
Research Article
A Novel Self-Adaptive Trust Region Algorithm for
Unconstrained Optimization

Yunlong Lu, Wenyu Li, Mingyuan Cao, and Yueting Yang

School of Mathematics and Statistics, Beihua University, Jilin 132013, China

Correspondence should be addressed to Yueting Yang; yyt2858@163.com

Received 28 August 2013; Revised 18 March 2014; Accepted 19 March 2014; Published 15 April 2014

Academic Editor: Kazutake Komori

Copyright © 2014 Yunlong Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new self-adaptive rule of trust region radius is introduced, which is given by a piecewise function on the ratio between the actual
and predicted reductions of the objective function. A self-adaptive trust regionmethod for unconstrained optimization problems is
presented.The convergence properties of the method are established under reasonable assumptions. Preliminary numerical results
show that the new method is significant and robust for solving unconstrained optimization problems.

1. Introduction

Consider the following unconstrained optimization problem:

min
𝑥∈R𝑛

𝑓 (𝑥) , (1)

where 𝑓 : R𝑛 → R is continuously differentiable.
The trust region methods calculate a trial step 𝑑

𝑘
by

solving the subproblem at each iteration,

min 𝑞
𝑘
(𝑑) =

1

2
𝑑𝑇𝐵
𝑘
𝑑 + 𝑔𝑇
𝑘
𝑑

s.t. ‖𝑑‖ ≤ Δ
𝑘
,

(2)

where 𝑔
𝑘
= ∇𝑓(𝑥

𝑘
) and 𝐵

𝑘
is symmetric matric approximat-

ing the Hessian of 𝑓(𝑥) at 𝑥
𝑘
, and Δ

𝑘
> 0 is the current trust

region radius.Throughout this paper, ‖⋅‖denotes the 𝑙
2
-norm.

We define the ratio,

𝑟
𝑘
=

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
)

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)

, (3)

and the numerator and the denominator are called the actual
reduction and the predicted reduction, respectively. For
basic trust region (BTR) method, if the sufficient reduction
predicted by the model is realized by the objective function,
the trial point 𝑥

𝑘
+ 𝑑
𝑘
is accepted as the next iterate and

the trust region is expanded or kept the same. If the model

reduction turns out to be a poor predictor of the actual
behavior of the objective function, the trial point is rejected
and the trust region is contracted, with the hope that the
model provides a better prediction in the smaller region.
More formally, basic trust region radius update rule can be
usually summarized as follows:

Δ
𝑘+1

=
{{
{{
{

[𝛾
1
Δ
𝑘
, 𝛾
2
Δ
𝑘
] if 𝑟

𝑘
< 𝜂
1
,

[𝛾
2
Δ
𝑘
, Δ
𝑘
] if 𝜂

1
≤ 𝑟
𝑘
< 𝜂
2
,

[Δ
𝑘
,∞) if 𝑟

𝑘
≥ 𝜂
2
,

(4)

where the constants 𝛾
1
, 𝛾
2
, 𝜂
1
, and 𝜂

2
satisfy

0 ≤ 𝜂
1
< 𝜂
2
< 1, 0 < 𝛾

1
≤ 𝛾
2
< 1. (5)

The iteration is said to be successful if 𝑟
𝑘
≥ 𝜂
1
. If not, the

iteration is unsuccessful, and the trial point is rejected. If 𝑟
𝑘
≥

𝜂
2
, the iteration is said to be very successful iteration [1]. If 𝑟

𝑘

is significantly larger than one, that is, 𝑟
𝑘
≥ 𝜂
3
> 1 > 𝜂

2
, the

iteration is called too successful iteration [2].
Sartenaer [3] developed an elaborate strategy which can

automatically determine an initial trust region radius. The
basic idea is to determine a maximal initial radius through
many repeated trials in the steepest descent direction in order
to guarantee a sufficient agreement between the model and
the objective function.This strategy requires additional eval-
uations of the objective function. Zhang et al. [4] presented
another strategy of determining the trust region radius.Their

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 610612, 8 pages
http://dx.doi.org/10.1155/2014/610612

http://dx.doi.org/10.1155/2014/610612


2 Journal of Applied Mathematics

basic idea is originated from the following subproblem in an
artificial neural network research [5]:

min
𝑑∈𝑅
𝑛

𝑞
𝑘
(𝑑) = 𝑔𝑇

𝑘
𝑑 +

1

2
𝑑𝑇𝐵
𝑘
𝑑

s.t. −Δ
𝑘
≤ 𝑑
𝑖
≤ Δ
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

(6)

where Δ
𝑘
= 𝑐𝑝(‖𝑔

𝑘
‖/𝛾), 0 < 𝑐 < 1, 𝛾 = min(‖𝐵

𝑘
‖, 1), and 𝑝 is

a nonnegative integer.Therefore, instead of adjustingΔ
𝑘
, one

adjusts 𝑝 at each iteration. Motivated by this technique, they
solved the trust region subproblem with

Δ
𝑘
= 𝑐𝑝

𝑔𝑘

𝐵
−1

𝑘

 , (7)

where 𝑐 ∈ (0, 1), 𝑝 is a nonnegative integer, and𝐵
𝑘
= 𝐵
𝑘
+𝑖𝐼 is

a positive definite matrix for some 𝑖. However, their method
needs to estimate ‖𝐵

𝑘
‖ or ‖𝐵−1‖ at each iteration, which leads

to some additional cost of computation. As a result, Shi and
Guo [6] proposed a simple adaptive trust regionmethod.The
new trust region model is more consistent with the objective
function at the current iteration. Fu et al. [7] developed an
adaptive trust region method based on the conic model by
using the above adaptive strategy [4]. Sang and Sun [8] gave
a new self-adaptive adjustment strategy to update the trust
region radius, which makes full use of the information at the
current point. Yu and Li [9] proposed a self-adaptive trust
region algorithm for solving this nonsmooth equation. Some
authors [1, 10] adopted different values for parameters (5) but
seldomquestioned the radius update formula (4). In addition,
many adaptive nonmonotonic trust region methods have
been proposed in [11–18]. Hei [19] proposed a self-adaptive
update method, in which trust region radius is a product of a
so-called 𝑅-function and Δ

𝑘
; that is, Δ

𝑘+1
= 𝑅(𝑟

𝑘
)Δ
𝑘
, where

𝑅(⋅) is the𝑅-function. As the ratio 𝑟
𝑘
is larger than one,𝑅(⋅) is

nondecreasing and bounded. However, as the iteration is very
successful, the ratio 𝑟

𝑘
is larger than one; it implies that the

local approximation of the objective function by the model
function is not good. Walmag and Delhez [2] suggested that
it is not overconfident in the model 𝑞

𝑘
(𝑑) at too successful

iterations. They presented a self-adaptive update method, in
which trust region radius isΔ

𝑘+1
= Λ(𝑟

𝑘
)Δ
𝑘
, whereΛ(⋅) is the

Λ-function. If 𝑟
𝑘
is significantly larger than one, Λ-function

is nonincreasing. However, they took Λ(𝑟
𝑘
) > 1 but close to

one to match the convergence criteria presented by Conn et
al. [1].

In our opinion, the agreement between the model and
the objective function is not good enough at too successful
iterations. We take that the updated trust region radius Δ

𝑘+1

is less than Δ
𝑘
and Δ

𝑘+1
is bounded lower away from zero. It

implies that Λ(𝑟
𝑘
) > 1 is not always necessary. This strategy

can also match the convergence criteria presented by Conn et
al. [1].

In the paper, the 𝐿-function 𝐿(⋅) is introduced, which
is a variant of Λ-function. A new self-adaptive trust region
method is proposed, in which the trust region radius is
Δ
𝑘+1

= 𝐿(𝑟
𝑘
)Δ
𝑘
. The new method is more efficient at too

successful iterations.
The rest of the paper is organized as follows. In Section 2,

we define 𝐿-function to introduce new update rules and

a new self-adaptive trust region algorithm is presented. In
Section 3, the convergence properties of proposed algorithm
are investigated. In Section 4, numerical results are given. In
Section 5 conclusions are summarized.

2. 𝐿-Function and the New Self-Adaptive
Trust Region Algorithm

To obtain the new trust region radius update rules, we define
𝐿-function 𝐿(𝑡), 𝑡 ∈ R.

Definition 1. A function 𝐿(𝑡) is called an 𝐿-function if it
satisfies the following:

(1) 𝐿(𝑡) is nondecreasing in (−∞, 𝜂
2
] and nonincreasing

in (2 − 𝜂
2
, +∞), 𝐿(𝑡) = 𝛽

2
, for 𝑡 ∈ [𝜂

2
, 2 − 𝜂

2
],

(2) lim
𝑡→−∞

𝐿(𝑡) = 𝑐
1
,

(3) 𝐿(0) = 𝑐
2
,

(4) lim
𝑡→𝜂
2

−𝐿(𝑡) = 1,
(5) lim

𝑡→0
+𝐿(𝑡) = 𝛽

1
,

(6) 𝐿(𝑡) < 1, for 𝑡 > 𝜂
3
,

(7) and lim
𝑡→+∞

𝐿(𝑡) = 𝛽
3
,

where the constants 𝛽
1
, 𝛽
2
, 𝛽
3
, 𝜂
2
, 𝜂
3
, 𝑐
1
, 𝑐
2
are positive con-

stants such that

0 < 𝑐
1
< 𝑐
2
< 𝛽
1
≤ 𝛽
3
< 1 < 𝛽

2
, 𝜂

3
> 2 − 𝜂

2
. (8)

It is easy to prove that the 𝐿-function is a bounded
function in R. In the following, we show the differences
between the usual empirical rule, the 𝑅-function rule, the Λ-
function rule, and the 𝐿-function rule.

The usual empirical rules ([1, 20, 21]) (Figure 1(a)) can be
usually summarized as follows:

Δ
𝑘+1

=
{{
{{
{

𝛽
1
Δ
𝑘
, if 𝑟

𝑘
< 𝜂
1
,

Δ
𝑘
, if 𝜂

1
≤ 𝑟
𝑘
< 𝜂
2
,

𝛽
2
Δ
𝑘
, if 𝜂

2
≤ 𝑟
𝑘
,

(9)

where 𝛽
1
, 𝛽
2
, 𝜂
1
, and 𝜂

2
are predefined constants such that

0 ≤ 𝜂
1
< 𝜂
2
< 1, 0 < 𝛽

1
< 1 < 𝛽

2
. (10)

The 𝑅-function rule and the Λ-function rule can be
described as follows:

Δ
𝑘+1

= 𝑅 (𝑟
𝑘
) Δ
𝑘
, Δ

𝑘+1
= Λ (𝑟

𝑘
) Δ
𝑘
, (11)

where the𝑅-function𝑅(𝑟
𝑘
) (Figure 1(b)) proposed byHei [19]

is chosen as

𝑅 (𝑟
𝑘
)

=
{{
{{
{

2

𝜋
(𝑀 − 1 − 𝛼

1
) arctan (𝑟

𝑘
− 𝜂
1
) + (1 + 𝛼

1
) , if 𝑟

𝑘
≥ 𝜂
1
;

(1 − 𝛼
2
− 𝛽) exp (𝑟

𝑘
− 𝜂
1
) +

𝛽

1 − 𝛼
2
− 𝛽

, otherwise,

(12)



Journal of Applied Mathematics 3

Step function

3

2.5
𝛽2

1.5

1
𝛽1

0

−0.5

−1
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2.0 2.5 3

Va
ria

bl
e𝛽

k

Variable rk

𝜂1 𝜂2

(a)

0 1 2 3 4

0

1

2

3

4

5

Va
ria

bl
e
R
(r
k
)

−1
−2 −1

Variable rk

𝜂1

R-function

(b)

2.5

𝛽2

1.5

𝛽3

𝛽1

0

−0.5

Va
ria

bl
eΛ

(r
k
)

−0.5 0 0.5 1 1.5 2

Variable rk

−0.25 𝜂1 1

Λ-function

(c)

Figure 1: (a) Step function. (b) 𝑅-function 𝑅(𝑟
𝑘
). (c) Λ-function Λ(𝑟

𝑘
).

𝛽2

1
𝛽3
𝛽1
c2
c1

−1

Va
ria

bl
eL

(r
k
)

−2 −1 0 1 2 3 4

Variable rk

𝜂2 2 − 𝜂2 𝜂3

L-function

Figure 2: 𝐿-function 𝐿(𝑡).

where 𝛼
1
, 𝛼
2
, 𝛽, 𝑀, and 𝜂 are constants, and the Λ-function

Λ(𝑟
𝑘
) (Figure 1(c)) proposed by Walmag and Delhez [2] is

chosen as

Λ (𝑟
𝑘
)=

{{{{{{
{{{{{{
{

𝛽
1
, if 𝑟

𝑘
≤ 0,

𝛽
1
+ (1 − 𝛽

1
) (

𝑟
𝑘

𝜂
1

)
2

, if 0<𝑟
𝑘
<𝜂
1
,

𝛽
3
+ (𝛽
2
− 𝛽
3
) exp(−(

𝑟
𝑘
− 1

𝜂
1
− 1

)
2

) , if 𝑟
𝑘
≥ 𝜂
1
,

(13)

where 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝜂

1
are constants.

The 𝐿-function rule can be described as follows:
Δ
𝑘+1

= 𝐿 (𝑟
𝑘
) Δ
𝑘
, (14)

where the 𝐿-function 𝐿(𝑟
𝑘
) (Figure 2) is chosen as

𝐿 (𝑟
𝑘
)

=

{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{
{

𝑐
1
+ (𝑐
2
− 𝑐
1
) exp (𝑟

𝑘
) ,

if 𝑟
𝑘
≤ 0,

1 − 𝛽
1
exp (𝜂

2
)

1 − exp (𝜂
2
)

−
(1 − 𝛽

1
) exp (𝜂

2
)

1 − exp (𝜂
2
)

exp ((𝑟
𝑘
− 𝜂
2
)) ,

if 0 < 𝑟
𝑘
< 𝜂
2
,

𝛽
2
,

if 𝜂
2
≤ 𝑟
𝑘
≤ 2 − 𝜂

2
,

𝛽
3
+ (𝛽
2
− 𝛽
3
) exp(−(

𝑟
𝑘
+ 𝜂
2
− 2

𝜂
2
− 2

)
2

) ,

if 𝑟
𝑘
> 2 − 𝜂

2
,

(15)

where 𝛽
1
, 𝛽
2
, 𝛽
3
, 𝑐
1
, 𝑐
2
, and 𝜂

2
are constants.

The 𝐿-function generalizes the 𝑅-function and the Λ-
function. It contains some favorable features of the 𝑅-
function [19] and the Λ-function [2].

Now describe the new self-adaptive trust region algo-
rithm with improved update rules.



4 Journal of Applied Mathematics

Algorithm 2. One has the following.

Step 1. Given 𝑥
0
∈ R𝑛, 𝐵

0
∈ R𝑛×𝑛, 0 < 𝜂 < 𝜂

2
< 1, 0 < 𝑐

1
<

𝑐
2
< 1, 0 < 𝛽

1
≤ 𝛽
3
< 1 ≤ 𝛽

2
, and Δ

0
> 0; 𝜀 ≥ 0; set 𝑘 := 0.

Step 2. If ‖𝑔
𝑘
‖ ≤ 𝜀 or 𝑓(𝑥

𝑘
) − 𝑓(𝑥

𝑘+1
) ≤ 𝜀max{1, |𝑓(𝑥

𝑘
)|},

stop. Otherwise solve subproblem (2) to get 𝑑
𝑘
.

Step 3. Compute

𝑟
𝑘
=

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
)

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)

. (16)

Compute 𝑥
𝑘+1

as follows:

𝑥
𝑘+1

= {
𝑥
𝑘
+ 𝑑
𝑘
, if 𝑟

𝑘
> 𝜂,

𝑥
𝑘
, otherwise.

(17)

Update the trust region radius

Δ
𝑘+1

= 𝐿 (𝑟
𝑘
) Δ
𝑘
, (18)

where 𝐿(𝑟
𝑘
) is defined by (15).

Step 4. Compute 𝑔
𝑘+1

and 𝐵
𝑘+1

; set 𝑘 := 𝑘 + 1; go to step 2.

3. Convergence of Algorithm 2

In the section, we investigate the convergence properties of
Algorithm 2. Since it can be considered as a variant of the
basic trust regionmethod of Conn et al. [1], we expect similar
results and significant similarities in their proofs under the
following assumptions.

Assumption 3. Consider the following.

(i) The sequence {𝐵
𝑘
} is uniformly bounded in norm;

that is ‖𝐵
𝑘
‖ ≤ 𝑀, for some constant𝑀.

(ii) The function 𝑓 is bounded on the level set 𝑆 =
{𝑥|𝑓(𝑥) ≤ 𝑓(𝑥

0
)}.

(iii) The solution 𝑑
𝑘
of the subproblem (2) satisfies

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
) ≥ 𝜎

𝑔𝑘
min{Δ

𝑘
,

𝑔𝑘


𝐵𝑘

} , (19)

where 𝜎 ∈ (0, 1].
(iv) The solution 𝑑

𝑘
of the subproblem (2) satisfies
𝑑𝑘

 ≤ 𝜂Δ
𝑘
, (20)

for positive constant 𝜂 ≥ 1.

Lemma 4. Suppose that Assumption 3 holds. Then

𝑓 (𝑥
𝑘
+ 𝑑
𝑘
) − 𝑞 (𝑑

𝑘
)
 ≤

1

2
𝑀

𝑑𝑘

2

+ 𝐶 (
𝑑𝑘

)
𝑑𝑘

 , (21)

where 𝐶(‖𝑑
𝑘
‖) arbitrarily decreases with 𝑑

𝑘
decreasing.

Proof. Since from Taylor theorem, we have that

𝑓 (𝑥
𝑘
+ 𝑑
𝑘
) = 𝑓 (𝑥

𝑘
) + 𝑔𝑇
𝑘
𝑑
𝑘

+ ∫
1

0

[∇𝑓 (𝑥
𝑘
+ 𝑡𝑑
𝑘
) − ∇𝑓 (𝑥

𝑘
)]
𝑇

𝑑
𝑘
𝑑𝑡,

(22)

it follows from the definition of 𝑞
𝑘
(𝑑) in (2) that

𝑓 (𝑥
𝑘
+ 𝑑
𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)


=


1

2
𝑑𝑇
𝑘
𝐵
𝑘
𝑑
𝑘
− ∫
1

0

[∇𝑓 (𝑥
𝑘
+ 𝑡𝑑
𝑘
) − ∇𝑓 (𝑥

𝑘
)]
𝑇

𝑑
𝑘
𝑑𝑡



≤
1

2
𝑀

𝑑𝑘

2

+ 𝐶 (
𝑑𝑘

)
𝑑𝑘

 .

(23)

By Algorithm 2, we are capable of showing that the
iteration must be very successful but not too successful if
the trust region radius is sufficiently small enough and also
that the trust region radius has to increase in this case. The
following lemma’s proof is a bit different from the proof of
Theorem 6.4.2 in [1].

Lemma 5. Suppose that Assumption 3 holds. If 𝑔
𝑘

̸= 0 and
there exists a constant Δ > 0 such that

Δ
𝑘
≤ Δ, (24)

then

Δ
𝑘+1

≥ Δ
𝑘
. (25)

Proof . Using Assumption 3 and 𝑔
𝑘

̸= 0 and assuming that
there is 𝜀 > 0 such that ‖𝑔

𝑘
‖ ≥ 𝜀, we obtain that

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)

≥ 𝜎
𝑔𝑘

min{Δ
𝑘
,

𝑔
𝑘

𝐵𝑘

} ≥ 𝜎𝜀min(Δ

𝑘
,
𝜀

𝑀
) .

(26)

Combining (21) and (26), we have

𝑟𝑘 − 1
 =



𝑓 (𝑥
𝑘
+ 𝑑
𝑘
) − 𝑞 (𝑑

𝑘
)

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)



≤
(1/2)𝑀

𝑑𝑘

2

+ 𝐶 (
𝑑𝑘

)
𝑑𝑘


𝜎𝜀min {Δ

𝑘
, 𝜀/𝑀}

≤
𝜂Δ
𝑘
(𝑀𝜂Δ

𝑘
+ 2𝐶 (

𝑑𝑘
))

𝜎𝜀min {Δ
𝑘
, 𝜀/𝑀}

.

(27)

By (24), we can choose sufficient small Δ, such that

Δ
𝑘
≤ Δ ≤

𝜀

𝑀
, (28)

𝑀𝜂Δ
𝑘
+ 2𝐶 (

𝑑𝑘
) ≤ (1 − 𝜂

2
) 𝜎

𝜀

𝜂
. (29)



Journal of Applied Mathematics 5

Using (27) and (28), we have |𝑟
𝑘
− 1| ≤ 1 − 𝜂

2
; that is,

𝜂
2
≤ 𝑟
𝑘
≤ 2 − 𝜂

2
. Since 2 − 𝜂

2
≤ 𝜂
3
, then 𝜂

2
≤ 𝑟
𝑘
≤ 𝜂
3
. And

so, by Algorithm 2, we have Δ
𝑘+1

≥ Δ
𝑘
, where Δ

𝑘
falls below

the threshold Δ.

The proof of Lemma 5 efficiently uses the conditions 𝑟
𝑘
≤

2 − 𝜂
2
≤ 𝜂
3
to explain the case of too successful iteration, as

distinguished from the proof of Theorem 6.4.2 in [1].

Theorem 6. Suppose that Assumption 3 holds. Let the
sequence {𝑥

𝑘
} be generated by Algorithm 2. Then

lim
𝑘→∞

inf 𝑔𝑘
 = 0. (30)

Proof. Assume, for the purpose of deriving a contradiction,
that, for all 𝑘,

𝑔𝑘
 ≥ 𝜀. (31)

Suppose that there is an infinite iteration subsequence
such that 𝑟

𝑘
≥ 𝜂
2
. Using Algorithm 2 and (21), we have

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘+1
) ≥ 𝜂
2
[𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)]

≥ 𝜎𝜂
2

𝑔𝑘
min{Δ

𝑘
,

𝑔𝑘


𝐵𝑘

}

≥ 𝜎𝜂
2
𝜀min{Δ

𝑘
,
𝜀

𝛽
} ,

(32)

where 𝛽 = max{1 + ‖𝐵
𝑘
‖}. Since {𝑓(𝑥

𝑘
)} is bounded below,

then

lim
𝑘→∞

Δ
𝑘
= 0, (33)

which contradicts (25). Hence (30) holds.

In our strategy of the trust region radius’ adjustment,
most of the iterations are indeed very successful but not too
successful; the trust region constraint becomes irrelevant in
the local subproblem. Therefore, superlinear convergence of
trust region algorithm is preserved by the proposed self-
adaptive radius update.

4. Numerical Experiments

In this section, we present preliminary numerical results to
illustrate that the performance of Algorithm 2, denoted by
LATR, the basic trust region method in [1], denoted by BTR,
and the parameters needed in (9) are chosen that 𝛽

1
=

0.5, 𝛽
2

= 2.0, 𝜂
1

= 0.25, and 𝜂
2

= 0.75; the adaptive trust
regionmethod in [19], denoted by RATR, and the parameters
needed in (12) are chosen that 𝛼

1
= 𝛼
2
= 0.01, 𝛽 = 0.1, 𝑀 =

5, and 𝜂
1

= 0.25; and the adaptive trust region method in
[2], denoted by ΛATR, and the parameters needed in (12) are
chosen that 𝛽

1
= 0.5, 𝛽

2
= 2, 𝛽

3
= 1.01, and 𝜂

1
= 0.95. In

Algorithm 2, 𝜂 = 0.01, 𝛽
1
= 0.5, 𝛽

2
= 2, 𝛽

3
= 0.7, 𝑐

1
= 0.12,

𝑐
2
= 0.14, and 𝜂

2
= 0.75. All tests are implemented by using

MATLAB R2012a on a PC with CPU 2.67GHz and 8.00GB
RAM. The first eleven problems are taken from [22]; others

are from the CUTEr collection [15, 23]. The discrete Newton
method is used to update the approximate Hessianmatrix𝐵

𝑘
.

To stabilize the algorithms, the approximate Hessian matrix
𝐵
𝑘
can be chosen as follows:

𝐵
𝑘
= 𝐵
𝑘
+min {1, 0.5

∇𝑓 (𝑥
𝑘
)

2

} 𝐼, (34)

where 𝐵
𝑘
is obtained by forward difference formula at 𝑥

𝑘
(see

[20]) and 𝐼 is an identity matrix.
In all trust region algorithms in this paper, the trial step𝑑

𝑘

is computed by CG-Steihaug algorithm in [20]. The iteration
is terminated by the following condition:

𝑔𝑘
∞ ≤ 10−5, (35)

except for problemWaston, which will exceed 500 iterations.
For the problem, the stopping criterion is

𝑓 (𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘
)
 ≤ 10−5max {1.0,

𝑓 (𝑥
𝑘
)
} . (36)

In Table 1, we give the dimension (Dim) of each test problem,
the number of function evaluations (nf), and the number of
gradient evaluations (ng). In many cases, algorithm LATR is
superior than algorithms BTR, RATR, and ΛATR, especially
for solving problems (1), (7), (8), (13), (19), and (28), although
the numbers of gradient evaluations are a bitmore than others
sometimes. Further result is shown by Figure 3, which is
characterized by means of performance profile proposed in
[24]. Consider the following performance profile function:

𝜓
𝑠
(𝜏) =

1

𝑛
𝑝

size {𝑝 : 1 ≤ 𝑝 ≤ 𝑛
𝑝
, log
2
(𝑟
𝑝,𝑠

) ≤ 𝜏} , (37)

where 𝜏 ≥ 0 and

𝑟
𝑝,𝑠

=
𝑁
𝑝,𝑠

min {𝑁
𝑝,𝑖

: 1 ≤ 𝑖 ≤ 𝑛
𝑠
}

(38)

is the performance ratio of a solver 𝑠 on a problem; 𝑛
𝑝
denotes

the number of the tested problems, 𝑛
𝑠
the number of the

solvers, and 𝑁
𝑝,𝑖

the number of the function evaluations (or
the CPU time, the number of gradient evaluations, number of
iterations, etc.) required to solve the problem 𝑝 by the solver
𝑖.

From Table 1, we know that 𝑛
𝑠
= 4 and 𝑛

𝑝
= 91; then

performance profile is given on the sum of the number of
function and gradient evaluations to solve the problem. As
we can see on Figure 3, the new self-adaptive algorithm is
superior to the other three algorithms.

5. Conclusion

This paper presents a new self-adaptive trust region algorithm
according to the new self-adaptive radius update rule. As
the iteration istoo successful, we suggest reducing the trust
region radius with the new rules.The convergence properties
of the method are established under reasonable assumptions.
Numerical experiments show that the new algorithm for
solving unconstrained optimization problems is significant
and robust.

For future research, we should investigate how to select an
appropriate 𝐿-function to conduct numerical experiments.



6 Journal of Applied Mathematics

Table 1: Numerical comparisons of BTR, RATR, ΛATR, and LATR.

Problem Dim BTR RATR ΛATR LATR
nf ng nf ng nf ng nf ng

(1) Trigonometric 200 214 17 205 10 — — 78 9
(2) Extended Powell singular 200 28 20 26 20 32 21 30 24
(3) Schittkowski function 302 200 239 160 363 275 117 24 83 65
(4) Linear function full rank 200 23 4 21 4 15 3 11 7

(5) Watson

200 30 14 22 10 16 10 18 11
300 39 15 115 78 73 49 67 48
400 84 39 27 12 38 25 107 78
500 95 43 29 14 68 48 39 26

(6) Nearly separable

200 41 21 27 15 23 16 24 17
300 46 25 34 18 24 16 23 16
400 52 25 39 23 33 22 26 19
500 — — — — — — 37 26

(7) Yang tridiagonal

200 67 40 61 44 99 32 51 41
300 151 113 72 57 105 38 74 61
400 133 93 141 106 151 68 109 90
500 148 97 120 95 257 149 109 90

(8) Allgower

200 40 23 53 38 57 2 83 69
300 18 1 17 1 24 1 7 1
400 25 15 17 3 56 2 21 17
500 20 3 17 3 52 3 9 2

(9) Linear function rank 1

200 101 42 62 27 285 30 39 24
300 102 40 66 25 300 30 35 16
400 110 45 69 25 319 32 39 20
500 108 42 70 25 317 31 47 32

(10) Linear function rank 1 with zero
columns and rows

200 64 3 60 2 21 2 22 2
300 67 3 64 3 21 1 21 1
400 66 1 65 1 29 5 22 1
500 78 6 67 2 24 2 26 4

(11) Discrete integral equation

200 54 19 24 4 39 14 27 18
300 31 5 70 46 42 22 30 28
400 44 12 43 32 32 16 31 29
500 49 15 37 17 45 23 31 29

(12) CRAGGLVY 200 36 9 35 9 22 10 19 9
(13) GENHUMPS 200 26 0 26 0 74 0 9 0
(14) BROYDNBD 200 32 7 20 14 47 0 17 15

(15) PENALTY

200 71 33 69 33 59 33 59 37
300 75 35 74 35 63 38 59 35
400 74 33 76 35 64 36 61 37
500 77 35 80 37 58 36 62 38

(16) PENALTY2

200 46 8 42 8 88 9 25 11
300 149 72 159 129 78 50 150 116
400 434 208 — — — — 465 390
500 — — 330 228 — — — —

(17) CHEBYQAD

200 75 55 79 70 39 7 83 67
300 28 12 83 70 41 6 89 70
400 95 63 99 85 108 64 104 82
500 32 16 37 22 119 52 103 83



Journal of Applied Mathematics 7

Table 1: Continued.

Problem Dim BTR RATR ΛATR LATR
nf ng nf ng nf ng nf ng

(18) GENROSE

200 194 161 253 248 265 172 241 205
300 308 235 381 373 394 248 357 303
400 405 301 487 479 499 323 468 399
500 — — — — — — — —

(19) INTEGREQ

200 15 1 14 1 214 0 6 1
300 15 1 14 1 206 0 6 1
400 15 1 14 1 203 0 6 1
500 15 1 14 1 201 0 6 1

(20) FLETCHCR

200 113 88 151 146 157 91 158 132
300 147 122 218 213 224 132 233 195
400 183 157 292 284 295 175 309 258
500 217 190 357 351 362 211 384 321

(21) ARGLINB

200 6 5 6 5 6 5 6 5
300 7 6 7 6 7 6 7 6
400 7 6 7 6 300 5 7 6
500 7 6 7 6 424 5 7 6

(22) NONDIA

200 7 6 7 6 93 6 7 6
300 7 6 7 6 7 6 7 6
400 6 5 6 5 6 5 6 5
500 6 5 6 5 6 5 6 5

(23) EG2

200 14 9 11 9 59 23 10 8
300 14 9 12 9 60 27 6 5
400 9 7 7 6 180 30 8 6
500 12 5 17 13 111 34 14 11

(24) CURLY20

200 13 11 19 17 16 14 11 10
300 13 11 21 18 17 15 13 12
400 10 9 11 11 11 10 9 9
500 10 9 11 11 11 10 9 9

(25) CUBE

200 52 20 39 25 95 16 37 29
300 50 16 77 65 98 20 40 32
400 52 16 45 31 83 16 35 28
500 52 16 52 38 128 14 35 28

(26) EXPLIN1

200 30 2 28 2 12 3 13 4
300 29 1 28 1 33 4 13 4
400 31 2 29 2 23 4 21 16
500 32 2 30 2 15 3 13 4

(27) SINQUAD

200 68 55 18 17 119 14 19 17
300 186 175 16 15 225 20 64 60
400 25 12 21 19 224 25 48 45
500 31 15 43 41 229 40 35 33

(28) LIARWHD

200 29 1 28 1 50 2 14 4
300 32 2 29 2 18 2 12 2
400 30 1 30 1 30 2 12 1
500 30 1 30 1 33 2 11 1

— means that the algorithm reaches 500 iterations.



8 Journal of Applied Mathematics

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Variable 𝜏

BTR
RATR

ΛATR
LATR

Va
ria

bl
e𝜓

Figure 3: Performance profile comparing the sum of the number of
function and gradient evaluations.

Conflict of Interests

The authors declare that they have no financial nor personal
relationships with other people or organizations that can
inappropriately influence their work; there is no professional
nor another personal interest of any nature or kind in any
product, service, and/or company that could be construed
as influencing the position presented in or the review of the
paper.

Acknowledgments

This research is partly supported by Chinese NSF under
Grant 11171003, Chinese Ministry of Education, Science and
Technology Research Key Project no. 2011039, and Depart-
ment of Education of Jilin Province Project no. 2009158 and
no. 201215102.

References

[1] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Meth-
ods, MPS/SIAM Series on Optimization, Society for Industrial
andAppliedMathematics (SIAM);Mathematical Programming
Society (MPS), Philadelphia, Pa, USA, 2000.

[2] J. M. B. Walmag and E. J. M. Delhez, “A note on trust-region
radius update,” SIAM Journal on Optimization, vol. 16, no. 2, pp.
548–562, 2005.

[3] A. Sartenaer, “Automatic determination of an initial trust
region in nonlinear programming,” SIAM Journal on Scientific
Computing, vol. 18, no. 6, pp. 1788–1803, 1997.

[4] X. Zhang, J. Zhang, and L. Liao, “An adaptive trust region
method and its convergence,” Science in China A, vol. 45, no.
5, pp. 620–631, 2002.

[5] X. S. Zhang, “Trust region method in neural network,” Acta
Mathematicae Applicatae Sinica, vol. 12, pp. 1–10, 1996.

[6] Z.-J. Shi and J.-H. Guo, “A new trust region method for
unconstrained optimization,” Journal of Computational and
Applied Mathematics, vol. 213, no. 2, pp. 509–520, 2008.

[7] J. Fu, W. Sun, and R. J. B. de Sampaio, “An adaptive approach
of conic trust-region method for unconstrained optimization
problems,” Journal of Applied Mathematics & Computing, vol.
19, no. 1-2, pp. 165–177, 2005.

[8] Z. Sang and Q. Sun, “A self-adaptive trust region method with
line search based on a simple subproblem model,” Journal of
Computational and Applied Mathematics, vol. 232, no. 2, pp.
514–522, 2009.

[9] Z. Yu and Q. Li, “A self-adaptive trust region method for the
extended linear complementarity problems,” Applications of
Mathematics, vol. 54, no. 1, pp. 53–65, 2009.

[10] N. I. M. Gould, D. Orban, A. Sartenaer, and P. L. Toint,
“Sensitivity of trust-region algorithms to their parameters,”
4OR. A Quarterly Journal of Operations Research, vol. 3, no. 3,
pp. 227–241, 2005.

[11] J.-L. Zhang and X.-S. Zhang, “A nonmonotone adaptive trust
regionmethod and its convergence,” Computers &Mathematics
with Applications, vol. 45, no. 10-11, pp. 1469–1477, 2003.

[12] J. Fu andW. Sun, “Nonmonotone adaptive trust-regionmethod
for unconstrained optimization problems,” Applied Mathemat-
ics and Computation, vol. 163, no. 1, pp. 489–504, 2005.

[13] J. Zhang, K. Zhang, and S. Qu, “A nonmonotone adaptive trust
region method for unconstrained optimization based on conic
model,” Applied Mathematics and Computation, vol. 217, no. 8,
pp. 4265–4273, 2010.

[14] M. Ahookhosh and K. Amini, “A nonmonotone trust region
method with adaptive radius for unconstrained optimization
problems,”Computers &Mathematics with Applications, vol. 60,
no. 3, pp. 411–422, 2010.

[15] N. Andrei, “An unconstrained optimization test functions
collection,” Advanced Modeling and Optimization, vol. 10, no. 1,
pp. 147–161, 2008.

[16] Z. Shi and S. Wang, “Nonmonotone adaptive trust region
method,”European Journal of Operational Research, vol. 208, no.
1, pp. 28–36, 2011.

[17] Z. Sang and Q. Sun, “A new non-monotone self-adaptive trust
region method for unconstrained optimization,” Journal of
Applied Mathematics and Computing, vol. 35, no. 1-2, pp. 53–62,
2011.

[18] Z. Cui andB.Wu, “Anewmodified nonmonotone adaptive trust
regionmethod for unconstrained optimization,”Computational
Optimization and Applications, vol. 53, no. 3, pp. 795–806, 2012.

[19] L. Hei, “A self-adaptive trust region algorithm,” Journal of
Computational Mathematics, vol. 21, no. 2, pp. 229–236, 2003.

[20] J. Nocedal and S. T. Wright, Numerical Optimization, Springer,
Berlin, Germany, 2000.

[21] W. Sun and Y.-X. Yuan, Optimization Theory and Methods,
Nonlinear programming, vol. 1 of Springer Optimization and Its
Applications, Springer, New York, NY, USA, 2006.

[22] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “Testing uncon-
strained optimization software,” Association for Computing
Machinery. Transactions on Mathematical Software, vol. 7, no.
1, pp. 17–41, 1981.

[23] N. I. M. Gould, D. Orban, and P. L. Toint, “GALAHAD,
a library of thread-safe Fortran 90 packages for large-scale
nonlinear optimization,” Association for Computing Machinery.
Transactions on Mathematical Software, vol. 29, no. 4, pp. 353–
372, 2003.

[24] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,” Mathematical Programming,
vol. 9, pp. 1201–1213, 2002.


