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A method for approximating the solution of weakly singular Fredholm integral equation of the second kind with highly oscillatory
trigonometric kernel is presented. The unknown function is approximated by expansion of Chebychev polynomial and the
coefficients are determinated by classical collocation method. Due to the highly oscillatory kernels of integral equation, the
discretised collocation equation will give rise to the computation of oscillatory integrals. These integrals are calculated by using
recursion formula derived from the fundamental recurrence relation of Chebyshev polynomial. The effectiveness and accuracy of
the proposed method are tested by numerical examples.

1. Introduction

The Fredholm integral equations of second kind,

𝑦 (𝑥) + 𝜆∫

𝑏

𝑎

𝐾 (𝑥, 𝑡)

|𝑥 − 𝑡|
𝛼
𝑦 (𝑡) 𝑑𝑡 = 𝑓 (𝑥) ,

𝑥 ∈ [𝑎, 𝑏] , 0 < 𝛼 < 1,

(1)

where 𝐾(𝑥, 𝑡) is a continuous function and 𝑓(𝑥) is a given
function, have many applications in mathematical physics
and engineering, such as heat conduction problem, potential
problems, quantum mechanics, and seismology image pro-
cessing [1–4]. Particularly, when 𝐾(𝑥, 𝑥) ̸= 0 and 0 < 𝛼 < 1,
(1) is called weakly singular.

In most of the cases, the integral equation cannot be
done analytically and one has to resort to numericalmethods.
Many numerical methods, such as collocation method and
Galerkinmethod, have been developed to solve (1); for details
see [2, 5, 6]. These methods are well-established numerical
algorithms; however, standard version of these classicalmeth-
ods may suffer from difficulty for computation of (1), con-
taining highly oscillatory kernels since the computation of the
highly oscillatory integrals by standard quadrature methods
is exceedingly difficult and the cost steeply increases with
the frequency. Furthermore, Galerkin method requires many
double integrals when approximating the solution of integral

equation. Specially, when the kernel is highly oscillatory, it
requires the evaluation of many highly oscillatory double
integrals, which can become computationally expensive.

Recently, for weakly singular Volterra integral equations
of the second kind with highly oscillatory Bessel kernels, it
was found that the collocationmethods aremuchmore easily
implemented and can get higher accuracy than discontinuous
Galerkin methods under the same piecewise polynomials
space; for details see [7–10]. In addition, collocation method
only involves single integrals which are a little easier to evalu-
ate. Motivated by this fact, here we investigate the application
of collocation method for the solution of Fredholm integral
equation

𝑦 (𝑥) + 𝜆∫

𝑏

𝑎

𝑒
𝑖𝜔(𝑥−𝑡)

|𝑥 − 𝑡|
𝛼
𝑦 (𝑡) 𝑑𝑡 = 𝑓 (𝑥) ,

𝑥 ∈ [𝑎, 𝑏] , 𝛼 < 1, 𝜔 ≫ 1.

(2)

Here 𝑦(𝑥) is the unknown function and 𝑓(𝑥) is a given
function and assume that 𝜆 is not the eigenvalue of integral
equation, since for any finite interval [𝑎, 𝑏] it can be trans-
formed to interval [−1, 1] by linear transformation. In this
paper, we only consider the case of [𝑎, 𝑏] = [−1, 1].

On the other hand, when the unknown function is
approximated byChebychev polynomial, the discretization of
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the integral equation (2) by collocation method will give rise
to highly oscillatory integral which can be formulated as

∫

𝑏

𝑎

𝑒
(𝑖𝜔(𝑥−𝑡))

|𝑥 − 𝑡|
𝛼
𝑇𝑗 (𝑡) 𝑑𝑥, 𝑥 ∈ [𝑎, 𝑏] , 0 < 𝛼 < 1, (3)

where 𝑇𝑗(𝑥) denotes the Chebychev polynomials of the first
kind.

In last few years many efficient methods have been
devised for the evaluation of oscillatory integral, such as
asymptotic method [11], Filon-type method [12, 13], Levin’s
collocation method [14], modified Clenshaw-Curtis method,
Clenshaw-Curtis-Filon-type method [15], and generalized
quadrature rule [16], although some of these methods do not
involve Chebyshev polynomial. Piessens and Poleunis [17]
consider a simpler case of 𝛼 = 0 and use Chebyshev polyno-
mials to evaluate the integral by somewhat indirect method
involving a truncated infinite series of Bessel functions. The
evaluation of this infinite summation suggests a defect of this
method. An alternative procedure which avoids this infinite
series is the original Bakhvalo and Vasil’eva-Legendre work
involved in the evaluation of the integral

𝑀𝑖 (𝜔) = ∫

1

−1

𝑃𝑖 (𝑥) 𝑒
𝑖𝜔𝑥
𝑑𝑥, (4)

by recurrence relation, where𝑃𝑖(𝑥) denotes Legendre polyno-
mial. Sadly, this relation proved to be unstable in the forwards
direction for small 𝜔. In [18], Alaylioglu et al proposed
a simple alternative approach analogous to Newton-Cotes
based formulae. This method avoids the instability to a
certain degree compared with these two methods mentioned
above. We used the same idea and generalized it to the case
of weakly singular and calculated oscillatory integral (3).

This paper is organized as follows: in Section 2 we derive
some basic formulae and introduce some mathematical
preliminaries of the proposed method. In Section 3 we dis-
cuss the evaluation of the integrals occurring in collocation
equation. In Section 4 numerical experiments are conducted
to illustrate the performance of the proposed method.

2. Fundamental Relations

Firstly, by separation of real and imaginary part of 𝑦(𝑥) and
𝑒
𝑖𝑤(𝑥−𝑡), we transform the integral equation (2) into equivalent
systems of two linear integral equations of Fredholm in the
forms

𝑦1 (𝑥) + 𝜆∫

1

−1

cos (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼
𝑦1 (𝑡) 𝑑𝑡

− 𝜆∫

1

−1

sin (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼
𝑦2 (𝑡) 𝑑𝑡 = 𝑓1 (𝑥) ,

𝑦2 (𝑥) + 𝜆∫

1

−1

sin (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼
𝑦1 (𝑡) 𝑑𝑡

+ 𝜆∫

1

−1

cos (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼
𝑦2 (𝑡) 𝑑𝑡 = 𝑓2 (𝑥) ,

(5)

where 𝑦(𝑥) = 𝑦1(𝑥) + 𝑖𝑦2(𝑥), 𝑓(𝑥) = 𝑓1(𝑥) + 𝑖𝑓2(𝑥), and 𝑖 =
√−1.

Assume that y(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥))
𝑇 and f(𝑥) = (𝑓1(𝑥),

𝑓2(𝑥))
𝑇; then, systems of linear integral equations (5) can be

written in the matrix form

Iy (𝑥) + 𝜆∫
1

−1

K (𝑥, 𝑡) y (𝑡) 𝑑𝑡 = f (𝑥) , (6)

where

I = (1 0
0 1
) ,

K (𝑥, 𝑡) = (

cos (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼

− sin (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼

sin (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼

cos (𝜔 (𝑥 − 𝑡))
|𝑥 − 𝑡|

𝛼

).

(7)

Set 𝑦𝑖(𝑥) = T(𝑥)b𝑖, 𝑖 = 1, 2, where T(𝑥) = [𝑇0(𝑥),
𝑇1(𝑥), . . . , 𝑇𝑁(𝑥)], b𝑖 = [𝑏𝑖0, 𝑏𝑖1, . . . , 𝑏𝑖𝑁]

𝑇.
Hence, unknown functions can be expressed by

y (𝑥) = T𝐵, (8)

where

y (𝑥) = (𝑦1 (𝑥)
𝑦2 (𝑥)
) , T (𝑥) = (

T (𝑥) 0
0 T (𝑥)) ,

𝐵 = (
b1
b2
) .

(9)

Then, the aim is to find Chebyshev coefficients, that is,
the matrix 𝐵. We first substitute the Chebyshev collocation
points, which are defined by 𝑥𝑖 = cos(𝑖𝜋/𝑁), 𝑖 = 0, . . . , 𝑁,
into (6) and then rearrange a new matrix form to determine
𝐵:

IY + 𝜆K = F (10)

in whichK is the integral part of (6) and

I = (

I 0 ⋅ ⋅ ⋅ 0
0 I ⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ I

), Y =(

y (𝑥0)

y (𝑥1)
...

y (𝑥𝑁)

),

F =(

f (𝑥0)

f (𝑥1)
...

f (𝑥𝑁)

), K =(

IK (𝑥0)

IK (𝑥1)
...

IK (𝑥𝑁)

).

(11)

By substituting (8) into (10), the unknown coefficients can
be easily computed from this linear algebraic equations and
therefore we find the solution of integral equation (2).

3. Evaluation of the Integral

𝐼[𝜔, 𝛼, 𝑗, 𝑥]= ∫
1

−1
(𝑒
(𝑖𝜔(𝑥−𝑡))

/|𝑥−𝑡|
𝛼
)𝑇𝑗(𝑡)𝑑𝑡

The discretization of integral equation will lead to the
calculation of integral 𝐼[𝜔, 𝛼, 𝑗, 𝑥]. In this section, we will
derive the recursion formula to compute it efficiently from the
fundamental recurrence relation of Chebyshev polynomial.
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Figure 1: Example 1: the absolute error versus the 𝑥-coordinate for𝑁 = 4 (a),𝑁 = 8 (b), and𝑁 = 16 (c) with negative data ignored.

The Chebyshev polynomials are of the form

𝑇0 (𝑥) = 1

𝑇1 (𝑥) = 𝑥

...
𝑇𝑛 (𝑥) = 2𝑥𝑇𝑛−1 (𝑥) − 𝑇𝑛−2 (𝑥) , 𝑛 = 2, 3, . . . ,

(12)

and the coefficients 𝐶𝑖,j of 𝑥
𝑗 in 𝑇𝑖(𝑥) can be easily calculated

by the means of the recurrence relation

𝐶𝑖,𝑗 = 2𝐶𝑖−1,𝑗−1 − 𝐶𝑖−2,𝑗, 𝑖 ≥ 2, 𝑗 ≤ 𝑖. (13)

By expanding the Chebyshev polynomial 𝑇𝑖(𝑥) in terms of
powers of 𝑥, the integral 𝐼[𝜔, 𝛼, 𝑗, 𝑥] would be transformed
into the form of

𝐼 [𝜔, 𝛼, 𝑗, 𝑥] =

𝑗

∑

𝑘=0

𝐶𝑗,𝑘𝐼1 [𝜔, 𝛼, 𝑘, 𝑥] , (14)

where 𝐼1[𝜔, 𝛼, 𝑘, 𝑥] = ∫1
−1
(𝑒
(𝑖𝜔(𝑥−𝑡))

/|𝑥 − 𝑡|
𝛼
)𝑡
𝑘
𝑑𝑡.

By separation of real and imaginary part of 𝑒𝑖𝑤(𝑥−𝑡), (14) is
transformed into

𝐼1𝑐 [𝜔, 𝛼, 𝑗, 𝑥] = ∫

1

−1

𝑡
𝑗

|𝑥 − 𝑡|
𝛼
cos (𝜔 (𝑥 − 𝑡)) 𝑑𝑡,

𝐼1𝑠 [𝜔, 𝛼, 𝑗, 𝑥] = ∫

1

−1

𝑡
𝑗

|𝑥 − 𝑡|
𝛼
sin (𝜔 (𝑥 − 𝑡)) 𝑑𝑡,

(15)

whose main difficulty now is turning to the evaluation of the
following basic integrals:

𝑀1𝑐 [𝜔, 𝛼, 𝑗, 𝑥] = ∫

1

−1

𝑡
𝑗

|𝑥 − 𝑡|
𝛼
cos (𝜔𝑡) 𝑑𝑡,

𝑀1𝑠 [𝜔, 𝛼, 𝑗, 𝑥] = ∫

1

−1

𝑡
𝑗

|𝑥 − 𝑡|
𝛼
sin (𝜔𝑡) 𝑑𝑡.

(16)
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Figure 2: Example 2: the absolute error versus the 𝑥-coordinate for𝑁 = 4 (a),𝑁 = 8 (b), and𝑁 = 16 (c) with negative data ignored.

With substitution for definite integral and binomial the-
orem, (16) is equivalent to

𝑀1𝑐 [𝜔, 𝛼, 𝑗, 𝑥]

=

𝑗

∑

𝑘=0

𝐶
𝑘

𝑗
𝑥
𝑗−𝑘
[(−1)

𝑘
∫

𝑥+1

0

𝑡
𝑘−𝛼 cos (𝜔 (𝑥 − 𝑡)) 𝑑𝑡

+∫

1−𝑥

0

𝑡
𝑘−𝛼 cos (𝜔 (𝑥 − 𝑡)) 𝑑𝑡] ,

(17)

where 𝐶𝑘
𝑗
is number of combination and𝑀1𝑠[𝜔, 𝛼, 𝑗, 𝑥] can

be formulated analogy.
Efficient evaluation of (18) is based on accurate calcu-

lation of integrals in the formula which can be computed

explicitly by the incomplete Gamma function Γ(𝑧, 𝛼) [19];
that is,

∫ 𝑡
𝜇−1 cos (𝜔𝑡) 𝑑𝑡

=
1

2
[(𝑖𝜔)
−𝜇
Γ (𝜇, 𝑖𝜔𝑡) + (−𝑖𝜔)

−𝜇
Γ (𝜇, −𝑖𝜔𝑡)] ,

(18)

∫ 𝑡
𝜇−1 sin (𝜔𝑡) 𝑑𝑡

=
𝑖

2
[(𝑖𝜔)
−𝜇
Γ (𝜇, 𝑖𝜔𝑡) − (−𝑖𝜔)

−𝜇
Γ (𝜇, −𝑖𝜔𝑡)] ,

(19)

in which 𝜇 > 0, 𝑥 > 0; for details see ([20], pp 215).
Once the integral 𝐼[𝜔, 𝛼, 𝑗, 𝑥] is obtained, by substituting

into (10), the coefficient matrix is derived; then, we can
compute the solution of integral by solving these linear
algebraic equations.



Journal of Applied Mathematics 5

Table 1: Approximations for 𝑦(𝑥) + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

0.5
)𝑦(𝑡)𝑑𝑡 = 𝑒

𝑥 with 𝜔 = 103.

𝑥 cos(𝜋) cos(3𝜋/4) cos(0)
𝑦
4

1
0.351696035495271 0.459037927481918 0.924223909091303

𝑦
8

1
0.351696947581043 0.459033811940511 0.924224547405338

𝑦
16

1
0.351741610883315 0.459036527929146 0.924226969620880

𝑦
4

2
0.0141286409694892 0.000146310591227839 −0.00107727880701281

𝑦
8

2
0.0141193392298137 0.000145019893750479 −0.00107593754108643

𝑦
16

2
0.0140583682955762 0.000144178555797097 −0.00106881635211410

Table 2: Approximations for 𝑦(𝑥) + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

0.5
)𝑦(𝑡)𝑑𝑡 = 𝑒

𝑥 with 𝜔 = 103.

𝑥 cos(𝜋/4) 1

𝑦
4

1
1.88249404678421 2.61059423521207

𝑦
8

1
1.88248275737555 2.61059120470589

𝑦
16

1
1.88248361661370 2.61073031676337

𝑦
4

2
0.00323202027752064 −0.0995508315886191

𝑦
8

2
0.00321634589900894 −0.0994917961267987

𝑦
16

2
0.00319500282444326 −0.0993143176430846

4. Numerical Examples

In this section, we give some numerical examples to illustrate
the performance of proposed method. In all the following
examples,𝑁+1 is the number of mesh points, 𝑦𝑁

𝑖
(𝑥) denotes

the approximate solution, where 𝑁 is the number of terms
of the Chebyshev series, and 𝑦(𝑥) denotes the exact solution,
respectively. All the computations have been performed by
using Matlab R2012a on a 2.5GHz PC with 2GB of RAM.

Example 1. We consider 𝑦(𝑥) + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

𝛼
)𝑦(𝑡)𝑑𝑡 =

𝑓(𝑥) and set 𝑓(𝑥) = 1 + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

𝛼
)𝑑𝑡; then, the

solution of which is

𝑦 (𝑥) = 1. (20)

We plot the absolute error |𝑦(𝑥) − 𝑦(𝑥)| by Matlab 2012a
internal function ezplot. Specially, for 𝑁 = 4, with 𝜔 = 103
and 𝛼 = 0.5, solve linear algebraic equations (10); it can be
found that the approximate solutions are

𝑦1 (𝑥) = 0.9999999996 − 0.110 × 10
−15
𝑥 + 0.281 × 10

−9
𝑥
2

+ 0.323 × 10
−15
𝑥
3
+ 0.563 × 10

−10
𝑥
4
,

𝑦2 (𝑥) = 0.460 × 10
−14
− 0.329 × 10

−9
𝑥 + 0.554 × 10

−11
𝑥
2

+ 0.322 × 10
−9
𝑥
3
− 0.555 × 10

−11
𝑥
4
.

(21)

It is easy to see from Figure 1 that the proposed method is
converging and we only need𝑁 = 4 so we could achieve high
accuracy.

Example 2. We consider 𝑦(𝑥) + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

𝛼
)𝑦(𝑡)𝑑𝑡 =

𝑓(𝑥) and set 𝑓(𝑥) = 𝑒𝑥 + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

𝛼
)𝑒
𝑡
𝑑𝑡; then, the

solution of which is
𝑦 (𝑥) = 𝑒

𝑥
. (22)

In this case, for 𝑁 = 4, with 𝜔 = 1000 and 𝛼 = 1/3, the
approximate solutions are

𝑦1 (𝑥) = 1.000000001 + 0.9956819990𝑥 + 0.4992866904𝑥
2

+ 0.1795192648𝑥
3
+ 0.04379395375𝑥

4
,

𝑦2 (𝑥) = −0.530 × 10
−7
+ 0.189 × 10

−7
𝑥 + 0.426 × 10

−6
𝑥
2

− 0.246 × 10
−7
𝑥
3
− 0.420 × 10

−6
𝑥
4
.

(23)

It is obvious to see from Figure 2 that the proposed
method is efficient and could achieve high accuracy with little
number of collocation points.

Example 3. For a general case, we consider
𝑦(𝑥) + ∫

1

−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

𝛼
)𝑦(𝑡)𝑑𝑡 = 𝑒

𝑥 and set 𝛼 = 0.5.
Although the solution of this equation is unknown, we can
verify the calculation precision of the method to a certain
degree by comparing the approximate evaluation at mesh
points.

In this case, for 𝑁 = 4, with 𝜔 = 1000 and 𝛼 = 0.5, the
approximate solutions are
𝑦1 (𝑥) = 0.9242239091

+ 0.8836218495𝑥 + 0.4292470859𝑥
2

+ 0.2458272504𝑥
3
+ 0.1276741404𝑥

4
,
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Table 3: Approximations for 𝑦(𝑥) + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

0.5
)𝑦(𝑡)𝑑𝑡 = 𝑒

𝑥 with 𝜔 = 106.

𝑥 cos(𝜋) cos(3𝜋/4) cos(0)
𝑦
4

1
0.367419631536920 0.491835233010361 0.997500711679274

𝑦
8

1
0.367419631541538 0.491835233006225 0.997500711679218

𝑦
16

1
0.367419632527633 0.491835233064998 0.997500711678921

𝑦
4

2
0.000458466865252363 0.150404190 × 10

−5
−0.219327280 × 10

−5

𝑦
8

2
0.000458466860662437 0.150403636 × 10

−5
−0.219326739 × 10

−5

𝑦
16

2
0.000458463698666909 0.150390826 × 10

−5
−0.219326736 × 10

−5

Table 4: Approximations for 𝑦(𝑥) + ∫1
−1
(𝑒
𝑖𝜔(𝑥−𝑡)
/|𝑥 − 𝑡|

0.5
)𝑦(𝑡)𝑑𝑡 = 𝑒

𝑥 with 𝜔 = 106.

𝑥 cos(𝜋/4) 1

𝑦
4

1
2.02304108762491 2.71487514654707

𝑦
8

1
2.02304108760947 2.71487514654071

𝑦
16

1
2.02304108780835 2.71487515460854

𝑦
4

2
0.384042582 × 10

−5
−0.00339813438891857

𝑦
8

2
0.384040621 × 10

−5
−0.00339813431478428

𝑦
16

2
0.3840356665 × 10

−5
−0.00339813322237100

𝑦2 (𝑥) = −0.001077278807 + 0.06120358877𝑥

+ 0.05269959347𝑥
2
− 0.1180433250𝑥

3

− 0.09433340997𝑥
4
.

(24)

It is also easy to see from Tables 1, 2, 3, and 4 that the
presentedmethod is efficient and accurate, although the exact
solution is unknown.

5. Conclusion

In this paper, we explore quadrature methods for weakly
singular Fredholm integral equation of the second kind
with oscillatory trigonometric kernels and present colloca-
tion methods with Chebyshev series for calculation of the
solution. For integral equationwith highly oscillatory kernels,
the standard collocation methods with classical quadrature
methods are not suitable for the numerical approximation
of the solution of integral equation, since the computation
of the highly oscillatory integrals by standard quadrature
methods is exceedingly difficult and the cost steeply increases
with the frequency. Based on the recursion formula derived
in Section 3, we compute the highly oscillatory integrals
occurring in collocation equation, directly and efficiently.
Numerical examples demonstrate the performance of algo-
rithm.
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