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Due to the disturbance of unexpected effects and adverse weather conditions, transit supply and demand manifests many
uncertainties. In this paper, we take account of these uncertainties and propose a transit fare structure design model including
both ground and underground public transportation. Such transit fare design problem is described through bilevel programming,
inwhich the upper level is the transportation authority’s transit fare structure decision aiming tominimize the transit network’s total
travel and operation cost, while the lower level is a transit network assignmentmodel considering supply and demand uncertainties
that influence passengers’ travel choice decisions. A heuristic algorithm is developed to solve the problem, and a numerical example
is presented to illustrate the application. We get some important results: (1) a diversified fare structure considering uncertain
weather’s impact is quite necessary; (2) when the value of time is at a high level, metro fare should be higher than bus fare; (3)
the optimal metro and bus fare should be close under an extremely adverse weather condition; (4) fare structure could be quite
different with varied value of time.

1. Introduction

Transit service plays a vital role in urban transport. Nowa-
days, road traffic congestion, environmental contamination
caused by motor vehicle exhaust emission, and other prob-
lems in transportation system emerging together with further
urbanization and economic growth have been gradually
impeding and dragging down cities’ development. To deal
with these problems and alleviate road capacity pressure,
transit service should be greatly improved so that more and
more residents are attracted to travel by public transport and
much less private car mode to choose.

According to the investigation of the Bureau of Statistics
in China, 65.5% of residents in Shanghai choose to commute
by public transit. However, it takes them 50.4 minutes one
way on average, and 80% of the interviewees’ cost per day is
no less than RMB 5 yuan. The degree of satisfaction in urban
transit service is not that high, and residents have much great
intention in traveling by private car.

Both time andmonetary cost are main expenditure terms
that people consider. Besides, the designation of transit line,

location and number of transit stops, condition of vehicle
devices such as air conditioners, transit service, conveniences
for getting on and off ride, and others are all factors that
could affect travelers’ decisions inmode and route choice.We
hope transit services could be safe, efficient, convenient, and
with expected accuracy. But in reality, there is still a huge gap
needed to be narrowed. In order to improve public transit
services, operation management needs to be improved while
the supply-demand contradiction should be coordinated.

Transit service demand is influenced by travelers’ income
level, travel cost (including transit fare), service level, comfort
level, and car ownership [1–3]. Other travel modes, mainly
private cars, electric motor cars, bicycles, and walk mode,
can be regarded as the competitors of transit service [4]. In a
word, transit demand can be affected to be stochastic accord-
ing to many influencing factors and diversified competitive
travel modes.

Recently, many researchers use schedule-based approach
to formulate transit assignment problem. For example, Tong
and Wong [5] developed a stochastic transit assignment
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model using a dynamic schedule-based network and illus-
trated how it could be used to measure the performance of an
urbanmetro system,while Poon et al. [6] focused on the route
choice problems of travelers in a congested, dynamic, and
schedule-based transit network. However, just as Tong et al.
[7] pointed out, there are advantages in adopting a schedule-
based approach when the transit vehicles are known to oper-
ate quite close to preannounced schedules and the vehicle
speeds are not greatly affected by traffic conditions. Nuzzolo
andCrisalli [8] also defined that the schedule-based approach
requires explicit treatment for time-dependent segmentation
of origin/destination matrix. Schedule-based approach can
manage each vehicle in a more micro way, which is what
frequency-based approach could not do; however, due to the
lack of the basic requirement of the data and because the goal
of this paper is not to deal with time-dependent analysis, we
choose frequency-based approach which is often used for the
strategic and long-range planning of the transit systems.

Uncertainty caused by unexpected accidents, not-info-
rmed events, traffic regulations violations, and adverse
weather conditions such as dense fog, rainstorm, or snow also
has great impact on transport network. Since unreliability
has gradually become one of the major problems in trans-
portation system [9], considering uncertainty is a necessity.
However, the existing studies so far do not have much that
covered the impact of the effects of uncertainty on urban
transport. It is easy to find out that, in adverse weather
conditions, the amount of outdoor activities is deduced, and
most of unnecessary travels are cancelled. Transport demand
would be changed greatly while the weather is not supportive.
Therefore, demand elasticity has been an important factor
that should be taken into consideration in transportation
science research field.

Not only is the transit demand affected to be uncertain
in adverse weather conditions, but also travel time is greatly
influenced to be much unreliable. Variations and reliability
of travel time have been studied for years from different
perspectives, such as taking late arrival penalty into route cost
[10] or considering travel time budget which depend upon
travelers experience and risk aversion attitude [11]. Jackson
and Jucker [12] and Abdel-Aty et al. [13] found that reliability
is an important element that affects travelers’ route choice
decisions. Zhou and Chen [14] examined three different user
equilibrium models, including traditional user equilibrium
model, travel time reliability-based user equilibrium model,
and 𝛼-reliable mean excess travel time user equilibrium
model. They found that the latter two models are better
in handling travelers’ route choice decisions process under
variable travel time. Siu and Lo [15] assumed both link
capacity and demand are stochastic and divide the uncertain
demand into two parts: regular travels by commuters and
irregular trips by infrequent travelers. The two different
groups have different travel behaviors, and the uncertain
travel time is explained as a summation of expected travel
time and travel time margin.

There are several means to deal with the uncertainties
of transportation network, for example, to reduce the total
travel cost through pricing designation or changing network
capacity. Transit fare structure is one of the major factors

that could help adjust transit demand and its assignment
while improving residents’ and transit operators’ satisfaction
and finally raising social welfare level. The optimization and
design of transit fare structure have been studied over the
years.

From the economic perspective, Mohring [16, 17]
explained public transportation service under fixed demand
by theories in microeconomics and Turvey and Mohring
[18] discussed travel cost, frequency, unconstrained fare, and
fare under the constraint of transit operators’ revenue, but
they did not give us a pricing model; we cannot quantify
a reasonable fare value from their analysis of those factors’
effect on each other. Cervero [19] considered social equity,
discussed the difference between flat fare and differentiated
fare structure through empirical studies of several districts’
fare policy, and drew a conclusion that distance-based
and time-based fare structure is better than flat fare while
focusing on social equity, but flat fare has its strengths that
public transportation authorities should take into account in
many aspects.

From the network equilibrium perspective, Lam et al.
[20, 21] proposed user equilibrium assignmentmodel consid-
ering congestion effect, overload delays, capacity constraint,
and elastic frequency; based on these, Zhou and Lam [22]
and Li et al. [23] studied fare structure design by bilevel
programming, and line capacity constraint and transit ser-
vice reliability in different market regimes are, respectively,
further and deeper considerations.

Uncertainty in transit network leads to variations of in-
vehicle travel time, waiting time, walking time, and other
travel costs. The focus of most previous papers which
consider uncertainty in transport network is the variability
of travel time; some traditional studies considered mainly
the mean travel time, and some scholars considered more
the variance of travel time; the tradeoff between mean and
variance of travel time depends upon travelers’ risk aversion
attitude.Thus, choice decision in transit network with uncer-
tainty ismuchmore complicated.The existing studies had not
explicitly proposed an effective and reasonable fare structure
considering adverse weather conditions and the uncertain
demand under that situation. Li et al. [24] studied a network-
based model which incorporated the unreliability of transit
services and further discussed the effects of unreliability on
optimal fares and the corresponding market. Little had they
mentioned the specific fare structure designation features
under adverse weather conditions and paid attention to
different levels of impact of different weather. For example,
while in a rain storm weather condition, for the higher
reliability, travelers muchmore prefer to travel by rail than by
bus. Thus, the demand assignment would be quite different
from that of the normal weather condition. To adjust the
uncertain demand under such conditions, transit fare is a
powerful tool. Therefore, uncertain demand should be taken
into account in models, especially under adverse weather
conditions. Only considering the unreliability of travel time
cannot exemplify enough true travel conditions of reality.

This paper tries to model passengers’ choice decision
behavior under adverse weather conditions and propose an
optimal fare structure considering the elastic demand under
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adverse weather conditions, where the decision variable is
transit fare. Catching the phenomenon that travelers are
more likely to travel by metro than by bus in adverse
weather conditions, the main objective and contribution of
this research is to specify an appropriate transit fare structure
under adverse weather conditions, so that a more reasonable
pricing of metro and bus can play an important role in transit
network demand management. And at the same time the
transit fare policy can be enriched and ticket family with
more fare classes is amplified. In the optimization model,
the upper level subprogrammedetermines the optimal transit
fare in transit network, while the lower level subprogramme
determines transit route choice and passenger flows with
elastic demand.The system-wide objective functions are used
to minimize the total travel cost and operation cost.

The remainder of this paper is organized as follows.
In Section 2, some basic concepts and assumptions are
described and explained. Section 3 presents the model for-
mulation. Section 4 provides a numerical example to illus-
trate the application of the proposed model. The problem
solving algorithm is presented in Section 5. Finally, conclu-
sions and implications are given in Section 6.

2. Preliminary Basic Considerations

2.1. Network Representation and Basic Concepts. To better
present the problem, we should first give some explanations
on the basic concepts.

(1) Transit Network. A set of transit lines and a set of stops
(stations).

(2) Transit Line. A set of vehicles that keep on running
between two transit stops. It is always described by
transit service frequency.

(3) Transit Route. A feasible path for passengers to travel
between any given origin and destination (OD pair).

(4) Transit Link (Line Section). The section of transit line
between two consecutive stops.

We use the transit network tested by Nguyen and Dupius
[25] as is shown in Figure 1. The transit network contains 13
transit nodes (transit stops). There are 19 line sections and
four OD pairs in the network: (1, 2), (1, 3), (4, 2), and (4, 3). In
this paper, we consider a transit network comprising metro
and bus. Travelers need to walk from origin to transit station,
from transit station to destination, and from transit station to
station at transfer node. Sometimes, there are several transit
lines running on the same transit route sections. These lines
share some same stations and can be regarded as attractive
lines.

2.2. Notations andAssumptions. Thenotations used through-
out this paper are presented as follows:

𝐺(𝑁, 𝑆) : a transit network, with node (stop/station) set𝑁 and
line section set 𝑆,
𝑔
𝑤
: travel demand of OD pair 𝑤,

𝑔
0

𝑤
: the potential demand of OD pair 𝑤,
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Figure 1: An example of transit network.

𝑅
𝑤
: the set of feasible routes associated with the OD

pair 𝑤,
𝑊: set of all OD pairs,
𝐴
𝑠
: set of attractive lines on transit link 𝑠,

𝜋
𝑤
: parameter of demand sensitivity to travel disutil-

ity between OD pair 𝑤,
𝑃
𝑤

𝑟
: the probability of passenger amounts that choose

transit route 𝑟 between OD pair 𝑤,
𝑡
0

𝑠
: in-vehicle travel time of transit 𝑠 in the general BPR

function,
𝑢
𝑤

𝑟
: expected travel disutility on transit route 𝑟

between OD pair 𝑤,
𝑢
𝑤

𝑟
(𝑖): expected travel disutility on transit route 𝑟,

𝑁
𝑙
(𝑖): number of vehicles on transit line 𝑙 under

weather category 𝑖,
𝑃
󸀠

𝑖
: the actual occurrence probability of weather cate-

gory 𝑖,
ℎ
𝑤

𝑟
: passenger flow of route 𝑟 ∈ 𝑅

𝑤
OD pair 𝑤,

V
𝑠
: passenger flow on transit link 𝑠,

V𝑙
𝑠
: passenger flow of transit line 𝑙while passing link 𝑠,

𝛿
𝑠𝑟
: variable of 0-1 (it equals 1 if link 𝑠 is on route 𝑟,

and 0 otherwise),
𝐶
𝑠
: capacity of transit link 𝑠,

𝜂
𝑙

𝑠
: probability of travelers choosing transit line 𝑙 on

transit link 𝑠,
fr
𝑙
: nominal frequency of transit line 𝑙,

fr
𝑙
(𝑖): frequency of line 𝑙 under weather category 𝑖,

𝑘
𝑙
: vehicle capacity of transit line 𝑙,

𝑇
𝑤

𝑟
: in-vehicle travel time of transit route 𝑟 between

OD pair 𝑤,
𝑇
𝑤𝑠
: waiting time on transit link 𝑠,

𝑇
𝑤𝑘𝑠

: walking time on transit link 𝑠,
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𝑈𝐶
𝑠
: the discomfort of transit link 𝑠,

𝑈𝐶
𝑙

𝑠
: the discomfort of transit line 𝑙 on transit link 𝑠,

𝑡𝑝
𝑠
: transit fare on transit link 𝑠,

𝑡𝑝
𝑙

𝑠
: transit fare of transit line 𝑙 on transit link 𝑠,

𝑝
𝑏
: flat fare of bus lines,

𝑝
𝑢
: flat fare of metro train lines,

p
𝑏
: vector of flat fare of bus lines,

p
𝑢
: vector of flat fare of metro train lines.

For the simplicity of descriptions, we assume the follow-
ing.

(1) The travel demand between each OD pair is assumed
to be influenced by transit service level and travel cost.
Travelers may change their travel plans according
to different travel information, such as the weather
forecast. The OD demand then can be defined to be
a function of the expected minimum utility under
adverse weather conditions.

(2) It is assumed that the adverse weather conditions will
decrease road capacity and increase the walking time
and in-vehicle travel time and discomfort.

(3) There is only one transit service operator, that is,
one transit service company. The fare structure is
determined by the service operator under guide and
control of the government.

(4) Travelers have the information of weather condition
and road condition. Each of them has their own travel
plan and will not change their route choice en-route.

(5) Besides, only single-class passengers are considered.
This means that there is no difference in the impor-
tance of time value among passengers, and passengers
who travel different distances would regard transit
fare as flat and transit services as the same.

2.3. Stochastic Passenger Flow Distribution. As previously
discussed, travelers’ income levels, travel cost, service level,
comfort level, and car ownership are the main factors that
influence transit service demand. By taking into considera-
tion adverse weather conditions, the uncertainty of transit
demand ismuch greater.TheODdemandwill change accord-
ing to different weather forecast, especially when there will
be adverse weather conditions hindering some unessential
outdoor activities. We assume the OD demand is elastic;
when travel cost increases, the total demand decreases.
According to random utility theory, the expected minimum
travel disutility [26, 27] is

𝑆
𝑤
= −

1

𝜃

ln ∑

𝑟∈𝑅
𝑤

exp (−𝜃𝑢
𝑟
) , ∀𝑤 ∈ 𝑊, (1)

where parameter 𝜃 > 0 represents sensitivity of travelers’
perception error on travel disutility. A greater 𝜃 value means
the perception error is smaller. We assume the potential
transit network demand is 𝑔0

𝑤
. Then for the actual demand

between OD pair 𝑤, in logit-based route choice transport
network, we have

𝑔
𝑤
= 𝑔
0

𝑤
exp (−𝜋

𝑤
𝑆
𝑤
) , (2)

where 𝑆
𝑤
is the expected minimum disutility of OD pair 𝑤.

Thus the passenger flow on transit route 𝑟 should be

ℎ
𝑤

𝑟
= 𝑔
𝑤
𝑃
𝑤

𝑟

𝑔
𝑤
= ∑

𝑟∈𝑅
𝑤

ℎ
𝑤

𝑟
, 𝑤 ∈ 𝑊,

(3)

where 𝑃𝑤
𝑟

represents the probability of passenger amounts
that choose transit route 𝑟:

𝑃
𝑤

𝑟
=

exp (−𝜃𝑢
𝑟
)

∑
𝑟∈𝑅
𝑤

exp (−𝜃𝑢
𝑟
)

, ∀𝑟 ∈ 𝑅
𝑤
, 𝑤 ∈ 𝑊. (4)

Then the passenger flow on transit link 𝑠 should be

V
𝑠
= ∑

𝑤∈𝑊

∑

𝑟∈𝑅
𝑤

𝛿
𝑠𝑟
ℎ
𝑤

𝑟
. (5)

3. Model Formulation

Travelers make their transit route choice decision by con-
sidering in-vehicle travel time, waiting time, walking time,
in-vehicle crowding discomfort, transfer convenience, and
transit fare. Thus, the disutility of transit route section (link)
is a summation of these costs:

𝑢
𝑠
= 𝛼 (𝑇

𝑠
+ 𝑇
𝑤𝑠
+ 𝑇
𝑤𝑘𝑠

) + 𝛼𝑈𝐶
𝑠
+ 𝑡𝑝
𝑠
, (6)

where 𝛼 is the monetary value of time. We assume the fare
charged on the same transit link is a constant value.

3.1. Transit Route Disutility and Weather’s Impact. (1) Walk-
ing time on both ends of origin and destination is usually
neglected in most researches; however, as we consider the
adverse weather conditions’ impact, the walking time could
be longer when there is a storm. So the walking time could be
presented as

𝑇
𝑤𝑘𝑠

= 𝑇
𝑤𝑘𝑠

𝜍 (𝑖) , (7)

where 𝜍(𝑖) ≥ 1 is a scaling function under weather condition
𝑖. 𝑇
𝑤𝑘𝑠

is a constant value, representing the nominal walking
time on each 𝑠 ∈ 𝑆. Since besides origin and destination
there is walking time cost at any transfer node, we define the
walking time for each transit link.

(2) The in-vehicle travel time includes the time that
travelers spend since boarding the bus or train till getting
off. Since there is always different running speed which
is affected by road or environment conditions and driver’s
driving behavior or any other uncertain factors, the in-vehicle
time is a randomvariable.While considering adverse weather
conditions’ impact, it is a function of weather category 𝐼 (𝑖 =
1, 2, 3, 4, 5) for bus. Formetro train, since the in-vehicle travel
time is much more reliable, it is rarely influenced by weather
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condition.Thus the variation of travel time for metro is much
smaller unless there is a need to slow down considering
running safety when there is black storm or other severe
adverse weather conditions. Follow the GBPR function in
Lam et al. [28] and Sumalee et al. [4]:

𝑇
𝑙

𝑠
= 𝑔
𝑡
0

𝑠

(𝑖) 𝑡
0

𝑠
+ 𝛽
𝑠

1

𝑔
𝐶
𝑠

(𝑖) 𝐶
𝑠

(V𝑙
𝑠
)

𝑧

, ∀𝑠 ∈ 𝑆, (8)

where 𝑔
𝑡
0

𝑠

(𝑖) and 𝑔
𝐶
𝑠

(𝑖) are, respectively, the scaling functions
of free flow travel time and link capacity under weather
condition 𝑖. 𝛽

𝑠
and 𝑧 are the parameters in general BPR

function. 𝐶
𝑠
is the link capacity. Consider

𝑇
𝑠
= ∑

𝑙∈𝐴
𝑠

𝜂
𝑙

𝑠
𝑇
𝑙

𝑠
. (9)

The in-vehicle travel time on transit link 𝑠 is a weighted
average of all 𝑇𝑙

𝑠
of attractive lines. 𝜂𝑙

𝑠
is the probability of

travelers choosing transit line 𝑙:

𝜂
𝑙

𝑠
=

fr
𝑙
(𝑖)

∑
𝑙∈𝐴
𝑠

fr
𝑙
(𝑖)

, ∀𝑙 ∈ 𝐴
𝑠
, 𝑠 ∈ 𝑆. (10)

(3) The waiting time at transit station depends upon the
distribution of passenger arrival and the arrival frequency of
transit vehicle on transit link 𝑠 [20, 29], and waiting time is
assumed to follow

𝑇
𝑤𝑠
(𝑖) =

1

∑
𝑙∈𝐴
𝑠

fr
𝑙
(𝑖)

. (11)

(4) Crowding discomfort in transit vehicles is gradually
becoming an important factor in making transit route choice
decisions. It is generally more comfortable in metro trains
than in bus because of the steadier running. According to
previous studies [30], crowding cost function is a product of
in-vehicle travel time and average crowding cost per unit time
which is an increasing function of passenger number in the
vehicle:

𝑈𝐶 (𝑛, 𝜏) = 𝑔 (𝑛) 𝜏, (12)

where 𝑛 represents the amount of passengers and 𝜏 represents
the in-vehicle travel time, with 𝑔(𝑛) ≥ 0 and 𝑔(0) = 0.

In this paper we assume the crowding cost function is
linear:

𝑈𝐶
𝑙

𝑠
= (𝛽
0
+ 𝛽
1
(V𝑙
𝑠
− 𝑘
𝑙
)) 𝑇
𝑙

𝑠
, ∀𝑙 ∈ 𝐴

𝑠
, 𝑠 ∈ 𝑆, (13)

where 𝛽
0
is a parameter which represents the discomfort

cost while transit vehicle is vacant and 𝛽
1
is a coefficient

that represents the discomfort cost related to the amounts of
passengers with limited vehicle capacity per unit time.𝛽

1
= 0,

if V𝑙
𝑠
< 𝑘
𝑙
; otherwise, 𝛽

1
> 0.

The transit link in-vehicle discomfort cost is a weighted
average of discomfort cost of attractive lines:

𝑈𝐶
𝑠
= ∑

𝑙∈𝐴
𝑠

𝜂
𝑙

𝑠
𝑈𝐶
𝑙

𝑠
, ∀𝑠 ∈ 𝑆. (14)

(5) Transit fare can be flat, distanced based, zone based,
or time/peak/period based. For simplicity, we assume the fare
structure for bus is flat. Thus we have 𝑡𝑝

𝑠
= 𝑡𝑝
𝑙

𝑠
. For bus lines,

𝑡𝑝
𝑙

𝑠
= 𝑝
𝑏
, and for metro lines we have 𝑡𝑝𝑙

𝑠
= 𝑝
𝑢
.

Table 1: Rainfall category adopted in the weather forecast.

Rainfall categories (𝑖)
Expected hourly average of

rainfall intensity (𝜌
𝑖
)

(mm/h)
No rain/light rain (𝑖 = 1) 5
Normal rain (𝑖 = 2) 20
Amber rain storm (𝑖 = 3) 30
Red rainstorm (𝑖 = 4) 50
Black rainstorm (𝑖 = 5) 70
Source: Sumalee et al. (2011) [4], Lam et al. (2008) [28].

3.2. Modeling Adverse Weather Conditions’ Impact. We
assume that travelers get weather forecast information from
all sources, and the information is given by chances of
differentweather conditions.Wenowpresent Table 1 showing
different weather conditions and the probabilities, as in
Sumalee et al. [4] and Lam et al. [28].

Rainfall categories are generally concluded into five
categories. The expected hourly average of rainfall intensity
of each category is presented in Table 1. The forecasted
probability is not the actual occurrence probability. Travelers
may have a perception of the accurate probability through
their knowledge and experience in the past. One means to
calculate the updated probability is to apply Bayes’ Theorem,
as by Lam et al. [28].

According to Bayes’ Theorem, the actual occurrence
probability of weather category 𝑖 should be

𝑝
󸀠

𝑖
= Pr [ 𝑖

𝑝̆

] =

𝑝
𝑖/𝑝̆
𝑖

∑
5

𝑖=1
𝑝̆
𝑖
𝑝
𝑖/𝑝̆

𝑝̆
𝑖
. (15)

And 𝑝̆
𝑖
is the probability of weather category 𝑖 being

forecasted. 𝑝
𝑖/𝑝̆
𝑖

is the conditional probability that weather 𝑖
happens while the weather forecast information is given.

The summation of 𝑝󸀠
𝑖
under all weather categories equals

1. If we consider all weather categories, then the generalized
disutility of transit route would be ∑5

𝑖=1
𝑝
󸀠

𝑖
⋅ 𝑢
𝑤

𝑟
(𝑖).

3.3. User EquilibriumModel under Adverse Conditions. Tran-
sit route disutility is a summation of transit link disutility:

𝑢
𝑤

𝑟
= ∑

𝑠∈𝑆

𝛿
𝑠𝑟
𝑢
𝑠
, ∀𝑟 ∈ 𝑅

𝑤
, 𝑤 ∈ 𝑊. (16)

According to Wardrop’s user equilibrium (UE) principle,
travelers choose the route which has the minimum disutility.
It will gradually come to an equilibrium state while the
utilities of all used routes are equal, and no one could take
less than the disutility to travel on either route. Thus, the rule
of which route to be followed by passengers whomake transit
route choice decision can be described as follows:

ℎ
𝑤
∗

𝑟
> 0 𝑢

𝑤
∗

𝑟
= 𝑢
𝑤

𝑟
,

ℎ
𝑤
∗

𝑟
= 0 𝑢

𝑤
∗

𝑟
> 𝑢
𝑤

𝑟
,

∀𝑟 ∈ 𝑅
𝑤
, 𝑤 ∈ 𝑊,

(17)
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where ℎ𝑤
∗

𝑟
denotes the passenger flow on transit route 𝑟 under

user equilibrium (UE) condition, 𝑢𝑤
∗

𝑟
denotes the utility on

transit route 𝑟 under UE condition, and the route flows and
resultant network demand should satisfy

ℎ
𝑤

𝑟
≥ 0, ∀𝑤 ∈ 𝑊, ∀𝑟 ∈ 𝑅

𝑤

𝑔
𝑤
≥ 0, ∀𝑟 ∈ 𝑅

𝑤
.

(18)

Since the passenger flow is decided by the cost or disutility
on transit route, the disutility is affected by passenger flow.
Thus, the above equilibrium functions and equations ((1)–(5))
can be described as a fixed point problem:

h∗ = F (h∗) , ∀h∗ ∈ Ω, (19)

where F(h) = (𝑔
𝑤
𝑃
𝑤

𝑟
, for all 𝑟 ∈ 𝑅

𝑤
, ∀𝑤 ∈ 𝑊), Ω = {h |

∑
𝑟∈𝑅
𝑤

ℎ
𝑤

𝑟
= 𝑔
𝑤
, for all 𝑤 ∈ 𝑊}.

According to the theorem of existence of solution of
Brower’s fixed point theorem, if the feasible setΩ is a bounded
closed convex set and the function is a continuous function
in set Ω, then there would be at least one solution to this
problem. So the above fixed point problemwould have at least
one solution.

3.4. Bilevel Transit Fare Design Model. Bilevel programming
is usually applied to model the decision process when the
upper level decision can influence the lower level decision,
and the lower level decision making also has effect back on
the upper level. It is quite adequate here to model the fare
design decision making in mainland China because of the
intervention of the government and authorities in transport
policies.

The upper level program in this paper is designed to
minimize the total travel cost and variable operation cost; the
lower level program is a user equilibrium model considering
the elastic demand and adverse weather conditions. For the
reason that the fixed operation cost is basically steady, we
consider only the variable operation cost part. The cost of
time is converted into monetary unit and we measure the
travel cost by monetary cost.

min 𝑍 ((p
𝑏
, p
𝑢
) , 𝑔 (p

𝑏
, p
𝑢
) , V (p

𝑏
, p
𝑢
))

= ∑

𝑠∈𝐴
𝑠

𝑢
𝑠
[V
𝑠
(p
𝑏
, p
𝑢
) , 𝑔
𝑠
] ⋅ V
𝑠
(p
𝑏
, p
𝑢
)

+∑

𝑙

𝐸 (𝐶
𝑙
(𝑖) ⋅ 𝑁

𝑙
(𝑖))

subject to V
𝑠
(p
𝑏
, p
𝑢
) = ∑ V𝑙

𝑠
(p
𝑏
, p
𝑢
)

𝑝
min
𝑏

≤ 𝑝
𝑏
≤ 𝑝

max
𝑏

𝑝
min
𝑢

≤ 𝑝
𝑢
≤ 𝑝

max
𝑢

,

(20)

where 𝐶
𝑙
(𝑖) represents operation cost per vehicle increase of

transit line 𝑙 under weather condition 𝑖. Since the frequency

is the number of transit vehicles on line 𝑙 divided by the cycle
journey time, tThus𝑁

𝑙
(𝑖) = fr

𝑙
(𝑖) ⋅ 𝐶𝑇

𝑙
, and

𝐸 (𝐶
𝑙
(𝑖) ⋅ 𝑁

𝑙
(𝑖)) =

5

∑

𝑖=1

𝑝
󸀠

𝑖
⋅ 𝐶
𝑙
(𝑖) ⋅ 𝑁

𝑙
(𝑖) . (21)

The lower level program is the user equilibrium model
under adverse weather conditions. We had previously pro-
posed the model as a fixed point problem.

4. Solution Algorithm

Bilevel programming problems are generally not convex, and
it is quite difficult to get an optimal solution.There are several
solution algorithms that can be applied to solve this problem.
We adopt a heuristic algorithm in this paper.

For the upper level model, we use simulating annealing
algorithm; and for the lower level model, the method of
successive average (MSA) is applied to solve the equilibrium
assignment defined by the fixed point model. It has been
proved to be very effective in many researches [23, 31].

4.1. Simulating Annealing Algorithm

Step 1. initialization. Give an initial point x0 = (𝑝
0

𝑏
, 𝑝
0

𝑢
) ∈ Ω,

initial temperature 𝑇
0
, and parameters 𝜉(0 < 𝜉 < 1), M, and

𝑇
𝑠
; set 𝑛 = 1, 𝑘 = 1, and 𝑗 = 1.

Step 2. inside iteration. Calculate the objective function when
x = x0. Then for each 𝑘 at a given temperature, give a random
increment Δx for a current solution x𝑘 according to a given
rule, and a new y = x + Δx solution is generated. If the new
solution is better than the previous optimal solution, that is,
Δ𝑍 = 𝑍(y) − 𝑍(x) < 0, then y is accepted by the probability
of 1, or it is accepted according to the Metropolis rule. If one
inside iteration ended, then 𝑗 = 𝑗 + 1.

Step 3 (Metropolis rule). If Δ𝑍 > 0, exp(−Δ𝑍)/𝑇(𝑛) >

random[0, 1], then let x(𝑘
(𝑛)

+1)

= y and 𝑘 = 𝑘 + 1, back to
Step 2; otherwise, let x(𝑘

(𝑛)

+1)

= x(𝑘
(𝑛)

), and 𝑘 = 𝑘 + 1, back to
Step 2.

Step 4 (outside iteration). Decrease the temperature and keep
optimizing. 𝑇(𝑛+1) = 𝑇

(𝑛)

⋅ 𝜉, if 𝑗 equals the given𝑀 value; let
𝑛 = 𝑛 + 1.

Step 5 (stop rule). If 𝑇(𝑛) < 𝑇
𝑠
, iteration is terminated, and

output the optimal x∗ = (𝑝
∗

𝑏
, 𝑝
∗

𝑢
); otherwise, go back to

Step 4.

4.2. Method of Successive Averages

Step 6 (initialization). Define a tolerance to end the algo-
rithm, which can be defined as 𝜀 = 0.1, 𝑗 = 1. Initialize the
value of 𝑢𝑤

𝑟
.
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Table 2: OD pairs and transit routes of the example transit network.

OD pair 𝑔
0

𝑤
Route Transit link

(1, 2) 1000

1 𝑆
1
-𝑆
2
-𝑆
13

2 𝑆
3
-𝑆
6
-𝑆
7
-𝑆
8
-𝑆
13

3 𝑆
3
-𝑆
6
-𝑆
7
-𝑆
12
-𝑆
16

4 𝑆
3
-𝑆
6
-𝑆
11
-𝑆
15
-𝑆
16

5 𝑆
3
-𝑆
10
-𝑆
14
-𝑆
15
-𝑆
16

6 𝑆
1
-𝑆
4
-𝑆
7
-𝑆
8
-𝑆
13

7 𝑆
1
-𝑆
4
-𝑆
7
-𝑆
12
-𝑆
16

8 𝑆
1
-S4-𝑆11-𝑆15-𝑆16

(1, 3) 1100

9 𝑆
3
-𝑆
10
-𝑆
17
-𝑆
19

10 𝑆
3
-𝑆
6
-𝑆
7
-𝑆
12
-𝑆
18

11 𝑆
3
-𝑆
6
-𝑆
11
-𝑆
15
-S18

12 𝑆
3
-𝑆
10
-𝑆
14
-𝑆
15
-𝑆
18

13 𝑆
1
-𝑆
4
-𝑆
7
-𝑆
12
-𝑆
18

14 𝑆
1
-𝑆
4
-𝑆
11
-𝑆
15
-𝑆
18

(4, 2) 1000

15 𝑆
9
-𝑆
14
-𝑆
15
-𝑆
16

16 𝑆
5
-𝑆
6
-𝑆
7
-𝑆
8
-𝑆
13

17 𝑆
5
-𝑆
6
-𝑆
7
-𝑆
12
-𝑆
16

18 𝑆
5
-𝑆
6
-𝑆
11
-𝑆
15
-𝑆
16

19 𝑆
5
-𝑆
10
-S14-𝑆15-𝑆16

(4, 3) 1200

20 𝑆
9
-𝑆
17
-𝑆
19

21 𝑆
9
-𝑆
14
-𝑆
15
-𝑆
18

22 𝑆
5
-𝑆
10
-𝑆
17
-𝑆
19

23 𝑆
5
-𝑆
6
-S7-𝑆12-𝑆18

24 𝑆
5
-𝑆
6
-𝑆
11
-𝑆
15
-𝑆
18

25 𝑆
5
-𝑆
10
-𝑆
14
-𝑆
15
-𝑆
18

Step 7 (computation). For all 𝑟 ∈ 𝑅
𝑤
, ∀𝑤 ∈ 𝑊, for all 𝑠 ∈ 𝑆,

compute the assignment of transit route flow ℎ
𝑤(𝑗)

𝑟
and the

transit line section flow V(𝑗)
𝑠
.

Step 8 (update and move). Compute the cost of transit route
and get the transit route disutility 𝑢𝑤

𝑟
.

Step 9. Descending Direction and Step Searching. Update 𝑢𝑤
𝑟
,

and get an accessory solution 𝑔𝑤(𝑗)
𝑟

; the new passenger flow of
transit route 𝑟 is ℎ𝑤(𝑗+1)

𝑟
= ℎ
𝑤(𝑗)

𝑟
+ (1/𝑗)(𝑔

𝑤(𝑗)

𝑟
− ℎ
𝑤(𝑗)

𝑟
).

Step 10 (check convergence). If ‖ℎ𝑤(𝑗+1)
𝑟

−ℎ
𝑤(𝑗)

𝑟
‖ ≤ 𝜀, then end;

otherwise, return to Step 7, 𝑗 = 𝑗 + 1.

5. Numerical Example

We use the transit network in Figure 1 for the numerical
example. Transit routes of each OD pair, the relationship
between transit line and transit link, and 𝑡

0

𝑠
and 𝐶

𝑠
of each

transit link are shown in Tables 2, 3, and 4, respectively.
We set the operation cost formetro line and bus line as 180

and 20 yuan per vehicle, respectively, under weather category
1. 𝜃 = 0.4, 𝜋

𝑤
= 0.01, 𝛽

0
= 0.5; if V𝑙

𝑠
< 𝑘
𝑙
, 𝛽
1
= 0; otherwise,

𝛽
1
= 0.1; 𝑧 is 4 according to the BPR function; 𝑝min

𝑏
is 1 and

𝑝
max
𝑏

is 10, while 𝑝min
𝑢

is 1 and 𝑝max
𝑢

is 10. For weather forecast
information of different categories, as in Sumalee et al. [4],

Table 3: The relationship between transit line and transit link.

Transit line Transit link
Bus Line 1 𝑆

1

Bus Line 2 𝑆
1
-S4

Bus Line 3 𝑆
2

Metro Line 4 𝑆
6
-𝑆
11

Metro Line 5 𝑆
7
-𝑆
12

Bus Line 6 𝑆
3

Bus Line 7 𝑆
3
-𝑆
6

Bus Line 8 𝑆
5

Bus Line 9 𝑆
5
-𝑆
6

Bus Line 10 𝑆
5
-𝑆
10

Bus Line 11 𝑆
9

Bus Line 12 𝑆
9
-𝑆
14

Bus Line 13 𝑆
13

Bus Line 14 𝑆
16

Bus Line 15 𝑆
18

Bus Line 16 𝑆
17
-𝑆
19

Bus Line 17 𝑆
4
-𝑆
7

Bus Line 18 𝑆
15
-𝑆
18

Bus Line 19 𝑆
15
-𝑆
16

Bus Line 20 𝑆
12
-𝑆
18

Bus Line 21 𝑆
8

Bus Line 22 𝑆
8
-𝑆
13

Bus Line 23 𝑆
11
-𝑆
15

Bus Line 24 𝑆
3
-𝑆
10

Bus Line 25 𝑆
12
-𝑆
16

Metro Line 26 𝑆
2

Metro Line 27 𝑆
18

Metro Line 28 𝑆
16

Metro Line 29 𝑆
5
-𝑆
10

Metro Line 30 𝑆
14
-𝑆
15

we show it in Table 5 and the probabilities in bold face are
the most likely weather condition in each weather category
scenario.

Under categories 1 and 2, the bus line and the metro
line are set to be at the nominal frequency. The frequency
reduces by one and reduces by two under categories 3 and
4, respectively. All bus frequencies are supposed to be 2
vehicles per hour under category 5. Under categories 4 and
5, the frequency of metro train is supposed to reduce by one
and reduces by two, respectively. The variable operation cost
would become 1.1, 1.2, 1.3, and 1.5 times the nominal cost
under categories 2, 3, 4, and 5, respectively.The scaling factor
of walking time is 𝜍(𝑖) = 2(1 + 𝜌

𝑖
/100).

The parameters for the GBPR functions are

𝑔
𝑡
0

𝑠

(𝑖) = 𝑔
𝐶
𝑠

(𝑖) = exp(0.05 ×
𝜌
𝑖

100

) , ∀𝑠 ∈ 𝑆. (22)

𝛽
𝑠
= 𝑡
0

𝑠
/(𝐶
𝑠
)
2, and 𝑢𝑤

𝑟
= 𝐸(𝑢

𝑤

𝑟
(𝑖)).

From Table 6, we find out that the total cost increases,
while the total flows of each OD pair and the whole network
decrease as the value of time increases. This is because the
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Table 4: 𝑡0
𝑠
and 𝐶

𝑠
of each transit link.

Transit link 𝑡
0

𝑠
(minutes)

𝐶
𝑠
(pass/hour)

Bus Metro
𝑆
1

12 1000
𝑆
2

80 40 1100
𝑆
3

12 1200
𝑆
4

12 1100
𝑆
5

12 6 1050
𝑆
6

12 6 1500
𝑆
7

12 6 1000
𝑆
8

12 1080
𝑆
9

30 1200
𝑆
10

12 6 1150
𝑆
11

12 6 1300
𝑆
12

12 6 1200
𝑆
13

12 1130
𝑆
14

12 6 1300
𝑆
15

12 6 1500
𝑆
16

12 6 1200
𝑆
17

30 1100
𝑆
18

12 6 1250
𝑆
19

30 1150

Table 5: Scenarios for different weather forecast information.

Probability Scenario
1 2 3 4 5

𝑝̆
1

80.0 8.8 4.5 3.5 4.0
𝑝̆
2

8.0 75.0 10.5 7.0 8.0
𝑝̆
3

6.0 8.8 70.0 12.3 12.0
𝑝̆
4

4.0 5.0 10.5 65.0 16.0
𝑝̆
5

2.0 2.5 4.5 12.3 60.0
_
𝑝
1/𝑝̆

90.0 7.0 4.5 4.0 5.0
_
𝑝
2/𝑝̆

4.0 80.0 10.5 8.0 10.0
_
𝑝
3/𝑝̆

3.0 7.0 70.0 14.0 15.0
_
𝑝
4/𝑝̆

2.0 4.0 10.5 60.0 20.0
_
𝑝
5/𝑝̆

1.0 2.0 4.5 14.0 50.0

actual travel demand ofODpair is a downsloping exponential
function, and as the expected travel disutility increases, the
actual travel demand of OD pair decreases. Due to the
fare structure having nonlinear influence on the flows and
the cost, both bus fare and metro fare structures are not
monotonically increasing or decreasing. Since travel by bus
takes more time, in order to balance the flows of each route,
the metro fare should be much larger than the bus fare when
the value of time is high. Specifically, the changes of transit
route flows of each OD pair are shown in Table 7.

From Table 7, the flows of transit route 6 (𝑆
5
-𝑆
10
-𝑆
14
-

𝑆
15
-𝑆
18
) between OD pair (4,3) increase as the value of time

changes from 10 to 15, 15 to 20, 20 to 25, and 25 to 30. However
the flows of transit route 5 (𝑆

5
- 𝑆
6
- 𝑆
11
- 𝑆
15
- 𝑆
18
) increase only

M
in
-v
al
ue

1.6
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5

Figure 2:The convergence plot of SA algorithm andRDS algorithm.

when the value of time changes from 15 to 20. Although these
two routes seem similar to 2 bus lines and 3 metro lines, 𝑆

10
-

𝑆
14
affects route 6 less than 𝑆

6
- 𝑆
11
affects route 5, because the

flows of route 1 and 2 decrease which shared 𝑆
10
-𝑆
14
and the

flows of route 4 increase or decrease very little which shared
𝑆
6
. We can also see from Table 7 that the flow of the longest

transit route between each OD pair (e.g., route 1 between DO
pair (1, 2), route 2 between OD pair (4, 2)) always decrease as
the value of time increases. For non-metro line transit route,
such as route 1 betweenOD pair (4, 3), the flow also decreases
with the value of time increases.

Table 8 shows the results when considering different
scenarios described in Table 5 when the value of time is 5
yuan.We can find out that, in scenarios 1 and 2, themetro fare
should be larger than bus fare, while in scenario 3 the bus fare
is larger thanmetro fare and in scenario 4 the bus fare and the
metro fare are mostly equal. The flows of each OD pair and
the whole network decrease as the expected hourly average
of rainfall intensity increases. Because the worse the weather
is, the larger the travel disutility is, which results in less travel
demand.However, the volume of disutility increment is larger
than the demand decrease, which brings about the total cost
increase as the weather becomes worse. Table 9 shows the
changes of transit route flows under each scenario with value
of time at 5 yuan.

From Table 9, we can see that for route 3 and route 5
between OD pair (1, 2) and (4, 2), and route 4 between OD
pair (4, 3), the flow increases as the weather becomes worse.
It is because these routes contain more metro lines by at
least 2/3, and we know that the metro line is affected little by
weather condition. Reversely, for route 6 between OD pair (1,
2), route 1 and 5 between OD pair (1, 3), route 2 between OD
pair (4, 2), and route 1 and 2 between OD pair (4, 3), the flow
decreases as the weather get worse. Such kind of results is due
to weather conditions affect bus line largely.

Taking the data in Tables 6 and 8 into account, we see
that the total travel cost and the operation cost would grow
much higher when the weather conditions change frequently
and the value of time varies among individual largely. Thus,
diversified fare structure design is of great necessity.

Figure 2 shows the convergence of SA algorithm and
random direction search (RDS) algorithm when calculating
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Table 6: Transit fare structure and transit route flows considering scenario 1 with different value of time.

𝛼 Bus fare Metro fare OD pair flows (×103) Total cost (×105)
(1, 2) (1, 3) (4, 2) (4, 3) Total

5 1.0291 1.9560 855.2 908.8 878.6 990.5 3633.1 0.86888
8 1.5812 1.8726 808.4 859.7 832.5 938.3 3438.9 1.01018
10 1.7040 1.2593 759.6 810.0 782.7 881.6 3233.9 1.15290
15 1.2972 2.1066 680.5 719.9 703.0 781.9 2885.3 1.35909
20 1.1082 2.5958 611.8 643.9 633.9 698.0 2587.6 1.50215
25 1.3387 2.8702 548.7 580.8 571.2 630.5 2331.2 1.59487
30 1.0812 2.6616 504.0 538.1 525.8 584.3 2152.2 1.64499

Table 7: The changes of transit route flows considering scenario 1 with different value of time.

𝛼 OD pair Changes of transit route flow
Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8

10 − 5

1, 2

−83.77 −24.71 13.06 4.83 9.41 −23.59 7.58 1.54
15 − 10 −88.15 2.16 −5.75 −5.49 −0.56 9.94 4.95 3.85
20 − 15 −69.49 −4.27 1.27 −1.50 2.88 −1.90 3.70 0.65
25 − 20 −40.84 −13.53 7.18 2.43 7.28 −18.20 −2.37 −5.10
30 − 25 −20.39 −12.62 4.43 2.27 6.72 −14.73 −5.20 −5.14
10 − 5

1, 3

−19.40 −8.83 −21.15 −13.03 −13.70 −22.68
15 − 10 −46.07 −18.61 −17.00 −9.23 0.84 0.01
20 − 15 −34.90 −9.54 −12.10 −6.53 −4.94 −8.01
25 − 20 −14.70 −3.73 −7.79 −2.98 −16.35 −17.59
30 − 25 −2.13 −4.73 −5.25 −1.44 −15.62 −13.53
10 − 5

4, 2

−32.67 −60.33 4.85 −7.59 −0.14
15 − 10 −29.98 −4.29 −18.91 −16.86 −9.69
20 − 15 −33.00 −13.90 −7.47 −10.02 −4.74
25 − 20 −33.46 −25.34 0.13 −4.50 0.49
30 − 25 −32.19 −18.70 1.46 −0.45 4.44
10 − 5

4, 3

−43.31 −39.25 −11.70 0.72 −11.28 −4.08
15 − 10 −65.90 −2.56 −35.87 −0.80 −1.64 7.06
20 − 15 −56.79 −14.39 −33.05 7.81 2.14 10.34
25 − 20 −23.91 −35.53 −16.51 4.84 −1.75 5.32
30 − 25 −2.96 −42.11 −2.55 −0.15 −2.07 3.67
Note: the number of the first column, for example, 10 − 5, means the transit route flow with value of time 10 minus the transit route flow with value of time 5.

theminimumvalue of the total cost at the up-level in scenario
with the value of time at 5 yuan. We can see that the SA
algorithm converges from about 20 steps, and RDS algorithm
converges after 40 steps. SA algorithm is better than RDS
algorithm in convergence step and accuracy when solving the
urban transit network fare design problem formulated in this
paper.

6. Conclusions and Implications

In this paper we propose a model for designing a reasonable
fare structure under elastic demand and adverse weather
conditions’ impact. The upper level model aims to minimize
the total network cost including travelers’ travel cost and

transit operators’ variable operation cost; the lower level
model describes the user equilibrium considering the adverse
weather conditions.We designed a heuristic algorithmwhich
combines the method of successive averages (MSA) and
simulated annealing algorithm to solve this bilevel problem.
Through a numerical example, we illustrated the validity
and effectiveness of the algorithm. We demonstrate by the
numerical example that a diversified transit fare structure
considering the improvement of transit service under adverse
weather conditions is quite necessary.

We get several important conclusions and implications
that would be applicable and quite practical: (a) different
kinds of weather categories will result in very different total
cost and fare structure; thus when designing a single fare
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Table 8: Transit fare structure and transit route flows considering different scenarios (𝛼 = 5).

Scenarios Bus fare Metro fare OD pair flows Total cost (×105)
(1, 2) (1, 3) (4, 2) (4, 3) Total

1 1.0291 1.9560 855.2 908.8 878.6 990.5 3633.1 0.86888
2 1.2297 1.7873 846.6 902.1 872.6 985.6 3607.0 0.89634
3 1.6547 1.1386 827.6 881.0 856.9 965.6 3531.1 0.95199
4 1.4429 1.4467 791.7 832.5 832.2 925.2 3381.6 1.05387
5 1.0882 1.1114 712.0 750.6 776.8 853.5 3100.9 1.23013

Table 9: The changes of transit route flows considering different scenarios (𝛼 = 5).

Scenario OD pair Transit route flows changes
Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8

2 − 1

1, 2

−10.61 −5.97 4.72 2.35 2.32 −5.90 3.23 1.30
3 − 2 23.16 −20.96 14.40 −1.95 10.49 −28.13 −3.04 −13.01
4 − 3 −10.51 −14.93 2.05 −6.19 4.13 −9.66 2.45 −3.28
5 − 4 −40.43 −24.17 19.32 −1.83 17.05 −22 −6.66 −12.97
2 − 1

1, 3

−4.32 2.83 −1.57 −1.61 0.77 −2.77
3 − 2 −12.91 24.01 −8.46 16.71 −10.38 −30.07
4 − 3 −15.82 −4.55 −18.08 1.06 −0.78 −10.37
5 − 4 −32.96 14.22 −16.98 11.58 −25.65 −32.06
2 − 1

4, 2

−1.19 −14.10 5.83 1.76 1.72
3 − 2 −30.53 −35.74 29.43 −0.96 22.03
4 − 3 −37.55 −20.74 16.41 −2.50 19.75
5 − 4 −62.42 −48.84 33.32 −6.58 29.11
2 − 1

4, 3

−7.14 −2.63 −2.08 4.92 1.00 0.96
3 − 2 −50.77 −25.03 −4.98 33.26 2.15 25.41
4 − 3 −39.07 −35.90 −4.98 18.60 −1.04 21.98
5 − 4 −56.12 −60.75 −28.03 40.85 −3.23 −56.12
Note: the number of the first column, for example, 2 − 1, means the transit route flows for scenario 2 minus the transit route flows for scenario 1.

structure all kinds of weather categories should be taken into
account; (b) when the value of time is very high, bus fare
should be lower than metro fare; (c) if under an extremely
adverse weather condition, such as red storm and black
storm, then the value of metro fare and bus fare should be
close; (d) if the value of time becomes larger, the fare structure
should be greatly different from that under a lower value of
time condition.
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