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The nonlinear Burgers’ equation is a simple form of Navier-Stocks equation. The nonlinear nature of Burgers’ equation has been
exploited as a useful prototype differential equation for modeling many phenomena. This paper proposes two meshfree methods
for solving the one-dimensional nonlinear nonhomogeneous Burgers’ equation. These methods are based on the multiquadric
(MQ) quasi-interpolation operator LW2

and direct and indirect radial basis function networks (RBFNs) schemes. In the present
schemes, theTaylors series expansion is used to discretize the temporal derivative and the quasi-interpolation is used to approximate
the solution function and its spatial derivatives. In order to show the efficiency of the present methods, several experiments are
considered. Our numerical solutions are compared with the analytical solutions as well as the results of other numerical schemes.
Furthermore, the stability analysis of the methods is surveyed. It can be easily seen that the proposed methods are efficient, robust,
and reliable for solving Burgers’ equation.

1. Introduction

In this paper, we consider the one-dimensional nonlinear
nonhomogeneous Burgers’ equation:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= 𝜐𝑢
𝑥𝑥

+ 𝐹 (𝑥, 𝑡) , 𝑥 ∈ Ω = [𝑎, 𝑏] , 𝑡 ⩾ 𝑡
0
, (1)

with the initial condition,

𝑢 (𝑥, 𝑡
0
) = 𝑔 (𝑥) , (2)

and the boundary conditions,

𝑢 (𝑎, 𝑡) = 𝑔
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑔

2
(𝑡) , (3)

where 𝑔(𝑥), 𝑔
1
(𝑡), and 𝑔

2
(𝑡) are known functions, 𝜐 is

the positive parameter that related to the Reynolds number
𝑅 = 1/𝜐, and 𝐹(𝑥, 𝑡) is a known nonhomogeneous term.

This equation was first derived from the hydrodynamics
equations and used in surveying the laser generation of sound
[1]. Later on, it was applied to other physical phenomena such
as wind forcing the buildup of water waves, electrohydrody-
namic field in plasma physics, and design of feedback control
[2–4].

When 𝐹(𝑥, 𝑡) = 0, (1) is the well-known Burgers’ equa-
tion:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= 𝜐𝑢
𝑥𝑥
. (4)

Burgers’ equation in homogeneous form was first introduced
by Bateman [5] who found its steady solutions, descriptive of
certain viscous flows. It was later presented by Burgers as one
of class of equations describing mathematical models of tur-
bulence [6]. In the context of gas dynamics, it was surveyed by
Hopf [7] and Cole [8]. The homogeneous Burgers’ equation
appears in various areas of applied mathematics and physics
such as the phenomena of turbulence and supersonic flow,
heat conduction, elasticity, and fusion [6–10].

From an analytical point of view, the nonhomogeneous
form is poorly studied, the complete analytical solution being
closely dependent on the form of the nonhomogeneous term.
For example, Karabutov et al. [1] obtained the analytical
solution of the nonhomogeneous Burgers’ equation with
𝐹(𝑥, 𝑡) = 𝐴 sin(𝑥), 𝐴 > 0, Ding et al. [11] studied the
solution of (1) for the time-independent nonhomogeneous
term 𝐹(𝑥, 𝑡) = −𝑘𝑥, and Rao and Yadav [12] represented

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 598432, 15 pages
http://dx.doi.org/10.1155/2014/598432

http://dx.doi.org/10.1155/2014/598432


2 Journal of Applied Mathematics

the solutions of the nonhomogeneous Burgers’ equation for
the nonhomogeneous term 𝐹(𝑥, 𝑡) = 𝑘𝑥/(2𝛽𝑡 + 1)

2 that
𝑘 > 0 and 𝛽 > 0 are constant. Recently, Moreau and vallée
have obtained the analytical solution of the nonhomogeneous
Burgers’ equation with an elastic forcing term𝐹(𝑥, 𝑡) = −𝑘𝑥+

𝑓(𝑡), 𝑘 ∈ R [3].
Up to now, various numerical methods are presented for

the homogeneous Burgers’ equation such as finite difference,
finite element, boundary element, and collocation methods.
For a survey of these methods refer to [13–16] and references
cited therein. Among the methods that are mentioned above,
the spatial domain where the partial differential governing
equations are defined is often discretized into meshes. In
these methods, the creation of suitable meshes is very
essential for getting accurate results. However, the procedure
ofmesh generation consumes a lot of time and labor for some
problems, especially for discontinuous and high gradient
problems, for which these methods will become complicate.
The root of these difficulties is the use of mesh in the formu-
lation step. To avoid the mesh generation, recently, a kind of
so-calledmeshfree ormeshlessmethod has extended quickly.
In these methods, the scattered nodes are only used instead
of meshing the domain of the problem.

For the last 20 years, the radial basis functions (RBFs)
method was known as a powerful tool for the scattered data
interpolation problem.The use of RBFs as a meshless process
for the numerical solution of partial differential equations
(PDEs) is based on the collocation scheme. The meshless
methods based on RBFs were studied for approximating the
solution of PDEs since initial development of Kansa’s work
(1990) [17]. Kansa’s method was extended to solve various
ordinary and partial differential equations [18–20]. In these
works, the solution function is decomposed into RBFs and
its derivatives are then arrived through differentiation that
caused the reduction in convergence rate. In order to avoid
this problem, Mai-Duy and Tran-Cong proposed an inte-
gratedMQ-RBFNs scheme for the approximation of function
and its derivatives [21]. Numerical experiments and theoreti-
cal analysis demonstrate that for solving PDEs integratedRBF
(IRBF) procedure is more accurate in comparison with direct
RBF (DRBF) procedure. Also, IRBF scheme is more stable
than DRBF for a range of PDEs [21, 22].

In both DRBF and IRBF schemes, one must resolve a
linear system of equations at each time step. In the past
decade, the other meshless method was introduced by using
a MQ quasi-interpolation without solving a linear system
of equations. MQ quasi-interpolation is constructed directly
from linear combination of MQ-RBF and the approximated
function. In 1992, Beaston and Powell [23] presented three
univariate MQ quasi-interpolations named asLA,LB, and
LC. Wu and Schaback [24] proposed the MQ quasi-
interpolationLD and indicated that the scheme is shape pre-
serving and convergent. Recently, Jiang et al. [25] have intro-
duced a new multilevel univariate MQ quasi-interpolation
approach with high approximation order compared with ini-
tialMQ quasi-interpolation scheme named asLW andLW

2

.
This approach is based on inverse multiquadric (IMQ) RBF
interpolation andWuand Schaback’sMQquasi-interpolation

operator LD. Chen and Wu applied initial MQ quasi-
interpolation scheme for solving one-dimensional nonlinear
homogeneous Burgers’ equation [26].

In numerical solution of time dependent PDEs, such as
Burgers’ and Sine-Gordon equations, by using MQ quasi-
interpolation scheme, there is a limitation for discretization of
the temporal derivative. One has to use low order finite dif-
ference approximation for discretization of time derivatives
because one does not solve any system of equations at each
time step; otherwise one must solve a system of equations
[27]. Also, large number of nodes must be used for getting
appropriate accuracy; see [26, 28, 29].

In this paper, we present two numerical methods by
using MQ quasi-interpolation for the numerical solution of
the nonhomogeneous Burgers’ equation. In both of them,
we use a two-order approximation for discretization of the
time derivative. The main idea behind the discretization is
to use more time derivatives in Taylor series expansion. This
approach was demonstrated by Lax and Wendroff in finite
difference [30] and used by Dağ et al. for the homogeneous
Burgers’ equation [31]. By using this discretization, we have
to solve a linear system of equations at each time step that the
size of the system is equivalent to the number of the centers in
the spatial domain. Also, because the IRBFN scheme requires
fewer centers in comparison with the DRBFN scheme, we
apply MQ quasi-interpolation scheme in the indirect form in
order not to encounter with large scale matrix.

The Jiang et al. MQ quasi-interpolation operator LW
2

is
summation of two series that the second series coefficients
are combined with first series coefficients. By giving relation
between two series coefficients based on function values, we
can convert it to a compact form based on one series and use
it in direct and indirect forms for the numerical solution of
PDEs.

The rest of present paper is organized as follows. A brief
explanation of the MQ quasi-interpolation scheme is given
in Section 2. Our numerical methods are applied on the non-
linear Burgers’ equation in Section 3. In Section 4, the sta-
bility analysis of the methods is discussed. The results of
several numerical experiments are reported in Section 5.
Finally, some conclusions based on obtained results are
drawn in Section 6.

2. The MQ Quasi-Interpolation Scheme

In this section, three univariate MQ quasi-interpolation
schemes named asLD,LW, andLW

2

are described. Then,
we describe our approach which converts operator LW

2

to
the compact form. More details can be seen in [23–25].

For a given region Ω = [𝑎, 𝑏] and a finite set of distinct
points,

𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑏, ℎ = max

1⩽𝑖⩽𝑁

(𝑥
𝑖
− 𝑥
𝑖−1

) , (5)

if we are supplied with a function 𝑓 : [𝑎, 𝑏] → R, quasi-
interpolation of 𝑓 takes the form:

L (𝑓) =

𝑁

∑

𝑖=0

𝑓 (𝑥
𝑖
) 𝜙
𝑖
(𝑥) , (6)
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where each function 𝜙
𝑖
(𝑥) is a linear combination of

the Hardy MQs basis function [32],

𝜓
𝑖
(𝑥) = √𝑐

2
+ (𝑥 − 𝑥

𝑖
)
2

, (7)

and low order polynomials and 𝑐 ∈ R+ is a shape parameter.
This formula requires the derivative values of 𝑓 at the end
points that is not convenient for practical purposes [23].
Wu and Schaback [24] presented the univariate MQ quasi-
interpolation operatorLD that is defined as

LD𝑓 (𝑥) =

𝑁

∑

𝑖=0

𝑓 (𝑥
𝑖
) �̃�
𝑖
(𝑥) , (8)

where

�̃�
0
(𝑥) =

1

2

+

𝜓
1
(𝑥) − (𝑥 − 𝑥

0
)

2 (𝑥
1
− 𝑥
0
)

,

�̃�
1
(𝑥) =

𝜓
2
(𝑥) − 𝜓

1
(𝑥)

2 (𝑥
2
− 𝑥
1
)

−

𝜓
1
(𝑥) − (𝑥 − 𝑥

0
)

2 (𝑥
1
− 𝑥
0
)

,

�̃�
𝑖
(𝑥) =

𝜓
𝑖+1

(𝑥) − 𝜓
𝑖
(𝑥)

2 (𝑥
𝑖+1

− 𝑥
𝑖
)

−

𝜓
𝑖
(𝑥) − 𝜓

𝑖−1
(𝑥)

2 (𝑥
𝑖
− 𝑥
𝑖−1

)

,

2 ⩽ 𝑖 ⩽ 𝑁 − 2,

�̃�
𝑁−1

(𝑥) =

(𝑥
𝑁
− 𝑥) − 𝜓

𝑁−1
(𝑥)

2 (𝑥
𝑁
− 𝑥
𝑁−1

)

−

𝜓
𝑁−1

(𝑥) − 𝜓
𝑁−2

(𝑥)

2 (𝑥
𝑁−1

− 𝑥
𝑁−2

)

,

�̃�
𝑁
(𝑥) =

1

2

+

𝜓
𝑁−1

(𝑥) − (𝑥
𝑁
− 𝑥)

2 (𝑥
𝑁
− 𝑥
𝑁−1

)

.

(9)

Suppose that {𝑥
𝑘
𝑖

}
𝑁

𝑖=1
is a smaller set from the given points

{𝑥
𝑖
}
𝑁

𝑖=0
, where𝑁 is a positive integer satisfying𝑁 < 𝑁 and 0 =

𝑘
0
< 𝑘
1
< ⋅ ⋅ ⋅ < 𝑘

𝑁+1
= 𝑁. Using the IMQ-RBF, the second

derivative of 𝑓(𝑥) can be approximated by RBF interpolant
𝑆
𝑓
 as

𝑆
𝑓
 =

𝑁

∑

𝑗=1

𝛼
𝑗
𝜑 (








𝑥 − 𝑥
𝑘
𝑗








) , (10)

where

𝜑 (𝑟) =

𝑠
2

(𝑠
2
+ 𝑟
2
)
3/2

, (11)

and 𝑠 ∈ R+ is a shape parameter.
The coefficients {𝛼

𝑗
}
𝑁

𝑗=1
are uniquely determined by the

interpolation condition

𝑆
𝑓
 (𝑥
𝑘
𝑖

) =

𝑁

∑

𝑗=1

𝛼
𝑗
𝜑 (








𝑥
𝑘
𝑖

− 𝑥
𝑘
𝑗








) = 𝑓

(𝑥
𝑘
𝑖

) , 1 ⩽ 𝑖 ⩽ 𝑁.

(12)

Since (12) is solvable [33], so

𝛼 = 𝐴
−1

𝑋
⋅ 𝑓


𝑋
, (13)

where

𝑋 = {𝑥
𝑘
1

, . . . , 𝑥
𝑘
𝑁

} , 𝛼 = [𝛼
1
, . . . , 𝛼

𝑁
]
𝑇

,

𝐴
𝑋
= [𝜑 (








𝑥
𝑘
𝑖

− 𝑥
𝑘
𝑗








)] ,

𝑓


𝑋
= [𝑓

(𝑥
𝑘
1

) , . . . , 𝑓

(𝑥
𝑘
𝑁

)]

𝑇

.

(14)

By using the𝑓 and the coefficient 𝛼 defined in (13), a function
𝑒(𝑥) is constructed in the form

𝑒 (𝑥) = 𝑓 (𝑥) −

𝑁

∑

𝑗=1

𝛼
𝑗
√𝑠
2
+ (𝑥 − 𝑥

𝑘
𝑗

)

2

. (15)

Now, theMQ quasi-interpolation operatorLW by usingLD

defined by (8) and (9) on the data {(𝑥
𝑖
, 𝑒(𝑥
𝑖
))}
𝑁

𝑖=1
with the

shape parameter 𝑐 is given by

LW𝑓 (𝑥) =

𝑁

∑

𝑗=1

𝛼
𝑗
√𝑠
2
+ (𝑥 − 𝑥

𝑘
𝑗

)

2

+LD𝑒 (𝑥) . (16)

The shape parameters 𝑐 and 𝑠 should not be the same constant
in (16).

In (12), the value of 𝑓
𝑥
𝑘𝑗

can be replaced by

𝑓


𝑥
𝑘𝑗

= (2 [(𝑥
𝑘
𝑗

− 𝑥
𝑘
𝑗−1

)𝑓 (𝑥
𝑘
𝑗+1

)

− (𝑥
𝑘
𝑗+1

− 𝑥
𝑘
𝑗−1

)𝑓 (𝑥
𝑘
𝑗

)

+ (𝑥
𝑘
𝑗+1

− 𝑥
𝑘
𝑗

)𝑓 (𝑥
𝑘
𝑗−1

)])

× ((𝑥
𝑘
𝑗

− 𝑥
𝑘
𝑗−1

) (𝑥
𝑘
𝑗+1

− 𝑥
𝑘
𝑗

) (𝑥
𝑘
𝑗+1

− 𝑥
𝑘
𝑗−1

))

−1

,

(17)

when the data’s {(𝑥
𝑘
𝑖

, 𝑓(𝑥
𝑘
𝑖

))}
𝑁

𝑖=1
are given. So, if 𝑓

𝑋
in (13) is

replaced by

𝐹


𝑋
= [𝑓


𝑥
𝑘1

, . . . , 𝑓


𝑥
𝑘
𝑁

]

𝑇

, (18)

then the quasi-interpolation operator defined by (15) and (16)
is denoted by LW

2

The linear reproducing property and the
high convergence rate ofLW

2

were also studied in [25].
The operatorLW

2

can be written in the compact form

LW
2

𝑓 (𝑥) =

𝑁

∑

𝑖=0

𝑓 (𝑥
𝑖
) �̂�
𝑖
(𝑥) , (19)

where the basis functions �̂�
𝑖
(𝑥) are obtained by

substituting (13), (15), and (18) into (16). As such, let
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𝑋 = {𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
} and 𝑋


= {𝑥
2
}. So 𝑁 = 4, 𝑁 = 1,

𝑘
1
= 2, and

𝛼 = (2 [(𝑥
𝑘
1

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
2

)

− (𝑥
𝑘
2

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
1

) + (𝑥
𝑘
2

− 𝑥
𝑘
1

) 𝑓 (𝑥
𝑘
0

)])

× (𝑠 (𝑥
𝑘
1

− 𝑥
𝑘
0

) (𝑥
𝑘
2

− 𝑥
𝑘
1

) (𝑥
𝑘
2

− 𝑥
𝑘
0

))

−1

,

(20)

𝑒 (𝑥) = 𝑓 (𝑥) − 𝛼√𝑠
2
+ (𝑥 − 𝑥

𝑘
1

)

2

. (21)

Substituting (20) into (21) yields

𝑒 (𝑥) = 𝑓 (𝑥) − ( (2 [(𝑥
𝑘
1

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
2

)

− (𝑥
𝑘
2

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
1

)

+ (𝑥
𝑘
2

− 𝑥
𝑘
1

) 𝑓 (𝑥
𝑘
0

)])

×(𝑠 (𝑥
𝑘
1

− 𝑥
𝑘
0

) (𝑥
𝑘
2

− 𝑥
𝑘
1

) (𝑥
𝑘
2

− 𝑥
𝑘
0

))

−1

)

× √𝑠
2
+ (𝑥 − 𝑥

𝑘
1

)

2

.

(22)

Hence, the substitution of (20) and (22) into (16) leads to

LW
2

𝑓 (𝑥) = ( (2 [(𝑥
𝑘
1

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
2

)

− (𝑥
𝑘
2

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
1

)

+ (𝑥
𝑘
2

− 𝑥
𝑘
1

) 𝑓 (𝑥
𝑘
0

)])

×(𝑠 (𝑥
𝑘
1

− 𝑥
𝑘
0

) (𝑥
𝑘
2

− 𝑥
𝑘
1

) (𝑥
𝑘
2

− 𝑥
𝑘
0

))

−1

)

× √𝑠
2
+ (𝑥 − 𝑥

𝑘
1

)

2

+

4

∑

𝑖=0

(𝑓 (𝑥
𝑖
) − ( (2 [(𝑥

𝑘
1

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
2

)

− (𝑥
𝑘
2

− 𝑥
𝑘
0

) 𝑓 (𝑥
𝑘
1

)

+ (𝑥
𝑘
2

− 𝑥
𝑘
1

) 𝑓 (𝑥
𝑘
0

)])

× (𝑠 (𝑥
𝑘
1

− 𝑥
𝑘
0

) (𝑥
𝑘
2

− 𝑥
𝑘
1

)

× (𝑥
𝑘
2

− 𝑥
𝑘
0

))

−1

)

×√𝑠
2
+ (𝑥
𝑖
− 𝑥
𝑘
1

)

2

) �̃�
𝑖
(𝑥) ,

(23)

whereas𝑓(𝑥
𝑘
0

) = 𝑓(𝑥
0
),𝑓(𝑥

𝑘
1

) = 𝑓(𝑥
2
), and𝑓(𝑥

𝑘
2

) = 𝑓(𝑥
4
).

Therewith, (23) can be rewritten as

LW
2

𝑓 (𝑥) = ( (2 [(𝑥
2
− 𝑥
0
) 𝑓 (𝑥

4
)

− (𝑥
4
− 𝑥
0
) 𝑓 (𝑥

2
) + (𝑥

4
− 𝑥
2
) 𝑓 (𝑥

0
)])

×(𝑠 (𝑥
2
− 𝑥
0
) (𝑥
4
− 𝑥
2
) (𝑥
4
− 𝑥
0
))
−1

)

× √𝑠
2
+ (𝑥 − 𝑥

2
)
2

+

4

∑

𝑖=0

𝑓 (𝑥
𝑖
) �̃�
𝑖
(𝑥)

−

4

∑

𝑖=0

( (2 [(𝑥
2
− 𝑥
0
) 𝑓 (𝑥

4
) − (𝑥

4
− 𝑥
0
) 𝑓 (𝑥

2
)

+ (𝑥
4
− 𝑥
2
) 𝑓 (𝑥

0
)])

×(𝑠 (𝑥
2
− 𝑥
0
) (𝑥
4
− 𝑥
2
) (𝑥
4
− 𝑥
0
))
−1

)

× √𝑠
2
+ (𝑥
𝑖
− 𝑥
2
)
2

�̃�
𝑖
(𝑥) .

(24)

Hence, the basis function �̂�
𝑖
(𝑥) are arrived as follows:

�̂�
0
(𝑥) =

2

𝑠 (𝑥
2
− 𝑥
0
) (𝑥
4
− 𝑥
0
)

× [√𝑠
2
+ (𝑥 − 𝑥

2
)
2

−

4

∑

𝑖=0

√𝑠
2
+ (𝑥
𝑖
− 𝑥
2
)
2

�̃�
𝑖
(𝑥)] + �̃�

0
(𝑥) ,

�̂�
2
(𝑥) =

−2

𝑠 (𝑥
2
− 𝑥
0
) (𝑥
4
− 𝑥
2
)

× [√𝑠
2
+ (𝑥 − 𝑥

2
)
2

−

4

∑

𝑖=0

√𝑠
2
+ (𝑥
𝑖
− 𝑥
2
)
2

�̃�
𝑖
(𝑥)] + �̃�

2
(𝑥) ,

�̂�
4
(𝑥) =

2

𝑠 (𝑥
4
− 𝑥
2
) (𝑥
4
− 𝑥
0
)

× [√𝑠
2
+ (𝑥 − 𝑥

2
)
2

−

4

∑

𝑖=0

√𝑠
2
+ (𝑥
𝑖
− 𝑥
2
)
2

�̃�
𝑖
(𝑥)] + �̃�

4
(𝑥) ,

�̂�
𝑖
(𝑥) = �̃�

𝑖
(𝑥) , 𝑖 = 1, 3.

(25)

By writing operator LW
2

in the compact form (23), we
can use it in two indirect and direct forms for the numerical
solution of PDEs.
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3. The Numerical Methods

In this section, the numerical schemes are presented for
solving the nonlinear Burgers’ equation (1) by using the MQ
quasi-interpolation LW

2

In our approach, the MQ quasi-
interpolation approximates the solution function and the spa-
tial derivatives of the differential equation and Taylor’s series
expansion is employed to approximate the temporal deriva-
tive similar to the work that Dağ et al. did in [31]. The MQ
quasi-interpolation method is applied in direct and indirect
forms.

We discretize the problem using the following Taylor’s
series expansion with step size Δ𝑡:

𝑢
𝑛

𝑡
=

𝑢
𝑛+1

− 𝑢
𝑛

Δ𝑡

−

Δ𝑡

2

𝑢
𝑛

𝑡𝑡
+ 𝑂 (Δ𝑡

2
) , (26)

where 𝑢𝑛
𝑡
= 𝑢
𝑡
(𝑥, 𝑡
𝑛
) and 𝑡

𝑛
= 𝑡
0
+ 𝑛Δ𝑡.

Differentiating (1) with respect to time, 𝑢𝑛
𝑡𝑡
can be written

as follows:

𝑢
𝑛

𝑡𝑡
= (−𝑢

𝑛
𝑢
𝑛

𝑥
+ 𝜐𝑢
𝑛

𝑥𝑥
+ 𝐹
𝑛
)
𝑡

= −𝑢
𝑛
(𝑢
𝑛

𝑡
)
𝑥
− 𝑢
𝑛

𝑥
𝑢
𝑛

𝑡
+ 𝜐(𝑢
𝑛

𝑡
)
𝑥𝑥

+ 𝐹
𝑛

𝑡
,

(27)

where 𝐹
𝑛

𝑡
= 𝐹
𝑡
(𝑥, 𝑡
𝑛
). Using forward difference formula for

the time derivative 𝑢𝑛
𝑡
in (27), 𝑢𝑛

𝑡𝑡
can be rewritten as

Δ𝑡𝑢
𝑛

𝑡𝑡
= −𝑢
𝑛
(𝑢
𝑛+1

𝑥
− 𝑢
𝑛

𝑥
) − 𝑢
𝑛

𝑥
(𝑢
𝑛+1

− 𝑢
𝑛
)

+ 𝜐 (𝑢
𝑛+1

𝑥𝑥
− 𝑢
𝑛

𝑥𝑥
) + Δ𝑡𝐹

𝑛

𝑡
.

(28)

Substituting (28) into (26) and using the expression achieved
in (1), the following time discretized form of nonlinear
Burgers’ equation is yielded:

𝑢
𝑛+1

+

Δ𝑡

2

𝑢
𝑛
𝑢
𝑛+1

𝑥
+

Δ𝑡

2

𝑢
𝑛

𝑥
𝑢
𝑛+1

− 𝜐

Δ𝑡

2

𝑢
𝑛+1

𝑥𝑥

= 𝑢
𝑛
+ 𝜐

Δ𝑡

2

𝑢
𝑛

𝑥𝑥
+ Δ𝑡 (𝐹

𝑛
+

Δ𝑡

2

𝐹
𝑛

𝑡
) .

(29)

3.1. The Direct MQ Quasi-Interpolation Scheme. In this
scheme, the unknown function 𝑢

𝑛 is approximated by using
MQquasi-interpolation scheme, and its spatial derivatives 𝑢𝑛

𝑥

and 𝑢
𝑛

𝑥𝑥
are calculated by differentiating such closed form of

quasi approximation as follows:

𝑢
𝑛
(𝑥) =

𝑁

∑

𝑖=0

𝑢
𝑛

𝑖
�̂�
𝑖
(𝑥) , (30)

𝑢
𝑛

𝑥
(𝑥) =

𝑁

∑

𝑖=0

𝑢
𝑛

𝑖

𝜕�̂�
𝑖

𝜕𝑥

(𝑥) =

𝑁

∑

𝑖=0

𝑢
𝑛

𝑖
�̌�
𝑖
(𝑥) , (31)

𝑢
𝑛

𝑥𝑥
(𝑥) =

𝑁

∑

𝑖=0

𝑢
𝑛

𝑖

𝜕
2
�̂�
𝑖

𝜕𝑥
2
(𝑥) =

𝑁

∑

𝑖=0

𝑢
𝑛

𝑖
𝜓
𝑖
(𝑥) , (32)

where 𝜕�̂�
𝑖
/𝜕𝑥 = �̌�

𝑖
and 𝜕
2
�̂�
𝑖
/𝜕𝑥
2
= 𝜓
𝑖
.

Now, replacing (30)–(32) into (29) and applying colloca-
tion method yield

𝑁

∑

𝑘=0

𝑢
𝑛+1

𝑘
[

[

(1 +

Δ𝑡

2

𝑁

∑

𝑗=0

𝑢
𝑛

𝑗
�̌�
𝑖𝑗
)�̂�
𝑖𝑘

+

Δ𝑡

2

(

𝑁

∑

𝑗=0

𝑢
𝑛

𝑗
�̂�
𝑖𝑗
)�̌�
𝑖𝑘
− 𝜐

Δ𝑡

2

𝜓
𝑖𝑘
]

]

=

𝑁

∑

𝑗=0

𝑢
𝑛

𝑗
(�̂�
𝑖𝑗
+ 𝜐

Δ𝑡

2

𝜓
𝑖𝑗
)

+ Δ𝑡 (𝐹
𝑛

𝑖
+

Δ𝑡

2

𝐹
𝑛

𝑡
(𝑥
𝑖
)) , 1 ⩽ 𝑖 ⩽ 𝑁 − 1,

(33)

where 𝐹𝑛
𝑖
= 𝐹(𝑥

𝑖
, 𝑡
𝑛
), 𝐹𝑛
𝑡
(𝑥
𝑖
) = 𝐹
𝑡
(𝑥
𝑖
, 𝑡
𝑛
), �̂�
𝑖𝑗
= �̂�
𝑗
(𝑥
𝑖
), �̌�
𝑖𝑗
=

�̌�
𝑗
(𝑥
𝑖
), and 𝜓

𝑖𝑗
= 𝜓
𝑗
(𝑥
𝑖
), whereas, according to (3), we have

𝑢
𝑛

0
= 𝑢 (𝑥

0
, 𝑡
𝑛
) = 𝑢 (𝑎, 𝑡

𝑛
) = 𝑔
1
(𝑡
𝑛
) , (34)

𝑢
𝑛

𝑁
= 𝑢 (𝑥

𝑁
, 𝑡
𝑛
) = 𝑢 (𝑏, 𝑡

𝑛
) = 𝑔
2
(𝑡
𝑛
) . (35)

Substituting (34) and (35) into (33), wherein (33) generates a
systemof𝑁−1 linear equations in𝑁−1 unknown parameters
𝑢
𝑛+1

𝑖
.
Equation (33) can be written in the matrix form

[A
1
+

Δ𝑡

2

u𝑛
𝑥
∗ A
1
+

Δ𝑡

2

u𝑛 ∗D
1
− 𝜐

Δ𝑡

2

D̈
1
] u𝑛+1

=
[

[

A
1
+ 𝜐

Δ𝑡

2

̈D
1
−

Δ𝑡

2

2

∑

𝑗=1

𝑔
𝑛+1

𝑗
(Ψ̂
𝑗
∗D
1
+ Ψ̌
𝑗
∗ A
1
)
]

]

u𝑛

−

1

∑

𝑘=0

2

∑

𝑗=1

𝑔
𝑛+𝑘

𝑗
[Ψ̂
𝑗
− 𝜐

Δ𝑡

2

Ψ
𝑗
]

− Δ𝑡

2

∑

𝑗=1

𝑔
𝑛+1

𝑗
𝑔
𝑛

𝑗
Ψ̂
𝑗
∗ Ψ̌
𝑗

−

Δ𝑡

2

[𝑔
𝑛+1

1
𝑔
𝑛

2
+ 𝑔
𝑛+1

2
𝑔
𝑛

1
] [Ψ̌
2
∗ Ψ̂
1
+ Ψ̌
1
∗ Ψ̂
2
]

+ Δ𝑡F𝑛
1
+

Δ𝑡
2

2

F́𝑛
1
,

(36)
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where symbol ∗ stands for component by component multi-
plication,

A
1
𝑖𝑗

= [�̂�
𝑖𝑗
]

𝑁−1

𝑖,𝑗=1
, D

1
𝑖𝑗

= [�̌�
𝑖𝑗
]

𝑁−1

𝑖,𝑗=1
,

̈D
1
𝑖𝑗

= [𝜓
𝑖𝑗
]

𝑁−1

𝑖,𝑗=1
,

Ψ̂
1
= [�̂�
0
(𝑥
1
) , �̂�
0
(𝑥
2
) , . . . , �̂�

0
(𝑥
𝑁−1

)]
𝑇

,

Ψ̂
2
= [�̂�
𝑁
(𝑥
1
) , �̂�
𝑁
(𝑥
2
) , . . . , �̂�

𝑁
(𝑥
𝑁−1

)]
𝑇

,

Ψ̌
1
= [�̌�
0
(𝑥
1
) , �̌�
0
(𝑥
2
) , . . . , �̌�

0
(𝑥
𝑁−1

)]
𝑇

,

Ψ̆
1
= [�̌�
𝑁
(𝑥
1
) , �̌�
𝑁
(𝑥
2
) , . . . , �̌�

𝑁
(𝑥
𝑁−1

)]
𝑇

,

Ψ
1
= [𝜓
0
(𝑥
1
) , 𝜓
0
(𝑥
2
) , . . . , 𝜓

0
(𝑥
𝑁−1

)]
𝑇

,

Ψ
2
= [𝜓
𝑁
(𝑥
1
) , 𝜓
𝑁
(𝑥
2
) , . . . , 𝜓

𝑁
(𝑥
𝑁−1

)]
𝑇

,

F𝑛
1
= [𝐹
𝑛
(𝑥
1
) , 𝐹
𝑛
(𝑥
2
) , . . . , 𝐹

𝑛
(𝑥
𝑁−1

)]
𝑇

,

́F𝑛
1
= [𝐹
𝑛

𝑡
(𝑥
1
) , 𝐹
𝑛

𝑡
(𝑥
2
) , . . . , 𝐹

𝑛

𝑡
(𝑥
𝑁−1

)]
𝑇

.

(37)

Subsequently, (36) can be written as

u𝑛+1 = M−1
1
N
1
u𝑛 +M−1

1
Ψ, (38)

where

M
1
= A
1
+

Δ𝑡

2

u𝑛
𝑥
∗ A
1
+

Δ𝑡

2

u𝑛 ∗D
1
− 𝜐

Δ𝑡

2

D̈
1
,

N
1
= A
1
+ 𝜐

Δ𝑡

2

̈D
1
−

Δ𝑡

2

2

∑

𝑗=1

𝑔
𝑛+1

𝑗
(Ψ̂
𝑗
∗D
1
+ Ψ̌
𝑗
∗ A
1
) ,

Ψ = −

1

∑

𝑘=0

2

∑

𝑗=1

𝑔
𝑛+𝑘

𝑗
[Ψ̂
𝑗
− 𝜐

Δ𝑡

2

Ψ
𝑗
]

+ Δ𝑡(−

2

∑

𝑗=1

𝑔
𝑛+1

𝑗
𝑔
𝑛

𝑗
Ψ̂
𝑗
∗ Ψ̌
𝑗

−

1

2

[𝑔
𝑛+1

1
𝑔
𝑛

2
+ 𝑔
𝑛+1

2
𝑔
𝑛

1
] [Ψ̌
2
∗ Ψ̂
1
+ Ψ̌
1
∗ Ψ̂
2
]

+F𝑛
1
+

Δ𝑡

2

́F𝑛
1
) .

(39)

In order tomake reduction in error, the obtained 𝑢
𝑖
from (38)

is substituted in the right hand side of (30) that can be written
as follows:

u𝑛 = A
1
u𝑛 + 𝑔

𝑛

1
Ψ̂
1
+ 𝑔
𝑛

2
Ψ̂
2
, (40)

and the obtained value is considered as 𝑢
𝑖
. Therefore, from

(38) and (40), it yields that

u𝑛+1 = A
1
M−1
1
N
1
A−1
1
u𝑛 + A

1
M−1
1
Ψ

− A
1
M−1
1
N
1
A−1
1

(𝑔
𝑛

1
Ψ̂
1
+ 𝑔
𝑛

2
Ψ̂
2
) + 𝑔
𝑛+1

1
Ψ̂
1
+ 𝑔
𝑛+1

2
Ψ̂
2
.

(41)

Hence, the unknown parameters 𝑢
𝑖
are specified from (41)

instead of (38).

3.2. The Indirect MQ Quasi-Interpolation Scheme. In indirect
scheme, the highest order derivatives (second order in this
paper) of the solution function are first approximated by (19),
and their lower order derivatives and the solution function
are then obtained by symbolic integration.Therefore, 𝑢𝑛

𝑥𝑥
can

be approximated by MQ quasi-interpolation LW
2

on data
{𝑥
𝑗
}
𝑁−1

𝑗=1
as follows:

𝑢
𝑛

𝑥𝑥
(𝑥) =

𝑁−1

∑

𝑗=1

𝑢
𝑛

𝑥𝑥
(𝑥
𝑗
) �̂�
𝑗
(𝑥) . (42)

Now, integrating (42) yields

𝑢
𝑛

𝑥
(𝑥) =

𝑁−1

∑

𝑗=1

𝑢
𝑛

𝑥𝑥
(𝑥
𝑗
)∫ �̂�
𝑗
(𝑥) 𝑑𝑥 + 𝐶

1
, (43)

𝑢
𝑛
(𝑥) =

𝑁−1

∑

𝑗=1

𝑢
𝑛

𝑥𝑥
(𝑥
𝑗
)∫∫ �̂�

𝑗
(𝑥) 𝑑𝑥 𝑑𝑥 + 𝐶

1
𝑥 + 𝐶

2
. (44)

Equations (42)–(44) can be rewritten in the compact form as
follows:

𝑢
𝑛
(𝑥) =

𝑁

∑

𝑗=0

𝑤
𝑛

𝑗
𝜑
𝑗
(𝑥) ,

𝑢
𝑛

𝑥
(𝑥) =

𝑁

∑

𝑗=0

𝑤
𝑛

𝑗
�̇�
𝑗
(𝑥) ,

𝑢
𝑛

𝑥𝑥
(𝑥) =

𝑁

∑

𝑗=0

𝑤
𝑛

𝑗
�̈�
𝑗
(𝑥) ,

(45)

where

𝜑
𝑗
(𝑥) = ∫∫ �̂�

𝑗
(𝑥) 𝑑𝑥 𝑑𝑥, 1 ⩽ 𝑗 ⩽ 𝑁 − 1,

𝜑
0
(𝑥) = 𝑥, 𝜑

𝑁
(𝑥) = 1,

�̇�
𝑗
(𝑥) = ∫ �̂�

𝑗
(𝑥) 𝑑𝑥, 1 ⩽ 𝑗 ⩽ 𝑁 − 1,

�̇�
0
(𝑥) = 1, �̇�

𝑁
(𝑥) = 0,

�̈�
𝑗
(𝑥) = �̂�

𝑗
(𝑥) , 1 ⩽ 𝑗 ⩽ 𝑁 − 1,

�̈�
0
(𝑥) = 0, �̈�

𝑁
(𝑥) = 0,

𝑤
𝑛

𝑗
= 𝑢
𝑛

𝑥𝑥
(𝑥
𝑗
) , 1 ⩽ 𝑗 ⩽ 𝑁 − 1,

𝑤
𝑛

0
= 𝐶
1
, 𝑤

𝑛

𝑁
= 𝐶
2
.

(46)
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Similar to direct scheme, replacing (45) into (29) and (3) and
applying collocation method lead to

𝑁

∑

𝑘=0

𝑤
𝑛+1

𝑘
[

[

(1 +

Δ𝑡

2

𝑁

∑

𝑗=0

𝑤
𝑛

𝑗
�̇�
𝑖𝑗
)𝜑
𝑖𝑘

+

Δ𝑡

2

(

𝑁

∑

𝑗=0

𝑤
𝑛

𝑗
𝜑
𝑖𝑗
) �̇�
𝑖𝑘
− 𝜐

Δ𝑡

2

�̈�
𝑖𝑘
]

]

=

𝑁

∑

𝑗=0

𝑤
𝑛

𝑗
(𝜑
𝑖𝑗
+ 𝜐

Δ𝑡

2

𝑡�̈�
𝑖𝑗
)

+ Δ𝑡 (𝐹
𝑛

𝑖
+

Δ𝑡

2

𝐹
𝑛

𝑡
(𝑥
𝑖
)) , 1 ⩽ 𝑖 ⩽ 𝑁 − 1,

𝑁

∑

𝑘=0

𝑤
𝑛+1

𝑘
𝜑
𝑘
(𝑥
0
) = 𝑔
𝑛+1

1
,

𝑁

∑

𝑘=0

𝑤
𝑛+1

𝑘
𝜑
𝑘
(𝑥
𝑁
) = 𝑔
𝑛+1

2
,

(47)

where 𝜑
𝑖𝑗

= 𝜑
𝑗
(𝑥
𝑖
), �̇�
𝑖𝑗

= �̇�
𝑗
(𝑥
𝑖
), �̈�
𝑖𝑗

= �̈�
𝑗
(𝑥
𝑖
), and 𝑔

𝑛+1

𝑖
=

𝑔
𝑖
(𝑡
𝑛+1

), 𝑖 = 1, 2.
Equations (47) generate a system of𝑁+1 linear equations

in𝑁 + 1 unknown parameters 𝑤𝑛+1
𝑖

.
Similar to the direct quasi-interpolation scheme, (47) can

be written in matrix form

[A
𝑑
+ A
𝑏
+

Δ𝑡

2

u𝑛
𝑥
∗ A
𝑑
+

Δ𝑡

2

u𝑛 ∗D
2
− 𝜐

Δ𝑡

2

̈D
2
]w𝑛+1

= [A
𝑑
+ 𝜐

Δ𝑡

2

D̈
2
]w𝑛 + G𝑛+1 + Δ𝑡F𝑛

2
+

Δ𝑡
2

2

F́𝑛
2
,

(48)

where, in this case,

A
𝑑
(𝑖+1)(𝑗+1)

= 𝜑
𝑖𝑗
, A

𝑏
(𝑖+1)(𝑗+1)

= 0,

D
2
(𝑖+1)(𝑗+1)

= �̇�
𝑖𝑗
,

̈D
2
(𝑖+1)(𝑗+1)

= �̈�
𝑖𝑗
,

(49)

for 𝑖 = 1, . . . , 𝑁 − 1; 𝑗 = 0, 1, . . . , 𝑁 and

A
𝑑
(𝑖+1)(𝑗+1)

= 0, A
𝑏
(𝑖+1)(𝑗+1)

= 𝜑
𝑖𝑗
,

D
2
(𝑖+1)(𝑗+1)

= 0,
̈D
2
(𝑖+1)(𝑗+1)

= 0,

(50)

for 𝑖 = 0,𝑁; 𝑗 = 0, 1, . . . , 𝑁 and

G𝑛+1 = [𝑔
𝑛+1

1
, 0, . . . , 0, 𝑔

𝑛+1

2
]

𝑇

,

F𝑛
2
= [0, 𝐹

𝑛
(𝑥
1
) , . . . , 𝐹

𝑛
(𝑥
𝑁−1

) , 0]
𝑇

,

F́𝑛
2
= [0, 𝐹

𝑛

𝑡
(𝑥
1
) , . . . , 𝐹

𝑛

𝑡
(𝑥
𝑁−1

) , 0]
𝑇

.

(51)

Subsequently, (48) can be written as

w𝑛+1 = M−1
2
N
2
w𝑛 +M−1

2
G𝑛+1 +M−1

2
̈F𝑛, (52)

where

M
2
= A
2
+

Δ𝑡

2

u𝑛
𝑥
∗ A
𝑑
+

Δ𝑡

2

u𝑛 ∗D
2
− 𝜐

Δ𝑡

2

̈D
2
,

N
2
= A
𝑑
+ 𝜐

Δ𝑡

2

̈D
2
,

̈F𝑛 = Δ𝑡F𝑛
2
+

Δ𝑡
2

2

́F𝑛
2
,

(53)

and A
2
= A
𝑑
+ A
𝑏
. From (42), it yields that

u𝑛 = A
2
w𝑛. (54)

Hence, the combination of (52) and (54) is given as

u𝑛+1 = A
2
M−1
2
N
2
A−1
2
u𝑛 + A

2
M−1
2
G𝑛+1 + A

2
M−1
2

̈F𝑛. (55)

4. The Stability Analysis

In this section, the stability analysis from direct and indirect
quasi-interpolation schemes is presented by using spectral
radius of the amplification matrix similar to the work that
Siraj-ul-Islam et al. did in [34]. Let u be the exact and u∗
the numerical solution of (1); then the error vector 𝜀𝑛+1 =

u𝑛+1 − u∗𝑛+1 in the direct and indirect quasi-interpolation
schemes can be written as

𝜀
𝑛+1

= u𝑛+1 − u∗𝑛+1 = A
1
M−1
1
N
1
A−1
1
𝜀
𝑛
= E
1
𝜀
𝑛
,

𝜀
𝑛+1

= u𝑛+1 − u∗𝑛+1 = A
2
M−1
2
N
2
A−1
2
𝜀
𝑛
= E
2
𝜀
𝑛
,

(56)

where E
1
= A
1
M−1
1
N
1
A−1
1

and E
2
= A
2
M−1
2
N
2
A−1
2
. For the

stability of the numerical schemes, we must have 𝜀𝑛 → 0 as
𝑛 → ∞; that is, 𝜌(E

1
) ⩽ 1, 𝜌(E

2
) ⩽ 1, which is the necessary

and sufficient condition for the numerical schemes to be
stable, where 𝜌(E

1
) and 𝜌(E

2
) denote the spectral radius of

the amplification matrices E
1
and E

2
, respectively. Equations

(56) can be written as

M
1
A−1
1
𝜀
𝑛+1

= N
1
A−1
1
𝜀
𝑛
,

M
2
A−1
2
𝜀
𝑛+1

= N
2
A−1
2
𝜀
𝑛
.

(57)

Equations (57) can be written into the following forms by
using the values of M

1
, N
1
, M
2
, and N

2
defined in (39) and

(53):

[I + (

Δ𝑡

2

)R
1
] 𝜀
𝑛+1

= [I + (

Δ𝑡

2

)R
2
] 𝜀
𝑛
,

[I + (

Δ𝑡

2

) S
1
] 𝜀
𝑛+1

= [K + (

Δ𝑡

2

) S
2
] 𝜀
𝑛
,

(58)

where
R
1
= [u𝑛
𝑥
∗ A
1
+ u𝑛 ∗D

1
− 𝜐�̈�
1
]A−1
1
,

R
2
=

[

[

𝜐
̈D
1
−

2

∑

𝑗=1

𝑔
𝑛+1

𝑗
(Ψ̂
𝑗
∗D
1
+ Ψ̌
𝑗
∗ A
1
)
]

]

A−1
1
,

S
1
= A−1
2

[u𝑛
𝑥
∗ A
𝑑
+ u𝑛 ∗D

2
− 𝜐�̈�
2
] ,

K = A−1
2
A
𝑑
, S

2
= A−1
2

[𝜐�̈�
2
] .

(59)
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The condition of stability will be satisfied if maximum eigen-
value of the matrix E

1
= [I + (Δ𝑡/2)R

1
]
−1
[I + (Δ𝑡/2)R

2
] and

maximum eigenvalue of the matrix E
2
= [I+(Δ𝑡/2)S

1
]
−1
[K+

(Δ𝑡/2)S
2
] are less than unity (in direct and indirectMQquasi-

interpolation schemes, resp.); that is,










1 + (Δ𝑡/2) 𝜂
𝑅
2

1 + (Δ𝑡/2) 𝜂
𝑅
1











⩽ 1,











𝜂
𝐾
+ (Δ𝑡/2) 𝜂

𝑆
2

1 + (Δ𝑡/2) 𝜂
𝑆
1











⩽ 1,

(60)

where 𝜂
𝑅
1

, 𝜂
𝑅
2

, 𝜂
𝑆
1

, 𝜂
𝑆
2

, and 𝜂
𝐾
denote the eigenvalues of the

matrices R
1
, R
2
, S
1
, S
2
, and K, respectively. It is clear from

(60) that the stability of the methods depends on the time
step Δ𝑡 and eigenvalues of the matrices 𝜂

𝑅
1

, 𝜂
𝑅
2

, 𝜂
𝑆
1

, 𝜂
𝑆
2

, and
𝜂
𝐾
.The condition numbers andmagnitude of the eigenvalues

of the matrices R
1
, R
2
, S
1
, S
2
, and K depend on the shape

parameter and the number of collocation points. Hence, the
condition number and the spectral radius of the matrices
E
1
and E

2
are dependent on the shape parameter and the

number of collocation points. Since it is not possible to find
explicit relationship among the spectral radius of thematrices
and the shape parameter, this dependency is approximated
numerically by keeping the number of collocation points
fixed.

5. The Numerical Experiments

Five test experiments are studied to investigate the robustness
and the accuracy of the proposed methods. The solution
function of Burgers’ equation is approximated by direct
MQ quasi-interpolation (DMQQI) and indirect MQ quasi-
interpolation (IMQQI) schemes and the results are compared
with analytical solutions and the results in [18, 26, 31, 35].The
𝐿
∞

and 𝐿
2
error norms which are defined by

𝐿
∞

=






𝑢
∗𝑛

− 𝑢
𝑛


∞

= max
0⩽𝑗⩽𝑁






𝑢
∗𝑛

(𝑥
𝑗
) − 𝑢
𝑛
(𝑥
𝑗
)






,

𝐿
2
=






𝑢
∗𝑛

− 𝑢
𝑛


2

= √ℎ

𝑁

∑

𝑗=0

(𝑢
∗𝑛

(𝑥
𝑗
) − 𝑢
𝑛
(𝑥
𝑗
))

2

(61)

are used to measure the accuracy. Also, the stability analysis
of the methods is considered for first experiment. In all
experiments, the shape parameter 𝑠 is considered twice the
shape parameter 𝑐 and𝑁 is chosen twice𝑁. Also, the centers
and the collocation points have been chosen as the same and
equidistant.

The computations associated with the experiments dis-
cussed abovewere performed inMaple 16 on a PCwith aCPU
of 2.4GHZ.

Experiment 1. In this experiment, we consider nonlinear
Burgers’ equation (1) with 𝐹(𝑥, 𝑡) = 0 and the initial and the
boundary conditions:

𝑢 (𝑥, 0) = sin (𝜋𝑥) , 0 ⩽ 𝑥 ⩽ 1,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 𝑡 ⩾ 0.

(62)

The exact series solution of this experiment was given by Cole
[8]:

𝑢 (𝑥, 𝑡) =

2𝜋𝜐∑
∞

𝑘=1
𝑘𝑎
𝑘
sin (𝑘𝜋𝑥) exp (−𝑘2𝜋2𝜐𝑡)

𝑎
0
+ ∑
∞

𝑘=1
𝑎
𝑘
cos (𝑘𝜋𝑥) exp (−𝑘2𝜋2𝜐𝑡)

, (63)

where

𝑎
0
= ∫

1

0

exp(−1 − cos (𝜋𝑥)
2𝜋𝜐

) 𝑑𝑥,

𝑎
𝑘
= 2∫

1

0

cos (𝑘𝜋𝑥) exp (−1 − cos (𝜋𝑥)
2𝜋𝜐

) 𝑑𝑥,

(𝑘 = 1, 2, 3, . . .) .

(64)

Numerical results are presented for 𝜐 = 0.1 and 𝜐 = 0.01

with Δ𝑡 = 0.001 and compared with the exact solutions and
the results of theMQquasi-interpolation scheme (MQQI; see
[26]) and adaptive MQ scheme (AMQ; see [18]) for the cases
of 𝜐 = 0.1 and 𝜐 = 0.01 in Tables 1 and 2, respectively. Also, the
numerical solutions are compared with the results obtained
by MQQI scheme, AMQ scheme, and Galerkin scheme [35]
for 𝜐 = 0.0001 in Table 3. In the cases 𝜐 = 0.1 and 𝜐 = 0.01,
the shape parameter 𝑐 is 0.815ℎ. In the case 𝜐 = 0.0001, the
parameter 𝑐 is 2.78 × 10

−1 and 1.389 × 10
−4 for 𝑁 = 36 and

𝑁 = 72, respectively. The space-time graph of the estimated
solution for 𝜐 = 0.1 and 𝜐 = 0.01 is presented in Figures 1 and
2.

Numerical comparison in these cases shows that the
obtained results, particularly in IMQQI scheme, are in good
agreementwith the exact solutions and the results of the other
schemes.

Relation between the spectral radius of the matrices E
1

and E
2
and the different values of the shape parameter 𝑐

is shown in Table 4 by keeping the number of collocation
points fixed. It is clear from Table 4 that if the values of shape
parameter 𝑐 are greater than the critical value 𝑐 = 0.1 (𝑐 =

0.01), then the solution obtained from the IMQQI (DMQQI)
method breaks down and hence the IMQQI and DMQQI
methods become unstable. Therefore, the interval stability
of IMQQI and DMQQI schemes is (0, 0.1) and (0.004, 0.01),
respectively.

It can be seen from Table 4 that the schemes are very
sensitive to the values of the shape parameter 𝑐 and the
interval stability of methods is a small interval.

Experiment 2. In this experiment, we consider the shock
propagation solution of the homogeneous Burgers’ equation
[31] as a numerical experiment. This solution is given by

𝑢 (𝑥, 𝑡) =

𝑥

𝑡 (1 + √𝑡/𝑡
∗
exp (𝑥2/4𝜐𝑡))

,

𝑡 ⩾ 1, 𝑡
∗
= exp( 1

8𝜐

) , 0 ⩽ 𝑥 ⩽ 1.2.

(65)

The initial condition of the problem is obtained from (65) at
time 𝑡 = 1 and the boundary conditions in (3) can be obtained
from the exact solution. Propagation of the shock is studied
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Table 1: Comparison of results with the exact solution and the results in [26] of 𝜐 = 0.1 with Δ𝑡 = 0.001 at 𝑡 = 1 for different values of 𝑥 of
Experiment 1.

𝑥 Exact MQQI [26] IMQQI DMQQI Error Error
𝑁 = 100 𝑁 = 10 𝑁 = 20 𝑁 = 10 𝑁 = 20 IMQQI DMQQI

0.1 0.0663 0.0712 0.0663 0.0663 0.0662 0.0662 8.59𝐸 − 07 4.41𝐸 − 05

0.2 0.1312 0.1343 0.1313 0.1312 0.1310 0.1311 2.18𝐸 − 06 7.77𝐸 − 05

0.3 0.1928 0.1934 0.1929 0.1928 0.1925 0.1926 4.49𝐸 − 06 1.21𝐸 − 04

0.4 0.2480 0.2454 0.2483 0.2480 0.2476 0.2478 8.59𝐸 − 06 1.88𝐸 − 04

0.5 0.2919 0.2852 0.2924 0.2919 0.2913 0.2916 1.55𝐸 − 05 2.85𝐸 − 04

0.6 0.3161 0.3047 0.3169 0.3161 0.3150 0.3155 2.26𝐸 − 05 4.15𝐸 − 04

0.7 0.3081 0.2929 0.3095 0.3081 0.3064 0.3072 3.39𝐸 − 05 5.53𝐸 − 04

0.8 0.2537 0.2378 0.2558 0.2538 0.2515 0.2526 4.96𝐸 − 05 5.98𝐸 − 04

0.9 0.1461 0.1354 0.1481 0.1461 0.1441 0.1455 4.47𝐸 − 05 4.16𝐸 − 04

Table 2: Comparison of results with the exact solution and the results in [26] of 𝜐 = 0.01 with Δ𝑡 = 0.001 at 𝑡 = 1 for different values of 𝑥 of
Experiment 1.

𝑥 Exact MQQI [26] IMQQI DMQQI Error Error
𝑁 = 100 𝑁 = 20 𝑁 = 30 𝑁 = 30 𝑁 = 60 IMQQI DMQQI

0.1 0.0754 0.0787 0.0754 0.0754 0.0727 0.0751 4.17𝐸 − 07 2.84𝐸 − 04

0.2 0.1506 0.1520 0.1506 0.1506 0.1496 0.1505 1.43𝐸 − 07 1.12𝐸 − 04

0.3 0.2257 0.2255 0.2256 0.2257 0.2253 0.2256 3.20𝐸 − 08 3.16𝐸 − 05

0.4 0.3003 0.2990 0.3003 0.3003 0.3002 0.3003 4.40𝐸 − 10 8.83𝐸 − 06

0.5 0.3744 0.3723 0.3744 0.3744 0.3744 0.3744 6.09𝐸 − 08 4.67𝐸 − 06

0.6 0.4448 0.4478 0.4478 0.4478 0.4478 0.4478 6.97𝐸 − 08 4.55𝐸 − 06

0.7 0.5203 0.5164 0.5205 0.5203 0.5203 0.5203 5.19𝐸 − 07 4.99𝐸 − 06

0.8 0.5915 0.5862 0.5910 0.5915 0.5915 0.5915 5.05𝐸 − 06 4.54𝐸 − 06

0.9 0.6600 0.6296 0.6539 0.6604 0.6598 0.6600 7.78𝐸 − 05 1.10𝐸 − 06

Table 3: Comparison of results with the results of [18, 26, 35] for 𝜐 = 0.0001 and Δ𝑡 = 0.001 at 𝑡 = 1 for different values of 𝑥 of Experiment 1.

𝑥
Galerkin
method [35]

AMQ [18] MQQI [26] IMQQI DMQQI
𝑁 = 10 𝑁 = 72 𝑁 = 36 𝑁 = 72 𝑁 = 72

0.056 0.0422 0.0424 0.0424 0.0562 0.0421 0.0421
0.167 0.1263 0.1263 0.1262 0.1260 0.1263 0.1263
0.278 0.2103 0.2103 0.2096 0.2103 0.2103 0.2103
0.389 0.2939 0.2939 0.2928 0.2939 0.2939 0.2938
0.500 0.3769 0.3769 0.3754 0.3769 0.3769 0.3766
0.611 0.4592 0.4592 0.4572 0.4592 0.4592 0.4565
0.722 0.5404 0.5404 0.5381 0.5404 0.5404 0.5231
0.833 0.6203 0.6201 0.6174 0.6203 0.6203 0.5296
0.944 0.6983 0.6957 0.6948 0.6967 0.6982 0.3815

Table 4: The spectral radius and 𝐿
∞

and 𝐿
2
error norms versus shape parameter 𝑐 when Δ𝑡 = 0.001, 𝑁 = 100, and 𝜐 = 0.01 at 𝑡 = 1 of

Experiment 1.

IMQQI DMQQI
𝑐 𝜌( E

1
) 𝐿

∞
𝐿
2

𝑐 𝜌(E
2
) 𝐿

∞
𝐿
2

1.00𝐸 − 20 0.99925 2.4628𝐸 − 04 5.1531𝐸 − 04 4.00𝐸 − 03 0.99925 5.0580𝐸 − 02 8.8134𝐸 − 03

1.00𝐸 − 10 0.99925 2.4628𝐸 − 03 5.1531𝐸 − 04 6.00𝐸 − 03 0.99925 9.7461𝐸 − 03 1.6022𝐸 − 03

1.00𝐸 − 05 0.99925 2.4642𝐸 − 03 5.1413𝐸 − 04 8.00𝐸 − 03 0.99925 4.7521𝐸 − 03 7.5521𝐸 − 04

1.00𝐸 − 02 0.99925 2.1783𝐸 − 03 2.8715𝐸 − 04 1.00𝐸 − 02 0.99925 5.1918𝐸 − 03 6.7218𝐸 − 04

1.00𝐸 − 01 0.99924 2.8855𝐸 − 04 3.3028𝐸 − 05 3.00𝐸 − 02 1.00049 8.3973𝐸 − 01 1.2667𝐸 − 01

1.20𝐸 − 01 5.10176 1.3242𝐸 + 04 1.7896𝐸 + 04 5.00𝐸 − 02 1.05591 9.3609𝐸 − 01 1.7319𝐸 − 01
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Figure 1: The space-time graph of the estimated solution of Burgers’ equation by using IMQQI for 𝑥 ∈ [0, 1], 𝑡 ∈ [0, 1], 𝜐 = 0.1 (a), and
𝜐 = 0.01 (b) of Experiment 1.
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Figure 2: The space-time graph of the estimated solution of Burgers’ equation by using DMQQI for 𝑥 ∈ [0, 1], 𝑡 ∈ [0, 1], 𝜐 = 0.1 (a), and
𝜐 = 0.01 (b) of Experiment 1.

with Δ𝑡 = 0.01 for 𝜐 = 0.005 and 𝜐 = 0.001. The shape
parameter 𝑐 is denoted by 6.0×10

−2, 2.4×10−2, and 1.2×10−2
for 𝑁 = 20, 𝑁 = 50, and 𝑁 = 100, respectively. The 𝐿

2

and 𝐿
∞

error norms are calculated in 240 and 2400 points
for 𝜐 = 0.005 and 𝜐 = 0.001, respectively, and compared with
the results of [31] in Table 5 at different times.The space-time
graph of the estimated solution for 𝜐 = 0.005 is showed in
Figure 3.

Experiment 3. In this experiment, we study the fusion phe-
nomenon of the two solitary waves of the homogeneous
Burgers’ equation. The fusion phenomenon happens when
two or more solitons will fusion to one soliton at a specific
time. In [9], Wang et al. studied the following Burgers’
equation:

𝑢
𝑡
+ 2𝑢𝑢

𝑥
− 𝑢
𝑥𝑥

= 0. (66)

They obtained the two-solitary-wave solution

𝑢 (𝑥, 𝑡) = −

𝑘
1
𝑒
𝑘
1
(𝑥+𝑘
1
𝑡)
+ 𝑘
2
𝑒
𝑘
2
(𝑥+𝑘
2
𝑡)

1 + 𝑒
𝑘
1
(𝑥+𝑘
1
𝑡)
+ 𝑒
𝑘
2
(𝑥+𝑘
2
𝑡)
, (67)

where 𝑘
1
and 𝑘
2
are constant. Let

𝑡 → 𝑡, 𝑥 →

𝑥

2

. (68)

Hence, (66) converts to Burgers’ equation form (1) wherein
𝐹(𝑥, 𝑡) = 0 and 𝜐 = 0.25. In this case, two-solitary-wave
fusion happens at a specific time 𝑡 = 0. Because we can show
the fusion phenomenon, we consider an interval [−5, 5] for
𝑡 and 𝑥. For this purpose, we introduce a new time variable
𝜏 = 𝑡 + 5 and approximate the solution 𝑢(𝑥, 𝜏) of (1) by
using our schemes for 𝜏 ∈ [0, 10]. Then, we obtain 𝑢(𝑥, 𝑡)

for 𝑡 ∈ [−5, 5]. The initial condition can be obtained from the
exact solution at 𝜏 = 0. The boundary conditions can be also
taken from the exact solution.
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Table 5: The comparison of 𝐿
2
and 𝐿

∞
errors between the numerical results by using our schemes and the results of [31] with Δ𝑡 = 0.01,

𝜐 = 0.005, and 𝜐 = 0.001 of Experiment 2.

𝜐 = 0.005

𝐿
∞

𝐿
2

𝑡 = 1.7 𝑡 = 2.4 𝑡 = 3.1 𝑡 = 1.7 𝑡 = 2.4 𝑡 = 3.1

IMQQI;𝑁 = 20 9.88𝐸 − 03 3.74𝐸 − 03 9.70𝐸 − 04 2.18𝐸 − 03 7.85𝐸 − 04 2.48𝐸 − 04

IMQQI;𝑁 = 50 7.63𝐸 − 05 2.88𝐸 − 05 1.45𝐸 − 05 1.79𝐸 − 05 8.35𝐸 − 06 4.86𝐸 − 06

DMQQl;𝑁 = 50 1.82𝐸 − 04 1.58𝐸 − 04 9.88𝐸 − 05 4.12𝐸 − 05 3.24𝐸 − 05 2.09𝐸 − 05

TCM [31];𝑁 = 240 6.48𝐸 − 05 4.32𝐸 − 05 3.13𝐸 − 05 1.69𝐸 − 05 1.21𝐸 − 05 9.20𝐸 − 06

TGM [31];𝑁 = 240 1.78𝐸 − 03 1.28𝐸 − 03 1.00𝐸 − 03 3.23𝐸 − 04 2.99𝐸 − 04 2.75𝐸 − 04

𝜐 = 0.001 𝑡 = 1.7 𝑡 = 3.0 𝑡 = 3.5 𝑡 = 1.7 𝑡 = 3.0 𝑡 = 3.5

IMQQI;𝑁 = 100 7.57𝐸 − 03 2.85𝐸 − 03 1.70𝐸 − 03 1.07𝐸 − 03 3.20𝐸 − 04 2.21𝐸 − 04

DMQQI;𝑁 = 100 1.71𝐸 − 02 4.03𝐸 − 03 5.29𝐸 − 03 2.26𝐸 − 03 5.37𝐸 − 04 6.43𝐸 − 04

TCM [31];𝑁 = 2400 1.54𝐸 − 03 3.58𝐸 − 04 2.41𝐸 − 04 1.89𝐸 − 04 5.12𝐸 − 05 3.59𝐸 − 05

TGM [31];𝑁 = 2400 1.56𝐸 − 03 3.67𝐸 − 04 2.49𝐸 − 04 1.93𝐸 − 04 5.54𝐸 − 05 4.07𝐸 − 05
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Figure 3: The space-time graph of the estimated solution of Burgers’ equation by using IMQQI (a) and DMQQI (b) for 𝑥 ∈ [0, 1.2] and
𝑡 ∈ [1, 3.5] of Experiment 2.

The 𝐿
2
and 𝐿

∞
errors of IMQQI scheme are calculated

in 1000 points for 𝑘
1
= 1, 𝑘

2
= −1, Δ𝑡 = 0.001, and 𝑐 = ℎ

and listed in Table 6. From our numerical experiment whose
results are not given here, we see that the accuracy of the
DMQQI scheme is very bad in this experiment but we can
clearly see from Table 6 that the results of the IMQQI scheme
are in good agreement with the exact solutions.

The space-time graph of the estimated solution by using
IMQQI is presented in Figure 4.

Experiment 4. In this experiment, we consider Burgers’
equation (1) with the nonhomogeneous term 𝐹(𝑥, 𝑡) =

𝑘𝑥/(2𝛽𝑡 + 1)
2 that 𝑘 > 0 and 𝛽 ⩾ 0 are constant. So, Burgers’

equation (1) has the following form:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= 𝜐𝑢
𝑥𝑥

+

𝑘𝑥

(2𝛽𝑡 + 1)
2
. (69)

In 2010, Rao and Yadav [12] obtained the solution of Burgers’
equation (69) with the initial condition 𝑢(𝑥, 0) = 𝑢

0
(𝑥) ∈

𝐿
2
(R, 𝑒
𝑥
2
/2
).They showed that the solution of (69) is given by

𝑢 (𝑥, 𝑡) =

𝐴
0
𝑥

2𝛽𝑡 + 1

, 𝐴
0
= 𝛽 + √𝛽

2
+ 𝑘, (70)

for the initial condition 𝑢(𝑥, 0) = 𝑘𝑥, 𝑘 > 𝛽.
In this paper, we simulate this solution for 𝑘 = 5 and

𝛽 = 2 in 𝑥 ∈ [−1, 1]. The boundary conditions in (3) can be
obtained from the exact solution (70). The 𝐿

2
and 𝐿

∞
error

norms are calculated in 1000 points for arbitrary 𝜐,Δ𝑡 = 0.01,
and 𝑐 = ℎ and listed in Table 7. Also, the space-time graph of
the estimated solution by using IMQQI andDMQQI schemes
is presented in Figure 5.

Table 7 shows that the accuracy of the DMQQI scheme
is low even if the number of collocation points increases,
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Figure 4:The space-time graph of the estimated solution of Burgers’ equation by using IMQQI for 𝑥 ∈ [−5, 5] and 𝑡 ∈ [−5, 5] of Experiment 3.
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Figure 5: The space-time graph of the estimated solution of Burgers’ equation by using IMQQI (a) and DMQQI (b) for 𝑥 ∈ [−1, 1] and
𝑡 ∈ [0, 10] of Experiment 4.

Table 6: The 𝐿
2
and 𝐿

∞
errors of the IMQQI scheme with Δ𝑡 = 0.001 at different times of Experiment 3.

𝐿
∞

𝐿
2

𝑡 = −4 𝑡 = 0 𝑡 = 5 𝑡 = −4 𝑡 = 0 𝑡 = 5

IMQQI;𝑁 = 20 3.907𝐸 − 04 3.242𝐸 − 03 1.592𝐸 − 02 5.660𝐸 − 04 3.181𝐸 − 03 1.728𝐸 − 02

IMQQI;𝑁 = 40 7.678𝐸 − 06 2.661𝐸 − 05 3.379𝐸 − 04 1.174𝐸 − 05 1.670𝐸 − 05 2.119𝐸 − 04

Table 7: The comparison of 𝐿
2
and 𝐿

∞
errors between the numerical results of our schemes with Δ𝑡 = 0.01 of Experiment 4.

𝐿
∞

𝐿
2

𝑡 = 1 𝑡 = 5 𝑡 = 10 𝑡 = 1 𝑡 = 5 𝑡 = 10

IMQQI;𝑁 = 10 1.171𝐸 − 06 2.816𝐸 − 09 1.876𝐸 − 10 8.394𝐸 − 08 2.020𝐸 − 09 1.345𝐸 − 10

DMQQI;𝑁 = 20 1.533𝐸 − 01 4.146𝐸 − 02 2.159𝐸 − 02 7.441𝐸 − 02 2.102𝐸 − 02 1.101𝐸 − 02

DMQQI;𝑁 = 40 1.234𝐸 − 01 3.446𝐸 − 02 2.034𝐸 − 02 6.612𝐸 − 02 2.102𝐸 − 02 1.037𝐸 − 02
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Figure 6: The space-time graph of the estimated solution of Burgers’ equation by using IMQQI (a) and DMQQI (b) for 𝜐 = 0.1, 𝑥 ∈ [0, 𝜋]

and 𝑡 ∈ [0, 3] of Experiment 5.

Table 8: Comparison of numerical results with the exact solutions for 𝜐 = 1 with 𝑞 = 20 and Δ𝑡 = 0.001 at 𝑡 = 3 of Experiment 5.

𝑥 Exact IMQQI DMQQI Error Error
𝑁 = 10 𝑁 = 20 𝑁 = 20 𝑁 = 30 IMQQI DMQQI

0.5 2.1481 2.1500 2.1481 2.1343 2.1474 1.025𝐸 − 05 6.383𝐸 − 04

1.0 4.1562 4.1563 4.1562 4.1512 4.1558 6.026𝐸 − 06 4.374𝐸 − 04

1.5 5.8928 5.9011 5.8928 5.8842 5.8924 1.619𝐸 − 05 3.516𝐸 − 04

2.0 7.2404 7.2593 7.2404 7.2264 7.2400 3.306𝐸 − 05 3.083𝐸 − 04

2.5 8.0302 8.0156 8.0358 8.0056 8.0298 2.109𝐸 − 04 3.599𝐸 − 04

3.0 4.5140 4.8006 4.5143 4.4773 4.4965 2.169𝐸 − 04 1.750𝐸 − 02

whereas the IMQQI scheme provides the good results with
a small number of points.

Experiment 5. We finally closed our analysis by considering
the following Burgers’ equation with the nonhomogeneous
term:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= 𝜐𝑢
𝑥𝑥

+ 𝐴 sin (𝑥) , 𝐴 > 0, (71)

with the initial condition

𝑢 (𝑥, 0) = 0, 𝑥 ∈ [0, 𝜋] , (72)

which was discussed in [1], as a nonlinear model for describ-
ing hypersound generation in prescribed light field. The
solution of the differential equation (71) can be written as a
series of Mathieu’s functions [1]:

𝑢 (𝑥, 𝑡)

= 2𝜐

𝜕

𝜕𝑥

ln[
∞

∑

𝑘=0

𝑎
2𝑘
exp(−

𝜐𝜆
2𝑘
(𝑞)

4

𝑡) 𝑐𝑒
2𝑘
(

𝜋 − 𝑥

2

, 𝑞)] ,

(73)

where

𝑎
2𝑘

=

[∫

2𝜋

0
𝑐𝑒
0
(𝑥/2, 𝑞) 𝑑𝑥]

[∫

2𝜋

0
𝑐𝑒
2

2𝑘
(𝑥/2, 𝑞) 𝑑𝑥]

(74)

and 𝑞 = 𝐴/𝜐
2. The notations used here correspond to those

from the book by Strutt [36]. The boundary conditions are

𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0, 𝑡 ⩾ 0. (75)

The numerical results compared with the exact solutions for
𝜐 = 1 with 𝑞 = 20 and 𝜐 = 0.1 with 𝑞 = 100 in Tables 8 and 9,
respectively. The numerical calculations are performed with
Δ𝑡 = 0.001 and 𝑐 = ℎ. The space-time graph of the estimated
solutions is also presented for 𝜐 = 0.1 in Figure 6.

6. Conclusion

In this paper, two numerical schemes based on high accuracy
MQ quasi-interpolation scheme and RBFs approximation
schemes (IRBF and DRBF approximation schemes) have
been presented for solving the nonlinear nonhomogeneous
Burgers’ equation. The accuracy of the methods can be
increased by selecting the appropriate shape parameter. The
choice of the shape parameter is still a pendent question.

The numerical results which are given in the previous sec-
tion indicate that the performance of the methods specially
IMQQI is in excellent agreement with the exact solutions.
Tables 1–9 show that the IMQQI scheme is more accurate
than DMQQI scheme as expected, and the interval stability
of the IMQQI method is greater than the DMQQI method.
Also, the IMQQI scheme required less nodes in comparison
with the DMQQI scheme. We can even get good results with



14 Journal of Applied Mathematics

Table 9: Comparison of numerical results with the exact solutions for 𝜐 = 0.1 with 𝑞 = 100 and Δ𝑡 = 0.001 at 𝑡 = 3 of Experiment 5.

𝑥 Exact IMQQI DMQQI Error Error
𝑁 = 20 𝑁 = 30 𝑁 = 30 𝑁 = 60 IMQQI DMQQI

0.5 0.4824 0.4853 0.4851 0.4822 0.4851 2.679𝐸 − 03 2.696𝐸 − 03

1.0 0.9331 0.9392 0.9392 0.9383 0.9391 6.056𝐸 − 03 6.006𝐸 − 03

1.5 1.3221 1.3318 1.3300 1.3317 1.3320 7.894𝐸 − 03 9.878𝐸 − 03

2.0 1.6222 1.6382 1.6271 1.6370 1.6371 4.911𝐸 − 03 1.490𝐸 − 02

2.5 1.8102 1.8281 1.8122 1.8322 1.8322 1.833𝐸 − 03 2.195𝐸 − 02

3.0 1.6155 1.6657 1.6207 1.5897 1.6476 5.433𝐸 − 03 3.238𝐸 − 02

less number of points specially in IMQQI method but the
results are bad at the ends of interval that we can improve it
by using the knot method [37]. Hence, we will not encounter
with large scale matrix. Besides, we use equidistant points in
our numerical experiments but our schemes can be used for
the scattered points.
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