 𝑠 ≤

𝑡 ≤ 1 can be represented in the following form:

𝐾
(𝑞)

𝑡
(𝑡, 𝑠, 𝜀) =

𝜀

𝜇 (𝑠)𝑊 (𝑠)

⋅ (−𝑊
(𝑞)

𝑛−1,0
(𝑡, 𝑠) + 𝑂 (𝜀)) ,

𝑞 = 0, 𝑛 − 3,

𝐾
(𝑛−2)

𝑡
(𝑡, 𝑠, 𝜀) = 𝜀 ( −

𝑊
(𝑛−2)

𝑛−1,0
(𝑡, 𝑠)

𝜇 (𝑠)𝑊 (𝑠)

+
𝑦
𝑛0
(𝑡) 𝜇
𝑛−2

(𝑡)

𝑦
𝑛0
(𝑠) 𝜇
𝑛−1

(𝑠)

× exp(1
𝜀
∫

𝑡

𝑠

𝜇 (𝑥) 𝑑𝑥) + 𝑂 (𝜀)) ,

𝐾
(𝑛−1)

𝑡
(𝑡, 𝑠, 𝜀) = − 𝜀

𝑊
(𝑛−1)

𝑛−1,0
(𝑡, 𝑠)

𝜇 (𝑠)𝑊 (𝑠)

+
𝑦
𝑛0
(𝑡) 𝜇
𝑛−1

(𝑡)

𝑦
𝑛0
(𝑠) 𝜇
𝑛−1

(𝑠)
e(1/𝜀) ∫

𝑡

𝑠
𝜇(𝑥)𝑑𝑥

+ 𝑂(𝜀
2

+ 𝜀 exp(1
𝜀
∫

𝑡

𝑠

𝜇 (𝑥) 𝑑𝑥)) ,

(22)

where𝑊
𝑛−1,0

(𝑡, 𝑠) is the determinant obtained from the Wron-
skian𝑊(𝑠) by substituting the (𝑛− 1)th row with the 𝑦

𝑖0
(𝑡), 𝑖 =

1, 𝑛 − 1 row.

Proof. By expanding𝑊(𝑞)
𝑡

(𝑡, 𝑠, 𝜀), 𝑞 = 0, 𝑛 − 1 in entries of the
𝑛th column, we obtain

𝑊
(𝑞)

𝑡
(𝑡, 𝑠, 𝜀) =

𝑛−1

∑

𝑘=1

(−1)
𝑛+𝑘

𝑦
(𝑘−1)

𝑛
(𝑠, 𝜀)

× �̃�
(𝑞)

𝑘
(𝑡, 𝑠, 𝜀) + (−1)

2𝑛

𝑦
(𝑞)

𝑛
(𝑡, 𝜀) �̃�

𝑛
(𝑠, 𝜀) .

(23)

From (15), theminors �̃�(𝑞)
𝑘

(𝑡, 𝑠, 𝜀), �̃�
𝑛
(𝑠, 𝜀) for sufficiently

small 𝜀 > 0 can be represented in the following form:

�̃�
(𝑞)

𝑘
(𝑡, 𝑠, 𝜀) = 𝑊

(𝑞)

𝑘0
(𝑡, 𝑠) + 𝑂 (𝜀) , 𝑘 = 1, 𝑛 − 1,

�̃�
𝑛
(𝑠, 𝜀) = 𝑊

𝑛0
(𝑠) + 𝑂 (𝜀) ,

(24)

where 𝑊
𝑛0
(𝑠) = 𝑊(𝑠) and 𝑊

(𝑞)

𝑘0
(𝑡, 𝑠) is the determi-

nant obtained from the rectangular matrix (𝑦
(𝑖−1)

𝑗0
(𝑠)) (𝑖 =

1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛−1) by deleting the 𝑘th row and replacing
the (𝑛 − 1)th row with the (𝑦(𝑞)

10
(𝑠), . . . , 𝑦

(𝑞)

𝑛−10
(𝑠)) row.

Then, from (23) and (15), relation (24) acquires the
following form:

𝑊
(𝑞)

𝑡
(𝑡, 𝑠, 𝜀) =

𝑛−1

∑

𝑘=1

(−1)
𝑛+𝑘

1

𝜀𝑘−1
exp(1

𝜀
∫

𝑠

0

𝜇 (𝑥) 𝑑𝑥)

× 𝑦
𝑛0
(𝑠) 𝜇
𝑘−1

(𝑠) (𝑊
(𝑞)

𝑘0
(𝑡, 𝑠) + 𝑂 (𝜀))

+ (−1)
2𝑛

1

𝜀𝑞
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

× 𝑦
𝑛0
(𝑡) 𝜇
𝑞

(𝑡) (𝑊 (𝑠) + 𝑂 (𝜀)) .

(25)

This readily implies that

𝑊
(𝑞)

𝑡
(𝑡, 𝑠, 𝜀) =

1

𝜀𝑛−2
𝑦
𝑛0
(𝑠) 𝜇
𝑛−1

(𝑠) exp(1
𝜀
∫

𝑠

0

𝜇 (𝑥) 𝑑𝑥)

× [

[

−

𝑊
(𝑞)

𝑛−1,0
(𝑡, 𝑠)

𝜇 (𝑠)
+
𝜀
𝑛−2

𝜀𝑞

𝑦
𝑛0
(𝑡) 𝜇
𝑞

(𝑡)

𝑦
𝑛0
(𝑠) 𝜇
𝑛−1

(𝑠)

× 𝑊 (𝑠) exp(1
𝜀
∫

𝑡

𝑠

𝜇 (𝑥) 𝑑𝑥)

+𝑂(𝜀 + 𝜀
𝑛−1−𝑞 exp(1

𝜀
∫

𝑡

𝑠

𝜇 (𝑥) 𝑑𝑥))]

]

.

(26)

From (26) with regard to (19) and (21), we obtain the
desired estimates (22).
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Definition 5. Functions Φ
𝑘
(𝑡, 𝜀), 𝑘 = 1, 𝑛 are referred to as

boundary functions of the boundary value problems (1) and
(2), if they satisfy the homogeneous equation (10) and the
boundary conditions

𝐿
𝑖
Φ
𝑘
= 𝛿
𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛. (27)

Consider the determinant

𝐽 (𝜀) = det (𝐿
𝑘
𝑦
𝑙
) , 𝑘, 𝑙 = 1, . . . , 𝑛, (28)

where with (15), the entries 𝐿
𝑖
𝑦
𝑘

= ∑
𝑚𝑖

𝑗=0
𝛼
𝑖𝑗
𝑦
(𝑗)

𝑘
(0, 𝜀) +

∑
𝑟𝑖

𝑗=0
𝛽
𝑖𝑗
𝑦
(𝑗)

𝑘
(1, 𝜀) can be represented in the following form:

𝐿
𝑖
𝑦
𝑘
=

𝑚𝑖

∑

𝑗=0

𝛼
𝑖𝑗
𝑦
(𝑗)

𝑘0
(0) +

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
𝑦
(𝑗)

𝑘0
(1) + 𝑂 (𝜀) ,

𝑖 = 1, 𝑛, 𝑘 = 1, 𝑛 − 1,

𝐿
𝑖
𝑦
𝑛
=

𝑚𝑖

∑

𝑗=0

𝜇
𝑗

(0)

𝜀𝑗
𝛼
𝑖𝑗
(1 + 𝑂 (𝜀)) +

𝑟𝑖

∑

𝑗=0

𝜇
𝑗

(1)

𝜀𝑗
𝛽
𝑖𝑗
𝑦
𝑛0
(1)

× exp(1
𝜀
∫

1

0

𝜇 (𝑥) 𝑑𝑥) (1 + 𝑂 (𝜀)) .

(29)

This, togetherwith the estimate exp((1/𝜀) ∫1
0

𝜇(𝑥)𝑑𝑥) = 𝑜(𝜀
𝑁

)

(where𝑁 is an arbitrary positive integer), implies that

𝐿
𝑖
𝑦
𝑘
= 𝐿
𝑖
𝑦
𝑘0
+ 𝑂 (𝜀) , 𝐿

𝑖
𝑦
𝑛
=
𝜇
𝑚𝑖 (0)

𝜀𝑚𝑖
(𝛼
𝑖𝑚𝑖

+ 𝑂 (𝜀)) ,

𝑖 = 1, 𝑛, 𝑘 = 1, 𝑛 − 1,

(30)

where

𝐿
𝑖
𝑦
𝑘0

=

𝑚𝑖

∑

𝑗=0

𝛼
𝑖𝑗
𝑦
(𝑗)

𝑘0
(0) +

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
𝑦
(𝑗)

𝑘0
(1) , 𝑖 = 1, 𝑛,

𝑘 = 1, 𝑛 − 1.

(31)

Now, let us expand 𝐽(𝜀) in the entries of the last column:

𝐽 (𝜀) = (−1)
1+𝑛

𝐿
1
𝑦
𝑛
⋅ 𝐽
1
(𝜀) + ⋅ ⋅ ⋅ + (−1)

2𝑛

𝐿
𝑛
𝑦
𝑛
⋅ 𝐽
𝑛
(𝜀) . (32)

Here, from (15), the minors 𝐽
𝑖
(𝜀) can be expressed in the

following form:

𝐽
𝑖
(𝜀) = 𝐽

0𝑖
+ 𝑂 (𝜀) , 𝑖 = 1, 𝑛, (33)

where 𝐽
0𝑖
is the (𝑛 − 1)th-order determinant introduced in

Section 1.
By substituting (30) and (33) into (32), we obtain

𝐽 (𝜀) = (−1)
1+𝑛

𝜇
𝑚1 (0)

𝜀𝑚1
(𝛼
1𝑚1

𝐽
01
+ 𝑂 (𝜀)) + ⋅ ⋅ ⋅

+ (−1)
2𝑛
𝜇
𝑚𝑛 (0)

𝜀𝑚𝑛
(𝛼
𝑛𝑚𝑛

𝐽
0𝑛
+ 𝑂 (𝜀)) .

(34)

This, together with condition (c), implies that the determi-
nant (28) permits the asymptotic representation:

𝐽 (𝜀) = (−1)
1+𝑛

1

𝜀𝑚1
𝛼
1𝑚1

𝜇
𝑚1

(0) 𝐽
01
(1 + 𝑂 (𝜀)) ̸= 0. (35)

The following theorem is valid.

Theorem 6. Let conditions (a)–(c) be satisfied. Then, for
sufficiently small 𝜀 > 0, the boundary functions Φ

𝑘
(𝑡, 𝜀), 𝑘 =

1, 𝑛 exist on the interval [0, 1], are unique, and are given as
follows:

Φ
𝑘
(𝑡, 𝜀) =

𝐽
𝑘
(𝑡, 𝜀)

𝐽 (𝜀)
, 𝑘 = 1, 𝑛, (36)

where 𝐽
𝑘
(𝑡, 𝜀) is the determinant obtained from 𝐽(𝜀) by sub-

stituting the 𝑘th row with the fundamental solution system
𝑦
𝑖
(𝑡, 𝜀), 𝑖 = 1, 𝑛 of (10).

Lemma 7. If conditions (a)–(c) are satisfied, then the bound-
ary functions Φ

𝑘
(𝑡, 𝜀), 𝑘 = 1, 𝑛 permit the asymptotic

representations:

Φ
(𝑞)

1
(𝑡, 𝜀) =

1

𝐽
01

[−𝜀
𝑚1−𝑚2

𝛼
2𝑚2

𝜇
𝑚2 (0)

𝛼
1𝑚1

𝜇𝑚1 (0)
𝐽
(𝑞)

12
(𝑡)

+ 𝜀
𝑚1−𝑞

𝑦
𝑛0
(𝑡)

𝛼
1𝑚1

𝜇
𝑞

(𝑡)

𝜇𝑚1 (0)
𝐽
01

× exp(1
𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

+ 𝑂(𝜀
1+𝑚1−𝑚2 + 𝜀

𝑚1+1−𝑞

× exp(1
𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥))] ,

(37)

Φ
(𝑞)

𝑘
(𝑡, 𝜀) =

𝐽
(𝑞)

𝑘−1,1
(𝑡)

𝐽
01

+ (−1)
𝑘−1

𝜀
𝑚1−𝑞

𝑦
𝑛0
(𝑡) 𝜇
𝑞

(𝑡)

𝛼
1𝑚1

𝜇𝑚1 (0)

⋅
𝐽
0𝑘

𝐽
01

exp(1
𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

+ 𝑂(𝜀 + 𝜀
𝑚1+1−𝑞 exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)) ,

𝑘 = 2, . . . , 𝑛, 𝑞 = 0, 𝑛 − 1,

(38)

on the closed interval [0, 1] as 𝜀 → 0, where 𝐽
01

and 𝐽
0𝑘

are
the determinants introduced in Section 1, 𝐽(𝑞)

12
(𝑡) = 𝐽

(𝑞)

21
(𝑡), and

𝐽
(𝑞)

𝑘−1,1
(𝑡) is the (𝑛 − 1)th-order determinant obtained from 𝐽

01

by replacing the (𝑘−1)th row with the 𝑦(𝑞)
10
(𝑡), . . . , 𝑦

(𝑞)

𝑛−10
(𝑡) row.



6 Journal of Applied Mathematics

Proof. From (36), we define the derivative 𝐽
(𝑞)

1
(𝑡, 𝜀) of the

function𝐽
1
(𝑡, 𝜀). Let us expand 𝐽

(𝑞)

1
(𝑡, 𝜀) in the entries of the

𝑛th column:

𝐽
(𝑞)

1
(𝑡, 𝜀) = (−1)

1+𝑛

𝑦
(𝑞)

𝑛
(𝑡, 𝜀) 𝐽

01𝑛
(𝜀)

+ (−1)
2+𝑛

𝐿
2
𝑦
𝑛
𝐽
12𝑛

(𝑡, 𝜀) + ⋅ ⋅ ⋅

+ (−1)
2𝑛

𝐿
𝑛
𝑦
𝑛
𝐽
1𝑛𝑛

(𝑡, 𝜀) .

(39)

Here in the minors 𝐽
011

(𝜀), 𝐽
1𝑗𝑛

(𝑡, 𝜀), (𝑗 = 1, 𝑛), the first
subscript represents the number of the row containing the
system of functions 𝑦

(𝑞)

1
(𝑡, 𝜀), . . . , 𝑦

(𝑞)

𝑛−1
(𝑡, 𝜀). From (30), the

determinants 𝐽
011

(𝜀), 𝐽
1𝑗𝑛

(𝑡, 𝜀), (𝑗 = 1, 𝑛) can be presented in
the following form:

𝐽
011

(𝜀) = 𝐽
01
+ 𝑂 (𝜀) , 𝐽

1𝑗𝑛
(𝑡, 𝜀) = 𝐽

(𝑞)

1𝑗
(𝑡) + 𝑂 (𝜀) ,

𝑗 = 2, 𝑛,

(40)

where the determinants 𝐽
(𝑞)

1𝑗
(𝑡) are obtained from 𝐽

0𝑗
by

substituting the first row with the 𝑦(𝑞)
10
(𝑡) ⋅ ⋅ ⋅ 𝑦

(𝑞)

𝑛−1,0
(𝑡) row.

With regard to (15), (30), and (40), the expression 𝐽(𝑞)
1
(𝑡, 𝜀)

acquires the following form:

𝐽
(𝑞)

1
(𝑡, 𝜀) = (−1)

1+𝑛
1

𝜀𝑞
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

× 𝜇
𝑞

(𝑡) 𝑦
𝑛0
(𝑡) (𝐽
01
+ 𝑂 (𝜀)) + (−1)

2+𝑛

×
𝜇
𝑚2 (0)

𝜀𝑚2
(𝛼
2𝑚2

𝐽
(𝑞)

12
(𝑡) + 𝑂 (𝜀)) + ⋅ ⋅ ⋅

+ (−1)
2𝑛
𝜇
𝑚𝑛 (0)

𝜀𝑚𝑛
(𝛼
𝑛𝑚𝑛

𝐽
(𝑞)

1𝑛
(𝑡) + 𝑂 (𝜀)) ,

𝑞 = 0, 𝑛 − 1.

(41)

This, together with the condition (c), gives the following
representation:

𝐽
(𝑞)

1
(𝑡, 𝜀) =

(−1)
𝑛+1

𝜀𝑚2

× [ − 𝛼
2𝑚2

𝜇
𝑚2

(0) 𝐽
(𝑞)

12
(𝑡)

+ 𝜀
𝑚2−𝑞𝜇
𝑞

(𝑡) 𝑦
𝑛0
(𝑡) 𝐽
01
exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

+ 𝑂(𝜀 + 𝜀
𝑚2+1−𝑞 exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥))] ,

𝑞 = 0, 𝑛 − 1.

(42)

Taking into account (35), (42), and (36), we obtain
relation (37) forΦ(𝑞)

1
(𝑡, 𝜀).

Now, we expand 𝐽(𝑞)
𝑘
(𝑡, 𝜀) in the entries of the 𝑛th column:

𝐽
(𝑞)

𝑘
(𝑡, 𝜀) = (−1)

1+𝑛

𝐿
1
𝑦
𝑛
𝐽
𝑘−1,1

(𝑡, 𝜀) + ⋅ ⋅ ⋅

+ (−1)
𝑘−1+𝑛

𝐿
𝑘−1

𝑦
𝑛
𝐽
𝑘−1,𝑘−1

(𝑡, 𝜀)

+ (−1)
𝑘+𝑛

𝑦
(𝑞)

𝑛
(𝑡, 𝜀) 𝐽

0𝑘
(𝜀)

+ (−1)
𝑘+1+𝑛

𝐿
𝑘+1

𝑦
𝑛
𝐽
𝑘,𝑘+1

(𝑡, 𝜀)

+ ⋅ ⋅ ⋅ + (−1)
2𝑛

𝐿
𝑛
𝑦
𝑛
𝐽
𝑘𝑛
(𝑡, 𝜀) .

(43)

Here the first subscript in the determinants 𝐽
0𝑘
, 𝐽
(𝑞)

𝑘−1,𝑖
(𝑖 =

1, 𝑘 − 1), 𝐽
(𝑞)

𝑘𝑖
(𝑖 = 𝑘 + 1, 𝑛) indicates the row containing

the system of the functions 𝑦(𝑞)
1
(𝑡, 𝜀) ⋅ ⋅ ⋅ 𝑦

(𝑞)

𝑛−1
(𝑡, 𝜀), and the

second subscript shows that they are the minors of the entry
of the determinant 𝐽(𝑞)

𝑘
(𝑡, 𝜀) at the intersection of the 𝑖th

row and 𝑛th column. From (30), the minors 𝐽
0𝑘
, 𝐽
(𝑞)

𝑘−1,𝑖
(𝑖 =

1, 𝑘 − 1), 𝐽
(𝑞)

𝑘𝑖
(𝑖 = 𝑘 + 1, 𝑛) can be presented in the following

form:

𝐽
0𝑘
(𝜀) = 𝐽

0𝑘
+ 𝑂 (𝜀) , 𝐽

(𝑞)

𝑘−1,𝑖
(𝑡, 𝜀) = 𝐽

(𝑞)

𝑘−1,𝑖
(𝑡) + 𝑂 (𝜀) ,

𝑖 = 1, 𝑘 − 1,

𝐽
(𝑞)

𝑘𝑖
(𝑡, 𝜀) = 𝐽

(𝑞)

𝑘𝑖
(𝑡) + 𝑂 (𝜀) , 𝑖 = 𝑘 + 1, 𝑛,

(44)

where 𝐽
0𝑘

is as defined in Section 1, 𝐽(𝑞)
𝑘−1,𝑖

(𝑡) (𝑖 = 1, 𝑘 − 1) is
obtained from 𝐽

0𝑖
(𝑖 = 1, . . . , 𝑘 − 1) by replacing the (𝑘 − 1)th

row with the 𝑦(𝑞)
10
(𝑡) ⋅ ⋅ ⋅ 𝑦

(𝑞)

𝑛−1,0
(𝑡) row, and 𝐽

(𝑞)

𝑘𝑖
(𝑡) (𝑖 = 𝑘 + 1, 𝑛)

is obtained from 𝐽
0𝑖
(𝑖 = 𝑘 + 1, . . . , 𝑛) by replacing the 𝑘th

with the 𝑦(𝑞)
10
(𝑡) ⋅ ⋅ ⋅ 𝑦

(𝑞)

𝑛−1,0
(𝑡) row.

In view of (30) and (44) out of (43), the expression takes
the following form:

𝐽
(𝑞)

𝑘
(𝑡, 𝜀) = (−1)

1+𝑛
𝜇
𝑚1 (0)

𝜀𝑚1
(𝛼
1𝑚1

𝐽
(𝑞)

𝑘−1,1
(𝑡) + 𝑂 (𝜀)) + ⋅ ⋅ ⋅

+ (−1)
𝑘−1+𝑛

𝜇
𝑚𝑘−1 (0)

𝜀𝑚𝑘−1

× (𝛼
𝑘−1,𝑚𝑘−1

𝐽
(𝑞)

𝑘−1,𝑘−1
(𝑡) + 𝑂 (𝜀))

+ (−1)
𝑘+𝑛

𝑦
𝑛0
(𝑡)

𝜀𝑞
𝜇
𝑞

(𝑡) exp(1
𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

× (𝐽
0𝑘
+ 𝑂 (𝜀)) + (−1)

𝑘+1+𝑛

×
𝜇
𝑚𝑘+1 (0)

𝜀𝑚𝑘+1
(𝛼
𝑘+1,𝑚𝑘+1

𝐽
(𝑞)

𝑘,𝑘+1
(𝑡) + 𝑂 (𝜀)) + ⋅ ⋅ ⋅

+ (−1)
2𝑛
𝜇
𝑚𝑛 (0)

𝜀𝑚𝑛

× (𝛼
𝑛𝑚𝑛

𝐽
(𝑞)

𝑘𝑛
(𝑡) + 𝑂 (𝜀)) , 𝑞 = 0, 𝑛 − 1.

(45)
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Here the expression (−1)
1+𝑛

(𝜇
𝑚1(0)/𝜀

𝑚1)𝛼
1𝑚1

𝐽
(𝑞)

𝑘−1,1
(𝑡) is

dominant for small 𝜀. Then, considering condition (c), we get
the following asymptotic representation for 𝐽(𝑞)

𝑘
(𝑡, 𝜀):

𝐽
(𝑞)

𝑘
(𝑡, 𝜀) =

(−1)
𝑛+1

𝜀𝑚1

× [𝛼
1𝑚1

𝜇
𝑚1

(0) 𝐽
(𝑞)

𝑘−1,1
(𝑡)

+ (−1)
𝑘−1

𝜀
𝑚1−𝑞𝜇
𝑞

(𝑡) 𝑦
𝑛0
(𝑡) 𝐽
0𝑘

× exp(1
𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥)

+ 𝑂(𝜀 + 𝜀
𝑚1+1−𝑞 exp(1

𝜀
∫

𝑡

0

𝜇 (𝑥) 𝑑𝑥))] ,

𝑘 = 2, 𝑛, 𝑞 = 0, 𝑛 − 1.

(46)

Substituting (35) and (46) into formula (36), we obtain the
asymptotic formula (38) for the boundary functionsΦ(𝑞)

𝑘
(𝑡, 𝜀).

The proof of the lemma is complete.

5. Analytic Representation and
Estimates of the Solution

Consider the singularly perturbed boundary value problems
(1) and (2). The unique solution of the problems (1) and (2) is
found in the following form:

𝑦 (𝑡, 𝜆, 𝜀) = 𝑐
1
Φ
1
(𝑡, 𝜀) + ⋅ ⋅ ⋅ + 𝑐

𝑛
Φ
𝑛
(𝑡, 𝜀)

+
𝜆

𝜀
∫

𝑡

0

𝐾 (𝑡, 𝑠, 𝜀) ℎ (𝑠) 𝑑𝑠,

(47)

where Φ
𝑘
(𝑡, 𝜀), 𝑘 = 1, 𝑛 are the boundary functions, 𝐾(𝑡, 𝑠, 𝜀)

is the Cauchy function, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
are unknown consonants,

and 𝜆 is the required parameter. By a straightforward ver-
ification, one can show that the function 𝑦(𝑡, 𝜆, 𝜀), defined
by formula (47), is identical to (1). For the determination
of 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
, 𝜆, we substitute (47) into the boundary

conditions (b). Then, with regard to the boundary (27), we
obtain the following system of linear equations with respect
to 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
, 𝜆 as follows:

𝑐
𝑖
= 𝑎
𝑖
−

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗

𝜆

𝜀
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠, 𝜀) ℎ (𝑠) 𝑑𝑠, 𝑖 = 1, . . . , 𝑛,

(48)

𝜆𝐷 = 𝑎
𝑛+1

−

𝑛

∑

𝑖=1

𝑎
𝑖
𝐿
𝑛+1

Φ
𝑖
(𝑡, 𝜀) , (49)

where

𝐷 = 𝐷
𝑛+1

−

𝑛

∑

𝑖=1

𝐷
𝑖
𝐿
𝑛+1

Φ
𝑖
(𝑡, 𝜀) ,

𝐷
𝑖
= 𝜎
𝑖
+
1

𝜀

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

ℎ (𝑠)𝐾
(𝑗)

𝑡
(1, 𝑠, 𝜀) 𝑑𝑠, 𝑖 = 1, 𝑛 + 1.

(50)

We study the coefficient in (49) for 𝜆 and the right-hand
side of this equation as a function of 𝜀. Then, with regard to
(27), (35), (37), and (38), we obtain

𝐷 = 𝐷 + 𝑂 (𝜀) , (51)

𝑎
𝑛+1

−

𝑛

∑

𝑖=1

𝑎
𝑖
𝐿
𝑛+1

Φ
𝑖
(𝑡, 𝜀)

= 𝑎
𝑛+1

−

𝑛

∑

𝑖=2

𝑎
𝑖
𝐿
𝑛+1

𝐽
𝑖−1

(𝑡)

𝐽
01

+ 𝑂 (𝜀) .

(52)

From condition (d), 𝐷 ̸= 0. Therefore, for sufficiently small 𝜀,

𝐷 ̸= 0. (53)

Consequently, for sufficiently small 𝜀 > 0, (49) is uniquely
solvable and can be represented in the following form:

𝜆 = �̃� (𝜀) =
1

𝐷
(𝑎
𝑛+1

−

𝑛

∑

𝑖=1

𝑎
𝑖
𝐿
𝑛+1

Φ
𝑖
(𝑡, 𝜀)) , (54)

and from (51) and (52), the fair estimate for it is

�̃� (𝜀) = 𝜆
0
+ 𝑂 (𝜀) , (55)

where

𝜆
0
=

1

𝐷

(𝑎
𝑛+1

−

𝑛

∑

𝑖=1

𝑎
𝑖
𝐿
𝑛+1

𝐽
𝑖−1

(𝑡)

𝐽
01

) . (56)

Now, substituting (54) into (48), we explicitly determine

𝑐
𝑖
= 𝑎
𝑖
−

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗

�̃� (𝜀)

𝜀
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠, 𝜀) ℎ (𝑠) 𝑑𝑠, 𝑖 = 1, . . . , 𝑛.

(57)

Using (54), (57), and (50) out of (47), we obtain the
representation, and for the component 𝑦 of the problem
solutions (1) and (2),

𝑦 (𝑡, �̃� (𝜀) , 𝜀)

=

𝑛

∑

𝑖=1

𝑎
𝑖
Φ
𝑖
(𝑡, 𝜀) − �̃� (𝜀)

×

𝑛

∑

𝑖=1

(𝜎
𝑖
+

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗

𝜀
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠, 𝜀) ℎ (𝑠) 𝑑𝑠)

× Φ
𝑖
(𝑡 ⋅ 𝜀) +

�̃� (𝜀)

𝜀
∫

𝑡

0

𝐾 (𝑡, 𝑠, 𝜀) ℎ (𝑠) 𝑑𝑠.

(58)

Thus, the following theorem is valid.
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Theorem 8. Let conditions (a)–(d) be satisfied. Then, for
sufficiently small 𝜀 > 0 in a sufficiently small neighborhood of
the point 𝜆 = 𝜆

0
, a unique value of 𝜆 = �̃�(𝜀) can be determined

such that the pair (𝑦(𝑡, �̃�(𝜀), 𝜀), �̃�(𝜀)) is the unique solution for
the boundary value problems (1) and (2) on the interval [0, 1],
where 𝑦(𝑡, �̃�(𝜀), 𝜀) is given by formula (58) and �̃�(𝜀) is given by
formula (54).

Theorem 9. Let conditions (a)–(e) be satisfied. Then, for
sufficiently small 𝜀, the solution 𝑦(𝑡, 𝜀) of the boundary value
problems (1) and (2) and its derivatives on the interval 0 ≤ 𝑡 ≤

1 can be estimated as follows:

𝑦
(𝑞)

(𝑡, �̃� (𝜀) , 𝜀)


≤ 𝐶[

𝑎
1
− �̃�𝜎
1


⋅ (𝜀
𝑚1−𝑚2 + 𝜀

𝑚1−𝑞 exp(−
𝛾𝑡

𝜀
))

+

𝑛

∑

𝑖=2


𝑎
𝑖
− �̃�𝜎
𝑖


+

�̃�

max
0≤𝑡≤1

|ℎ (𝑡)| + 𝜀
𝑚1−𝑞

× exp(−
𝛾t
𝜀
)(

𝑛

∑

𝑖=2


𝑎
𝑖
− �̃�𝜎
𝑖


+

�̃�

max
0≤𝑡≤1

|ℎ (𝑡)|)] ,

𝑞 = 0, 𝑛 − 1,

(59)

where 𝐶 > 0 and 𝛾 > 0 are the constants independent of 𝜀.

Proof. Formulae (22), (37), and (38) together with (5) imply
the following estimates:


𝐾
(𝑞)

𝑡
(𝑡, 𝑠, 𝜀)


≤ 𝐶𝜀, 𝑞 = 0, 𝑛 − 2, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,


𝐾
(𝑛−1)

𝑡
(𝑡, 𝑠, 𝜀)


≤ 𝐶(𝜀 + exp(−

𝛾 (𝑡 − 𝑠)

𝜀
)) ,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,


Φ
(𝑞)

𝑖
(𝑡, 𝜀)


≤ 𝐶 ⋅ (1 + 𝜀

𝑚1−𝑞 ⋅ exp(−
𝛾𝑡

𝜀
)) , 𝑖 = 2, 𝑛,

𝑞 = 0, 𝑛 − 1, 0 ≤ 𝑡 ≤ 1,


Φ
(𝑞)

1
(𝑡, 𝜀)


≤ 𝐶 (𝜀

𝑚1−𝑚2 + 𝜀
𝑚1−𝑞 ⋅ exp(−

𝛾𝑡

𝜀
)) ,

𝑞 = 0, 𝑛 − 1, 0 ≤ 𝑡 ≤ 1.

(60)

By estimating solution (58) and taking into account (60),
we obtain (59), which completes the proof of the theorem.

Now, let us formulate the boundary conditions for the
following unperturbed (degenerate) equation:

𝐿
0
𝑦 = 𝐴

1
(𝑡) 𝑦
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝐴
𝑛
(𝑡) 𝑦 (𝑡) = ℎ (𝑡) , (61)

obtained from (1) within 𝜀 = 0. On the basis ofTheorem 9, we
must conclude that in (58), the coefficient of 𝑎

1
approaches

zero when 𝜀 → 0 and the coefficients of 𝑎
𝑖
, 𝑖 = 2, 𝑛 have

the order 𝑂(1). Therefore, the boundary conditions for the
solution of the unperturbed (61) are defined with help of the
boundary conditions (2), containing 𝑎

2
, . . . , 𝑎

𝑛+1
:

𝐿
2
𝑦 + 𝜎
2
𝜆 = 𝑎
2
, . . . , 𝐿

𝑛+1
𝑦 + 𝜎
𝑛+1

𝜆 = 𝑎
𝑛+1

. (62)

Next, we show that (61) and boundary conditions (62)
actually define the degenerate problem.

By analogy with (17) and (28) for the problems (51)
and (52), we introduce the initial function and boundary
functions:

𝐾 (𝑡, 𝑠) =
𝑊 (𝑡, 𝑠)

𝑊 (𝑠)

, Φ
𝑘−1

(𝑡) =
𝐽
𝑘−1

(𝑡)

𝐽
01

, 𝑘 = 2, 𝑛 (63)

where 𝐽
01

is the determinant (6), 𝐽
𝑘−1

(𝑡) = 𝐽
(0)

𝑘−1,1
(𝑡) is the

determinant from Lemma 7, 𝑊(𝑡, 𝑠) ≡ 𝑊
𝑛−1,0

(𝑡, 𝑠) is the
determinant from Lemma 4, and 𝑊(𝑠) ≡ 𝑊

𝑛0
(𝑠) is the

Wronskian determinant of the fundamental solution system
𝑦
𝑖0
(𝑠), 𝑖 = 1, 𝑛 − 1 of homogeneous degenerate equation (13),

which is obtained from 𝑊(𝑠) by replacing the (𝑛 − 1)th row
with the 𝑦

𝑖0
(𝑡), 𝑖 = 1, 𝑛 − 1 row.

Apparently, 𝐾(𝑡, 𝑠) is the Cauchy function satisfying the
homogeneous equation 𝐿

0
𝐾(𝑡, 𝑠) = 0 with respect to 𝑡 and

initial conditions 𝐾(𝑗)
𝑡
(𝑠, 𝑠) = 0, 𝑗 = 0, 𝑛 − 3, 𝐾

(𝑛−2)

𝑡
(𝑠, 𝑠) =

1, and Φ
𝑘
(𝑡), 𝑘 = 1, 𝑛 − 1 as the boundary functions of the

boundary value problems (61) and (62):

𝐿
0
Φ
𝑘
(𝑡) = 0, 𝐿

𝑖
Φ
𝑘
= 1 within 𝑖 = 𝑘 + 1,

𝐿
𝑖
Φ
𝑘
= 0 within 𝑖 ̸= 𝑘 + 1, 𝑖 = 2, 𝑛.

(64)

Theorem 10. Let conditions (a)–(d) be satisfied.Then, the pair
(𝑦(𝑡, 𝜆

0
), 𝜆
0
) is the unique solution of the nonhomogeneous

boundary-value problems (61) and (62) on the interval [0, 1],
where 𝜆

0
is expressed by formula (56) and 𝑦(𝑡, 𝜆

0
) is

𝑦 (𝑡, 𝜆
0
) =

𝑛

∑

𝑖=2

(𝑎
𝑖
− 𝜆
0
𝜎
𝑖
)Φ
𝑖−1

(𝑡)

− 𝜆
0

𝑛

∑

𝑖=2

Φ
𝑖−1

(𝑡)

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠

+ 𝜆
0
∫

𝑡

0

𝐾 (𝑡, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠.

(65)

Proof. We seek the solution (𝑦(𝑡, 𝜆), 𝜆) of the boundary value
problems (61) and (62) in the following form:

𝑦 (𝑡, 𝜆) = 𝑐
1
Φ
1
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛−1
Φ
𝑛−1

(𝑡)

+ 𝜆∫

𝑡

0

𝐾 (𝑡, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠,

(66)

where Φ
𝑘
(𝑡), 𝑘 = 1, 𝑛 − 1 are boundary functions, 𝐾(𝑡, 𝑠) is

the Cauchy function, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛−1
are unknown constants,
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and 𝜆 is the required parameter. It is easy to verify that
the function 𝑦(𝑡, 𝜆) identically satisfies (20). For the deter-
mination of 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛−1
, 𝜆, let us substitute (51) into the

boundary conditions (49).Then, with regard to the boundary
conditions (26), we obtain the following system of linear
equations with respect to 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛−1
, 𝜆:

𝑐
1
𝐿
𝑖
Φ
1
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝐿
𝑖
Φ
𝑛−1

(𝑡)

+ 𝜆 (𝜎
𝑖
+

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠) = 𝑎
𝑖
,

𝑖 = 2, 𝑛,

𝑐
1
𝐿
𝑛+1

Φ
1
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝐿
𝑛+1

Φ
𝑛−1

(𝑡)

+ 𝜆 (𝜎
𝑛+1

+

𝑟𝑛+1

∑

𝑗=0

𝛽
𝑛+1𝑗

∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠) = 𝑎
𝑛+1

.

(67)

Hence, with regard to (64), we have

𝑐
𝑖−1

= 𝑎
𝑖
− 𝜆 (𝜎

𝑖
+

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠) , 𝑖 = 2, 𝑛,

(68)
𝑛

∑

𝑖=2

𝑎
𝑖
𝐿
𝑛+1

Φ
𝑖−1

(𝑡)

+ 𝜆 (𝜎
𝑛+1

+

𝑟𝑛+1

∑

𝑗=0

𝛽
𝑛+1𝑗

∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠)

− 𝜆(

𝑛

∑

𝑖=2

(𝜎
𝑖
+

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠)

× 𝐿
𝑛+1

Φ
𝑖−1

(𝑡)) = 𝑎
𝑛+1

.

(69)

From (53), (58), and condition (d), we determine

𝜆 = 𝜆
0
=

1

𝐷

(𝑎
𝑛+1

−

𝑛

∑

𝑖=1

𝑎
𝑖
𝐿
𝑛+1

Φ
𝑖−1

(𝑡)) , (70)

where 𝐷 = 𝐷
𝑛+1

− ∑
𝑛

𝑖=2
𝐷
𝑖
𝐿
𝑛+1

Φ
𝑖−1

̸= 0, 𝐷
𝑖

= 𝜎
𝑖
+

∑
𝑟𝑖

𝑗=0
𝛽
𝑖𝑗
∫
1

0

(ℎ(𝑠)/𝐴
1
(𝑠))𝐾
(𝑗)

𝑡
(1, 𝑠)𝑑𝑠 (𝑖 = 1, 𝑛 + 1), and the

values of 𝜆
0
are given in Section 2.

Substituting (70) into (68), we definitely find

𝑐
𝑖−1

= 𝑎
𝑖
− 𝜆
0
(𝜎
𝑖
+

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠) ,

𝑖 = 2, 𝑛.

(71)

Now, using (70) and (71) out of (66), we obtain the
presentation (65). The proof of Theorem 10 is complete.

Theorem 11. Let conditions (a)–(e) be satisfied. Then, the
estimates


𝑦
(𝑞)

(𝑡, �̃�, 𝜀) − 𝑦
(𝑞)

(𝑡, 𝜆
0
)

≤ 𝐶 (𝜀 + 𝜀

𝑚1−𝑞 exp(−
𝛾 𝑡

𝜀
)) ,

𝑡 ∈ [0, 1] , 𝑞 = 0, 𝑛 − 1

(72)

are valid for sufficiently small 𝜀 > 0, where 𝑦(𝑡, �̃�, 𝜀) is the
solution to the problems (1) and (2), and 𝑦(𝑡, 𝜆

0
) is the solution

of the problems (61) and (62).

Proof. Let 𝑢(𝑡, 𝜀) = 𝑦(𝑡, �̃�(𝜀), 𝜀) − 𝑦(𝑡, 𝜆
0
), where 𝑦(𝑡, �̃�(𝜀), 𝜀)

is the solution of the problems (1) and (2) and 𝑦(𝑡, 𝜆
0
) is

the solution of the problems (61) and (62). We substitute the
variable 𝑦(𝑡, �̃�(𝜀), 𝜀) = 𝑢(𝑡, 𝜀) + 𝑦(𝑡, 𝜆

0
), which represents

the problems (1) and (2) together with (61) and (62) in the
following form:

𝐿
𝜀
𝑢 = −𝜀 ⋅ 𝑦

(𝑛)

(𝑡) ,

𝐿
𝑖
𝑢 =

𝑚𝑖

∑

𝑗=0

𝛼
𝑖𝑗
𝑢
(𝑗)

(0, 𝜀) +

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
𝑢
(𝑗)

(1, 𝜀) = 𝑂 (𝜀) ,

𝑖 = 2, . . . , 𝑛 + 1,

𝐿
1
𝑢 =

𝑚1

∑

𝑗=0

𝛼
1𝑗
𝑢
(𝑗)

(0, 𝜀) +

𝑟1

∑

𝑗=0

𝛽
1𝑗
𝑢
(𝑗)

(1, 𝜀)

= 𝑎
1
− 𝜎
1
�̃� (𝜀) − 𝐿

1
𝑦.

(73)

By applyingTheorem 9 to this problem, we obtain


𝑢
(𝑞)

(𝑡, 𝜀)

≤ 𝐶 (𝜀 + 𝜀

𝑚1−𝑞 exp(−
𝛾𝑡

𝜀
)) ,

𝑡 ∈ [0, 1] , 𝑞 = 0, 𝑛 − 1.

(74)

Now, we obtain the desired estimate (72).The proof of the
theorem is complete.

Thus, from Theorem 11, it follows that the solution
𝑦(𝑡, �̃�, 𝜀), �̃� of the boundary value problems (1) and (2)
approaches the solution 𝑦(𝑡, 𝜆

0
), 𝜆
0
of the degenerate prob-

lems (61) and (62) as the small parameter 𝜀 approaches zero:

lim
𝜀→0

�̃� (𝜀) = 𝜆
0
,

lim
𝜀→0

𝑦
(𝑞)

(𝑡, �̃�, 𝜀) = 𝑦
(𝑞)

(𝑡, 𝜆
0
) , 0 ≤ 𝑡 ≤ 1, 𝑞 = 0,𝑚

1
− 1,

lim
𝜀→0

𝑦
(𝑞)

(𝑡, �̃�, 𝜀) = 𝑦
(𝑞)

(𝑡, 𝜆
0
) , 0 < 𝑡 ≤ 1,

𝑞 = 𝑚
1
, 𝑚
1
+ 1, . . . , 𝑛 − 1.

(75)

Therefore, it follows that the problems (61) and (62) are
degenerate problems.

Apparently, passages to the limit (75) are not even in the
right neighborhood of the point 𝑡 = 0. If we specify the
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solution tendency of the original problems (1) and (2) to the
solution of degenerate problems (61) and (62), we learn the
nature of the growth of derivatives of the (1) and (2) problem
solutions in the neighborhood of the point 𝑡 = 0 for 𝜀 → 0.
For this purpose, we use the representations of (22), (37), and
(38) and formulae (58) and (65).Then, for the solution 𝑦(𝑡, 𝜀)
and its derivatives,𝑦(𝑞)(𝑡, 𝜀), 𝑞 = 0, 1, . . . , 𝑛−1 of the problems
(1) and (2) on the interval 0 ≤ 𝑡 ≤ 1, we obtain the following
asymptotic representation:

𝑦
(𝑞)

(𝑡, 𝜀) =

𝑛

∑

𝑖=2

(𝑎
𝑖
− 𝜆
0
𝜎
𝑖
)Φ
(𝑞)

𝑖−1
(𝑡)

− 𝜆
0

𝑛

∑

𝑖=2

Φ
(𝑞)

𝑖−1
(𝑡)

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

𝐾
(𝑗)

𝑡
(1, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠

+ 𝜆
0
∫

𝑡

0

𝐾
(𝑞)

𝑡
(𝑡, 𝑠)

𝐴
1
(𝑠)

ℎ (𝑠) 𝑑𝑠 + 𝜀
𝑚1−𝑞

⋅ e(1/𝜀) ∫
𝑡

0
𝜇(𝑥)𝑑𝑥

⋅
𝑦
𝑛0
(𝑡)

𝛼
1𝑚1

⋅
𝜇
𝑞

(𝑡)

𝜇𝑚1 (0)
⋅ Δ (𝜆

0
)

+ 𝜀
𝑛−1−𝑞

⋅ 𝜆
0
(−

ℎ (𝑡) ⋅ 𝜇
𝑞

(𝑡)

𝜇𝑛 (𝑡)
+ ℎ (0)

⋅
𝑢
𝑛
(𝑡) ⋅ 𝜇

𝑞

(𝑡)

𝑢
𝑛
(0) 𝜇
𝑛
(0)

⋅ e(1/𝜀) ∫
𝑡

0
𝜇(𝑥)𝑑𝑥

)

+ 𝑂(𝜀 + 𝜀
𝑚1+1−𝑞e(1/𝜀) ∫

𝑡

0
𝜇(𝑥)𝑑𝑥

) .

(76)

Here

Δ (𝜆
0
) =

Δ
0
(𝜆
0
)

𝛼
1𝑚1

𝐽
01

̸= 0, (77)

where Δ
0
(𝜆
0
) is the expression (9) from condition (d) as

Δ
0
(𝜆
0
)

=

𝑛

∑

𝑖=1

(−1)
1+𝑖

𝐽
0𝑖

× (𝑎
𝑖
− 𝜆
0
𝜎
𝑖
− 𝜆
0

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
∫

1

0

ℎ (𝑠)

𝐴
1
(𝑠)

𝐾
(𝑗)

𝑡
(1, 𝑠) 𝑑𝑠) .

(78)

It is easy to say that the representation (78) is expressed in
the following form:

Δ (𝜆
0
) =

Δ
0
(𝜆
0
)

𝛼
1𝑚1

𝐽
01

=
1

𝛼
1𝑚1

(𝑎
1
− 𝜆
0
𝜎
1
− 𝐿
1
𝑦
0
) ̸= 0. (79)

Now, from (79) and (76), it follows that the derivatives
𝑦
(𝑚−𝑗)

(𝑡, 𝜀), 𝑗 = 1, . . . , 𝑛 − 𝑚
1
− 1 at point 𝑡 = 0 have poles

for 𝜀:

𝑦
(𝑚1+𝑗)

(0, 𝜀) =
𝜇
𝑗

(0)

𝜀𝑗
(Δ (𝜆
0
) + 𝑂 (𝜀)) ,

𝑗 = 1, . . . , 𝑛 − 1 − 𝑚
1
,

(80)

and 𝑦
(𝑚1)(𝑡, 𝜀) at the point 𝑡 = 0 has the phenomenon of

the 𝑚
1
th-order initial jump. Moreover, the magnitude of the

jump is defined as

lim
𝜀→0

𝑦
(𝑚1) (0, �̃�, 𝜀) − 𝑦

(𝑚1) (0, 𝜆
0
)

= Δ (𝜆
0
) =

1

𝛼
𝑚1

(𝑎
1
− 𝜆
0
𝜎
1
− 𝐿
1
𝑦) .

(81)

Thus, for the parameters 𝑚
1
= fix ∈ {0, 1, . . . , 𝑛 − 1}, a

class exists for the restoration problem with an initial jump
from the position of a singularly perturbed problem.

6. Example, Remarks, and Conclusions

(1) Let us consider the example of the boundary value
problem exemplifying the problems (1) and (2) as

𝜀 ⋅ 𝑦


+ 𝑦


= 𝜆,

𝑦 (0, 𝜀) = 𝑎
0
+ 𝜆, 𝑦 (1, 𝜀) = 𝑎

1
+ 𝜆,

𝛼 ⋅ 𝑦 (1, 𝜀) + 𝛽𝑦


(1, 𝜀) = 𝑏 + 𝜎𝜆.

(82)

Obviously, the considered problems (82) satisfy all the
requirements described in Section 2.Then, the solution of the
problems (82) can be represented in the following form:

𝑦 (𝑡, 𝜀) = 𝜆 ⋅ 𝑡 + 𝑎
0
+ 𝜆 +

𝑎
1
− 𝑎
0

1 − e−1/𝜀
−

𝑎
1
− 𝑎
0

1 − e−1/𝜀
⋅ e−t/𝜀. (83)

According to (61) and (62), we formulate the degenerate
problem in the following form:

𝑦


= 𝜆,

𝑦 (1) = 𝑎
1
+ 𝜆, 𝛼 ⋅ 𝑦 (1) + 𝛽 ⋅ 𝑦



(1) = 𝑏 + 𝜎𝜆.

(84)

Then, the pair (𝑦(𝑡, 𝜆
0
), 𝜆
0
) is the unique solution for the non-

homogeneous boundary value problem (84) on the interval
[0, 1], where 𝜆

0
, 𝑦(𝑡, 𝜆

0
) are expressed as

𝑦 = 𝜆
0
𝑡 + 𝑎
1
, 𝜆

0
=

𝑏 − 𝛼𝑎
1

𝛼 + 𝛽 − 𝜎
. (85)

From (83), it follows that the derivative𝑦(𝑡, 𝜀) at the point
𝑡 = 0 has the pole for 𝜀:

𝑦


(0, 𝜀) = 𝑂(
1

𝜀
) . (86)
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Hence, 𝑦(𝑡, 𝜀) at the point 𝑡 = 0 has the phenomenon of a
first-order initial jump, and above all, the magnitude of the
initial jump is determined as

Δ = lim
𝜀→0

𝑦 (0, 𝜀) − 𝑦 (0) = 𝑎
0
+ 𝜆
0
− 𝑎
1
= 𝑎
0
+ 𝜆
0
− 𝐿
1
𝑦.

(87)

(2) The cases of 𝑛 − 1 = 𝑚
1
> 𝑚
2
≥ ⋅ ⋅ ⋅ ≥ 𝑚

𝑛
, 𝑛 − 1 =

𝑟
1
> 𝑟
𝑖
, and 𝑖 = 2, 𝑛 can be researched in accordance with the

above-represented scheme.
(3) We can use the same method for researching the

asymptotics of the solution of the boundary value problem
with a moving boundary:

𝜀𝑦
(𝑛)

+ 𝐴
1
(𝑡) 𝑦
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝐴
𝑛
(𝑡) 𝑦 = ℎ (𝑡) ,

𝑚𝑖

∑

𝑗=0

𝛼
𝑖𝑗
𝑦
(𝑗)

(0, 𝜀) +

𝑟𝑖

∑

𝑗=0

𝛽
𝑖𝑗
𝑦
(𝑗)

(𝜆, 𝜀) = 𝑎
𝑖
, 𝑖 = 1, . . . , 𝑛 + 1,

(88)

where 𝜆 is an unknown function of 𝜀.
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