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The onset of double diffusive convection is investigated in a Maxwell fluid saturated porous layer with internal heat source. The
modified Darcy law for the Maxwell fluid is used to model the momentum equation of the system, and the criterion for the onset
of the convection is established through the linear and nonlinear stability analyses.The linear analysis is obtained using the normal
mode technique, and the nonlinear analysis of the system is studied with the help of truncated representation of Fourier series.
The effects of internal Rayleigh number, stress relaxation parameter, normalized porosity, Lewis number, Vadasz number and
solute Rayleigh number on the stationary, and oscillatory and weak nonlinear convection of the system are shown numerically
and graphically. The effects of various parameters on transient heat and mass transfer are also discussed and presented analytically
and graphically.

1. Introduction

Double diffusive convection in porous media without heat
source has been intensively studied because of its application
in different branches of science and engineering, such as
underground disposal of nuclear wastes, groundwater pol-
lution, contaminant transport in fluid-saturated soils, liquid
gas storage, and food processing [1–4]. Since convective flow
plays an important role in ore-forming systems, Zhao et al.
have conducted extensive and systematic studies on double
diffusive convection within the upper crust of the Earth
during the last decade or so [5–9]. Their work has promoted
the better understanding of ore-forming mechanisms, which
are essential to explore new large ore deposits in the deep
Earth [8, 9]. And the onset of convection due to internal
heat source has become an interesting problem in various
areas of geophysics and engineering under the situations of
radioactive decay or a weak exothermic reaction within the
porous material. Therefore, diffusive convection in porous
media with internal heat source has attracted the attention
of many authors like Nield and Bejan [10], Ingham and Pop
[11], and Vafai [12] during the last several decades.

The onset of thermodynamic instability in horizontal
porous layer saturated with Newtonian fluid was first studied
extensively on geological and engineering length scales
[13–23]. Convection by internal heat sources has been studied
in several papers including experimental and theoretical
studies.Theonset of convection in a fluid saturated horizontal
layer of an anisotropic porous medium with internal heat
source subjected to inclined temperature gradient has been
considered [24]. The effect of internal heat source on the
problem of triple diffusive convection has been analyzed
by Straughan and Tracey [25]. Magyari et al. have carried
out an analytical and numerical study about the effect of
boundary-layer flows in a fluid-saturated porous medium
with internal heat generation [26, 27]. Hill has investigated
linear and nonlinear stability analyses of double diffusive
convection in a fluid saturated porous layer with internal con-
centration source [28]. Bhadauria et al. have studied the linear
and nonlinear thermal instability in an anisotropic saturated
porous layer with internal heat source [29]. Bhadauria
has made the stability analysis of convection in a binary
fluid-saturated horizontal porous layer with internal heat
source [30].
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Recently, viscoelastic fluid flow in porous media has
attracted considerable attention, due to the large demands
of such diverse fields as biorheology, geophysics, chemical
industries, and petroleum industries. Wang and Tan have
made the stability analysis of double diffusive convection in a
Maxwell fluid saturated porousmedium [31]. It is worthwhile
to point out that the first viscoelastic rate type model, which
is still used widely, is due to Maxwell. The onset of double
diffusive convection in a viscoelastic saturated porous layer
has been considered by many researchers (e.g., [31–36]).
However, we are unaware of the double diffusive problem
in any previous work which also introduces penetrative
convection with internal heat source.

In this paper, we focus on the linear and weakly nonlinear
stability analyses in a viscoelastic fluid saturated porous layer
with internal heat source using the Darcy-Maxwell model.
The Dufour and Soret effects are ignored. The aim of the
present paper is to study how onset criteria for stationary
and oscillatory double diffusive convection are affected by
the viscoelastic parameter and other parameters, as well as
discussing their effects on heat and mass transfer.

2. Mathematical Model

Assuming that an infinite horizontal porous layer saturated
with Maxwell fluid mixture with internal heat source, con-
fined between the planes, 𝑧 = 0 and 𝑧 = 𝑑. A Cartesian frame
of reference is chosen with the origin in the lower boundary
and the 𝑧-axis vertically upwards. For the purposes of the
present paper, we consider that temperature difference Δ𝑇
and concentration difference Δ𝑆 are maintained between the
lower and upper boundaries. In the Boussinesq approxima-
tion, the equation of state is

𝜌 = 𝜌
0
[1 − 𝛼

𝑇
(𝑇 − 𝑇

0
) + 𝛼
𝑆
(𝑆 − 𝑆

0
)] , (1)

where 𝑇 is the temperature, 𝑆 is the concentration, 𝑇
0
and

𝑆
0
are temperature and concentration at the above plate, 𝛼

𝑇

and 𝛼
𝑆
are thermal and solutal expansion coefficients in the

medium, 𝜌 is the density of fluid, and 𝜌
0
is the density at some

reference temperature 𝑇
0
and concentration 𝑆

0
.

Considering the vertically downward gravity force g act-
ing on it and neglecting the off-diagonal (Soret, Dufour, and
cross-diffusion) contributions to the fluxes of the stratifying
agencies, by using of the modified Darcy-Maxwell model
[35], the governing system for double diffusive of Maxwell
fluid in a porous layer with internal heat source can be
represented by

∇ ⋅ q = 0,

(1 + 𝜆
1

𝜕

𝜕𝑡

)(

𝜌
0

𝜀

𝜕q
𝜕𝑡

+ ∇𝑝 − 𝜌g) + 𝜇
𝐾

q = 0,

𝛾

𝜕𝑇

𝜕𝑡

+ q ⋅ ∇𝑇 = 𝜅
𝑇
∇
2
𝑇 + 𝑄 (𝑇 − 𝑇

0
) ,

𝜀

𝜕𝑆

𝜕𝑡

+ q ⋅ ∇𝑆 = 𝜅
𝑆
∇
2
𝑆.

(2)

The thermal boundary conditions are

𝑇 = 𝑇
0
+ Δ𝑇 at 𝑧 = 0, 𝑇 = 𝑇

0
at 𝑧 = 𝑑,

𝑆 = 𝑆
0
+ Δ𝑆 at 𝑧 = 0, 𝑆 = 𝑆

0
at 𝑧 = 𝑑,

(3)

where q = (𝑢, V, 𝑤) is the Darcy velocity, 𝑝 is the pressure,
𝜆
1
is the relaxation time, 𝑄 is internal heat source, g is the

gravitational acceleration, 𝜇 is the viscosity, while 𝐾 and
𝜀 are the permeability and porosity of the medium, and
𝛾 = (𝜌𝑐)

𝑚
/(𝜌𝑐)
𝑓
is the ratio of heat capacities, 𝜅

𝑇
and 𝜅

𝑆

are effective thermal and solutal diffusivity of the medium,
respectively.

The basic state of the fluid is assumed to be quiescent, and
the quantities of the basic state are given by

q
𝑏
= 0, 𝑝 = 𝑝

𝑏
(𝑧) , 𝑇 = 𝑇

𝑏
(𝑧) , 𝑆 = 𝑆

𝑏
(𝑧) ,

(4)

which satisfy the following conditions:

𝑑𝑝
𝑏

𝑑𝑧

= −𝜌
𝑏
𝑔,

𝑑
2
𝑆
𝑏

𝑑𝑧
2
= 0,

𝜅
𝑇

𝑑
2
(𝑇
𝑏
− 𝑇
0
)

𝑑𝑧
2

+ 𝑄 (𝑇
𝑏
− 𝑇
0
) = 0.

(5)

Here the subscript 𝑏 refers to the basic state. Then the steady
state solutions are given by

𝑇
𝑏
= 𝑇
0
+ Δ𝑇

sin√𝑅
𝑖
(1 − 𝑧/𝑑)

sin√𝑅
𝑖

,

𝑆
𝑏
= 𝑆
0
+ Δ𝑆 (1 −

𝑧

𝑑

) ,

𝑝
𝑏
= 𝑝
0
− 𝜌
0
𝑔𝑧

× (1 −

𝛼
𝑇
Δ𝑇 sin√𝑅

𝑖 (1 − 𝑧/𝑑)

sin√𝑅
𝑖

+ 𝛼
𝑆
Δ𝑆(1 −

𝑧

𝑑

)) ,

(6)

where𝑅
𝑖
= 𝑄𝑑
2
/𝜅
𝑇
is internal Rayleigh number. On the basic

state, we superimpose perturbations in the following form:

q = q
𝑏
+ q󸀠, 𝑝 = 𝑝

𝑏
+ 𝑝
󸀠
,

𝑇 = 𝑇
𝑏
+ 𝑇
󸀠
, 𝑆 = 𝑆

𝑏
+ 𝑆
󸀠
,

𝜌 = 𝜌
𝑏
+ 𝜌
󸀠
,

(7)

where primes indicate perturbed quantities. Substituting (7)
into (1)-(2) and using the basic state solutions, we obtain the
following governing equations:

∇ ⋅ q󸀠 = 0, (8)

(1 + 𝜆
1

𝜕

𝜕𝑡

)(

𝜌
0

𝜀

𝜕q󸀠

𝜕𝑡

+ ∇𝑝
󸀠
+ 𝜌
0
g (𝛼
𝑇
𝑇

󸀠

− 𝛼
𝑆
𝑆

󸀠

))

+

𝜇

𝐾

q󸀠 = 0,
(9)
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𝛾

𝜕𝑇
󸀠

𝜕𝑡

+ q󸀠 ⋅ ∇𝑇
󸀠

+ 𝑤
󸀠 𝜕𝑇𝑏

𝜕𝑧

= 𝜅
𝑇
∇
2
𝑇

󸀠

+ 𝑄𝑇

󸀠

, (10)

𝜀

𝜕𝑆

󸀠

𝜕𝑡

+ q󸀠 ⋅ ∇𝑆
󸀠

− 𝑤
󸀠Δ𝑆

󸀠

𝑑

= 𝜅
𝑆
∇
2
𝑆

󸀠

.
(11)

Eliminating the pressure term from the momentum equation
by using curl-curl operator and introducing the following
nondimensional transformation (after ignoring the primes
for simplicity):

𝑥 = 𝑥
∗
𝑑, 𝑡 =

𝛾𝑑
2

𝜅
𝑇

𝑡
∗
, 𝑞 =

𝜅
𝑇

𝑑

𝑞
∗
,

𝑝 =

𝜇𝜅
𝑇

𝐾

𝑝
∗
, 𝑇 = (Δ𝑇) 𝑇

∗
, 𝑆 = (Δ𝑆) 𝑆

∗
,

(12)

we obtain the nondimensional governing equations (on
dropping the asterisks for simplicity):

(1 + 𝜆

𝜕

𝜕𝑡

)(

𝜂

Va
𝜕

𝜕𝑡

∇
2
𝑤 − Ra∇2

1
(𝑇 − 𝑁𝑆)) + ∇

2
𝑤 = 0,

(

𝜕

𝜕𝑡

− ∇
2
− 𝑅
𝑖
)𝑇 + q ⋅ ∇𝑇 + 𝑤𝑓 (𝑧) = 0,

(𝜂

𝜕

𝜕𝑡

−

1

Le
∇
2
) 𝑆 + q ⋅ ∇𝑆 − 𝑤 = 0,

(13)

where 𝜆 = 𝜆
1
𝜅/𝛾𝑑
2 the relaxation number, 𝜂 = 𝜀/𝛾

the normalized porosity, Da = 𝐾/𝑑
2 the Darcy number,

Pr = 𝜇/𝜌
0
𝜅
𝑇
the Prandtl number, Va = 𝜀

2Pr/Da the
Vadasz number, Ra = 𝜌

0
𝑔𝛼
𝑇
𝐾𝑑Δ𝑇/𝜇𝜅

𝑇
the thermal Rayleigh

number, 𝑁 = 𝛼
𝑆
Δ𝑆/𝛼
𝑇
Δ𝑇 the buoyancy ratio, Le =

𝜅
𝑇
/𝜅
𝑆
the Lewis number, and 𝑓(𝑧) = 𝜕𝑇

𝑏
/𝜕𝑧, where 𝑇

𝑏
in

nondimensionalized form is given by

𝑇
𝑏
=

sin√𝑅
𝑖
(1 − 𝑧)

sin√𝑅
𝑖

. (14)

The boundaries of the system considered here are imperme-
able isothermal and isosolutal. Hence, the boundary condi-
tions for the perturbation variables are given by

𝑤 = 𝑇 = 𝑆 = 0 at 𝑧 = 0, 1. (15)

3. Linear Stability Analysis

In this section,we discuss the linear stability analysis. Accord-
ing to the normal mode analysis [8, 34], convective motion is
assumed to exhibit horizontal periodicity.Then the perturbed
quantities can be assumed to be periodic waves of the form

(

𝑊

𝑇

𝑆

) = (

𝑊(𝑧)

Θ (𝑧)

Φ (𝑧)

) exp [𝑖 (𝑙𝑥 + 𝑚𝑦) + 𝜔𝑡] , (16)

where 𝑙 and 𝑚 are the wavenumbers in the horizontal plane
and 𝜔 is the growth rate. Infinitesimal perturbations of the

rest state may either damp or grow depending on the value of
the parameter 𝜔. Substituting (16) into (13) yields

(1 + 𝜆𝜔) (

𝜂𝜔

Va
(𝐷
2
− 𝑎
2
)𝑊 + 𝑎

2Ra (Θ − 𝑁Φ))

+ (𝐷
2
− 𝑎
2
)𝑊 = 0,

𝑊𝑓 (𝑧) + (−𝐷
2
+ 𝑎
2
+ 𝜔 − 𝑅

𝑖
)Θ = 0,

𝑊 + (

1

Le
(𝐷
2
− 𝑎
2
) − 𝜂𝜔)Φ = 0,

(17)

where 𝐷 = 𝑑/𝑑𝑧 and 𝑎2 = 𝑙
2
+ 𝑚
2. Now, the boundary

conditions become

𝑊 = Θ = Φ = 0 at 𝑧 = 0, 1. (18)

To satisfy the boundary conditions (18), we assume the
solutions of (17) in the following form:

(

𝑊(𝑧)

Θ (𝑧)

Φ (𝑧)

) = (

𝑊
0

Θ
0

Φ
0

) sin 𝑛𝜋𝑧, (𝑛 = 1, 2, 3, . . .) , (19)

which is the most unstable mode when 𝑛 = 1, that is, the
fundamental mode. Substituting the above equation into (17)
yields

(1 + 𝜆𝜔) (

𝜂𝜔

Va
𝛿
2
𝑊
0
− 𝑎
2Ra (Θ

0
− 𝑁Φ

0
)) + 𝛿

2
𝑊
0
= 0,

2𝐹𝑊
0
+ (𝛿
2
+ 𝜔 − 𝑅

𝑖
)Θ
0
= 0,

𝑊
0
− (

𝛿
2

Le
+ 𝜂𝜔)Φ

0
= 0,

(20)

where 𝛿2 = 𝜋
2
+ 𝑎
2 is the total wave number and 𝐹 =

∫

1

0
𝑓(𝑧)sin2𝜋𝑧 𝑑𝑧. Rewrite the above equations in the matrix

form as

(

𝛿
2
(1 + Λ

𝜂𝜔

Va
) −𝑎

2RaΛ 𝑎
2Ra𝑁Λ

2𝐹 (𝑧) (𝛿
2
+ 𝜔 − 𝑅

𝑖
) 0

1 1 −(

𝛿
2

Le
+ 𝜂𝜔)

)(

𝑊
0

Θ
0

Φ
0

)

= (

0

0

0

) ,

(21)

where Λ = 1 + 𝜆𝜔. Considering the nontrivial solution of the
above matrix equation, we require

Ra =
𝛿
2
(1 + Λ (𝜂𝜔/Va)) (𝑅

𝑖
− 𝛿
2
− 𝜔)

2𝑎
2
Λ𝐹

+

(𝑅
𝑖
− 𝛿
2
− 𝜔)Ra

𝑆

2𝐹 (𝛿
2
+ Le𝜂𝜔)

,

(22)
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where Ra
𝑆
= Ra𝑁Le = 𝜌

0
𝑔𝛼
𝑆
𝐾𝑑Δ𝑆/𝜇𝜅

𝑆
is the solutal

Rayleigh number. For neutral solutions, we set 𝜔 = 𝑖𝜔
𝑖
in

(22) and rearrange the terms to get the Rayleigh number
(dropping the subscript 𝑖 of 𝜔

𝑖
):

Ra
𝑇
= Δ
1
+ 𝑖𝜔Δ

2
, (23)

where Δ
1
and Δ

2
are real part and imaginary part given by

Δ
1
=

𝛿
2
(𝑅
𝑖
− 𝛿
2
− 𝜆𝜔
2
+ (𝜂/Va) 𝜔2 + 𝜆2𝜂𝜔4/Va)

2𝑎
2
𝐹 (𝑧) (1 + 𝜆

2
𝜔
2
)

+

Ra
𝑆
(𝑅
𝑖
𝛿
2
− 𝛿
4
− Le𝜂𝜔2)

2𝐹 (𝑧) (𝛿
4
+ Le2𝜂2𝜔2)

,

Δ
2
= (𝛿
2
(𝑅
𝑖
𝜂 − 𝜂𝛿

2
− Va (𝜆𝑅

𝑖
− 𝜆𝛿
2
+ 1)

+𝜆
2
𝜂𝑅
𝑖
𝜔
2
− 𝜆
2
𝛿
2
𝜂𝜔
2
))

× (2𝑎
2
𝐹(𝑧)(1 + 𝜆

2
𝜔
2
)Va)
−1

+

Ra
𝑆
(−Le𝜂𝑅

𝑖
+ Le𝜂𝛿2 − 𝛿2)

2𝐹 (𝑧) (𝛿
4
+ Le2𝜂2𝜔2)

.

(24)

Since Ra is a physical quantity, it must be real. Hence, from
(24) it follows that either 𝜔 = 0 (steady onset) or Δ

2
= 0

(𝜔 ̸= 0, oscillatory onset).

3.1. Stationary Convection. For the validity of principle of
exchange of stabilities (i.e., steady case), we have 𝜔 = 0 at
the margin of stability. Then, the Rayleigh number at which
marginally stable steady mode becomes

Ra𝑠𝑡
𝑇
= −

1

2𝐹 (𝑧)

(

𝛿
2
(𝛿
2
− 𝑅
𝑖
)

𝑎
2

+

(𝛿
2
− 𝑅
𝑖
)Ra
𝑆

𝛿
2

) . (25)

In the absence of the internal heat source; that is, 𝑄 = 0, we
have 𝑅

𝑖
= 0 and 𝐹(𝑧) = −1/2. So we obtain

Ra𝑠𝑡
𝑇
=

(𝜋
2
+ 𝑎
2
)

2

𝑎
2

+ Ra
𝑆
,

(26)

which coincides with the known results [8, 10]. Furthermore,
when 𝑎

𝑆
= 0, the stationary Rayleigh number reduces to the

classical result:

Ra𝑠𝑡
𝑇
=

(𝜋
2
+ 𝑎
2
)

2

𝑎
2

.
(27)

In addition, (26) gives the critical value Ra𝑠𝑡
𝑇,𝑐
= 4𝜋
2 for 𝑎𝑠𝑡

𝑐
=

𝜋.

3.2. Oscillatory Convection. For oscillatory onset,Δ
2
= 0 and

𝜔 ̸= 0, and then

RaOsc
𝑇
=

𝛿
2
(𝑅
𝑖
− 𝛿
2
− 𝜆𝜔
2
+ (𝜂/Va) 𝜔2 + 𝜆2𝜂𝜔4/Va)

2𝑎
2
𝐹 (𝑧) (1 + 𝜆

2
𝜔
2
)

+

Ra
𝑆
(𝑅
𝑖
𝛿
2
− 𝛿
4
− Le𝜂𝜔2)

2𝐹 (𝑧) (𝛿
4
+ Le2𝜂2𝜔2)

,

(28)

where the frequency 𝜔 in (28) is given by

𝑏
2
(𝜔
2
)

2

+ 𝑏
1
𝜔
2
+ 𝑏
0
= 0. (29)

Here

𝑏
2
= (𝜆
2
𝜂𝑅
𝑖
− 𝜆
2
𝛿
2
𝜂) Le2𝜂2𝛿2,

𝑏
1
= (𝑅
𝑖
𝜂 − 𝜂𝛿

2
− Va (𝜆𝑅

𝑖
− 𝜆𝛿
2
+ 1))

× Le2𝜂2𝛿2 + (𝜆2𝜂𝑅
𝑖
− 𝜆
2
𝛿
2
𝜂) 𝛿
6

+ 𝑎
2
𝜆
2VaRa

𝑆
(−Le 𝜂𝑅

𝑖
+ Le𝜂𝛿2 − 𝛿2) ,

𝑏
0
= (𝑅
𝑖
𝜂 − 𝜂𝛿

2
− Va (𝜆𝑅

𝑖
− 𝜆𝛿
2
+ 1)) 𝛿

6

+ 𝑎
2VaRa

𝑆
(−Le𝜂𝑅

𝑖
+ Le𝜂𝛿2 − 𝛿2) .

(30)

Now, we try to find the positive solutions of (29). If there
is none, then no oscillatory convection instability occurs. If
there are two positive roots, then the minimum of (28) with
𝜔
2 obtained by (29) gives the oscillatory neutral Rayleigh

number. If we find only one positive solution, then substi-
tuting 𝜔2 into (27) yields the oscillatory Rayleigh number.
After that, the effects of different parameters on the onset
of oscillatory convection can be discussed from the Rayleigh
number.

4. Nonlinear Analysis

In this section, we study the nonlinear stability analysis using
minimal truncated Fourier series. For simplicity, we confine
ourselves to two-dimensional rolls, so that all the physical
quantities are independent of𝑦. Defining the stream function
𝜓 such that 𝑢 = 𝜕𝜓/𝜕𝑧, 𝑤 = −𝜕𝜓/𝜕𝑥 and substituting
them into (9)–(11) and then eliminating the pressure term,
nondimensionalizing the governing equations yields

(1 + 𝜆

𝜕

𝜕𝑡

)(

𝜂

Va
𝜕

𝜕𝑡

(∇
2
𝜓) + Ra𝜕𝑇

𝜕𝑥

−

Ra
𝑆

Le
𝜕𝑆

𝜕𝑥

) + ∇
2
𝜓 = 0,

(

𝜕

𝜕𝑡

− ∇
2
− 𝑅
𝑖
)𝑇 =

𝜕𝜓

𝜕𝑥

𝑓 (𝑧) +

𝜕 (𝜓, 𝑇)

𝜕 (𝑥, 𝑧)

,

𝜂

𝜕𝑆

𝜕𝑡

−

𝜕 (𝜓, 𝑆)

𝜕 (𝑥, 𝑧)

=

1

Le
∇
2
𝑆 −

𝜕𝜓

𝜕𝑥

.

(31)

We assume that the basic circulation remains undistorted but
the temperature and concentration fields are distorted by the
addition of a second harmonic with no 𝑥-dependence, and
thus

𝜓 = 𝐴
1
(𝑡) sin (𝑎𝑥) sin (𝜋𝑧) , (32)

𝑇 = 𝐵
1
(𝑡) cos (𝑎𝑥) sin (𝜋𝑧) + 𝐵

2
(𝑡) sin (2𝜋𝑧) , (33)

𝑆 = 𝐶
1
(𝑡) cos (𝑎𝑥) sin (𝜋𝑧) + 𝐶

2
(𝑡) sin (2𝜋𝑧) , (34)

where 𝐴
1
, 𝐵
1
, 𝐵
2
, 𝐶
1
, and 𝐶

2
are time dependent amplitudes

and to be determined from the dynamics of the system.



Journal of Applied Mathematics 5

Substituting (32)–(34) into the coupled nonlinear system of
partial differential equation (31) and equating coefficients for
expression terms, we obtain the following nonlinear system:

𝑑𝑋

𝑑𝑡

= 𝐷, (35)

where 𝑋 = (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐶
1
, 𝐶
2
)
𝑇, 𝐷 = (𝐷

1
, 𝐷
2
, 𝐷
3
, 𝐷
4
,

𝐷
5
, 𝐷
6
)
𝑇 with

𝐷
1
= 𝐴
2
,

𝐷
2
= −

Va
𝜆𝜂𝛿
2
(

𝜂𝛿
2

Va
𝐴
2
+ 𝛿
2
𝐴
1
+ 𝑎Ra𝐵

1
−

𝑎Ra
𝑆

Le
𝐶
1

+ 𝑎Ra𝜆𝐷
3
−

𝑎𝜆Ra
𝑆

Le
𝐷
5
) ,

𝐷
3
= 2𝑎𝐹 (𝑧)𝐴

1
− 𝜋𝑎𝐴

1
𝐵
2
+ (𝑅
𝑖
− 𝛿
2
) 𝐵
1
,

𝐷
4
=

𝜋𝑎

2

𝐴
1
𝐵
1
+ (𝑅
𝑖
− 4𝜋
2
) 𝐵
2
,

𝐷
5
= −

𝜋𝑎

𝜂

𝐴
1
𝐶
2
−

𝛿
2

𝜂Le
𝐶
1
−

𝑎

𝜂

𝐴
1
,

𝐷
6
=

𝜋𝑎

2𝜂

𝐴
1
𝐶
1
−

4𝜋
2

Le𝜂
𝐶
2
.

(36)

The above ordinary differential equations are autonomous,
which is difficult to obtain the solutions by use of analytical
technique, so we solve the above system numerically. We
note that the above system is uniformly bounded in time and
possesses many properties to the full problem. Equation (34)
must be dissipative. Therefore, the divergence of the flow is
always negative. So we have

𝜕𝐴̇
1

𝜕𝐴
1

+

𝜕𝐴̇
2

𝜕𝐴
2

+

𝜕𝐵̇
1

𝜕𝐵
1

+

𝜕𝐵̇
2

𝜕𝐵
2

+

𝜕𝐶̇
1

𝜕𝐶
1

+

𝜕𝐶̇
2

𝜕𝐶
2

= −(

1

𝜆

− 2𝑅
𝑖
+ (4𝜋

2
+ 𝛿
2
) (1 +

1

Le𝜂
)) .

(37)

The system is bounded and dissipative. Consequently, the
trajectories are attracted to a set of measure zero in the phase
space. In particular, they may be attracted to a fixed point, a
limit cycle or, perhaps, a strange attractor. From (37), it can
also be concluded that if a set of initial points in phase space
occupy a region 𝑉(0) at time 𝑡 = 0, then after some time 𝑡 we
have

𝑉 (𝑡) = 𝑉 (0) exp{−[1
𝜆

− 2𝑅
𝑖
+ (4𝜋

2
+ 𝛿
2
) (1 +

1

Le𝜂
)] 𝑡} ,

(38)
which indicates that the volume decreases exponentially with
time. Moreover, we can conclude that an increase in the value
of relaxation parameter 𝜆, Lewis number Le, and normalized
porosity 𝜂 is to enhance the dissipation. Furthermore, we
observe that (37) has an important symmetry, for it is
invariant under the transformation:
(𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐶
1
, 𝐶
2
) 󳨀→ (−𝐴

1
, −𝐴
2
, −𝐵
1
, 𝐵
2
, −𝐶
1
, 𝐶
2
) .

(39)

4.1. Steady Finite Amplitude Motions. The simplified model
represented by (37) has the great advantage that steady finite
amplitude solutions can be obtained at once and their stability
can be investigated analytically. From qualitative prediction,
we look into the possibility of an analytical solution. In the
case of steady motions, setting the left hand side of (37) equal
to zero yields

𝛿
2
𝐴
1
+ 𝑎Ra𝐵

1
−

𝑎Ra𝑠
Le

𝐶
1
= 0, (40a)

2𝑎𝐹 (𝑧) 𝐴
1
− 𝜋𝑎𝐴

1
𝐵
2
+ (𝑅
𝑖
− 𝛿
2
) 𝐵
1
= 0, (40b)

𝜋𝑎

2

𝐴
1
𝐵
1
+ (𝑅
𝑖
− 4𝜋
2
) 𝐵
2
= 0, (40c)

−

𝜋𝑎

𝜂

𝐴
1
𝐶
2
−

𝛿
2

𝜂Le
𝐶
1
−

𝑎

𝜂

𝐴
1
= 0, (40d)

𝜋𝑎

2𝜂

𝐴
1
𝐶
1
−

4𝜋
2

Le 𝜂
𝐶
2
= 0. (40e)

On solving for the amplitudes in terms of 𝐴
1
, we obtain

𝐵
1
=

2𝑎𝐹 (𝑧) (8𝜋
2
− 2𝑅
𝑖
)𝐴
1

𝜋
2
𝑎
2
𝐴
2

1
− (𝑅
𝑖
− 𝛿
2
) (8𝜋
2
− 2𝑅
𝑖
)

,

𝐶
1
= −

8𝑎Le𝐴
1

8𝛿
2
+ 𝑎
2Le2𝐴2

1

,

𝐵
2
=

2𝜋𝑎
2
𝐴
2

1
𝐹 (𝑧)

𝜋
2
𝑎
2
𝐴
2

1
− (𝑅
𝑖
− 𝛿
2
) (8𝜋
2
− 2𝑅
𝑖
)

,

𝐶
2
= −

𝑎
2Le2𝐴2

1

𝜋 (8𝛿
2
+ 𝑎
2Le2𝐴2

1
)

.

(41)

Substituting 𝐵
1
and 𝐶

1
into (39) yields

𝑎
2
𝑥
2
+ 𝑎
1
𝑥 + 𝑎
0
= 0, (42)

where 𝑥 = 𝐴2
1
/8, and

𝑎
2
= 𝛿
2
𝑀
2
𝑀
5
,

𝑎
1
= 𝛿
4
𝑀
2
− 𝛿
2
𝑀
3
𝑀
5
+𝑀
1
𝑀
5
+𝑀
2
𝑀
4
,

𝑎
0
= 𝑀
1
𝛿
2
−𝑀
3
𝑀
4
−𝑀
3
𝛿
4
,

𝑀
1
= 2𝑎
2Ra𝐹 (𝑧) (𝜋2 −

𝑅
𝑖

4

) ,

𝑀
2
= 𝜋
2
𝑎
2
,

𝑀
3
= (𝑅
𝑖
− 𝛿
2
) (𝜋
2
−

𝑅
𝑖

4

) ,

𝑀
4
= 𝑎
2Ra
𝑆
,

𝑀
5
= 𝑎
2Le2.

(43)

The required root of (42) is

𝐴
2

1

8

=

−𝑎
1
+ √𝑎
2

1
− 4𝑎
2
𝑎
0

2𝑎
2

.
(44)
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If the discriminant equals zero, we obtain the expression for
finite amplitude Rayleigh number Ra𝐹

𝑇
, which characterizes

the onset of finite amplitude steady motions. The finite
amplitude Rayleigh number can be expressed in the following
form:

Ra𝐹
𝑇
=

−𝑒
1
+ √𝑒
2

1
− 4𝑒
2
𝑒
0

2𝑒
2

,
(45)

where

𝑒
2
= 𝑎
8Le4𝐹2 (𝑧) (𝜋2 −

𝑅
𝑖

4

)

2

− 4𝛿
4
𝑎
6
𝐹
2
(𝑧) Le2(𝜋2 −

𝑅
𝑖

4

)

2

,

𝑒
1
= 2𝑎
4Le2𝐹 (𝑧) (𝛿4𝜋2𝑎2 − 𝛿2𝑎2Le2 (𝑅

𝑖
− 𝛿
2
)

× (𝜋
2
−

𝑅
𝑖

4

) + 𝜋
2
𝑎
4Ra
𝑆
)(𝜋
2
−

𝑅
𝑖

4

)

+ 4𝛿
2
𝑎
4
𝐹 (𝑧) Le2 (𝜋2 −

𝑅
𝑖

4

)

× 𝑎
2Ra
𝑆
(𝑅
𝑖
− 𝛿
2
) (𝜋
2
−

𝑅
𝑖

4

)

+ 𝛿
4
(𝑅
𝑖
− 𝛿
2
) (𝜋
2
−

𝑅
𝑖

4

) ,

𝑒
0
= (𝛿
4
𝜋
2
𝑎
2
− 𝛿
2
𝑎
2Le2 (𝑅

𝑖
− 𝛿
2
)

× (𝜋
2
−

𝑅
𝑖

4

) + 𝜋
2
𝑎
4Ra
𝑆
)

2

.

(46)

4.2. Heat Transfer and Mass Transport. In the study of
convection problems, the determination of heat transfer and
mass transport play a very important role. Let𝐻 and 𝐽 denote
the rate of heat andmass transport per unit for the fluid phase.
For

𝐻 = −𝜅
𝑇
⟨

𝜕𝑇total
𝜕𝑧

⟩

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑧=0

,

𝐽 = −𝜅
𝑆
⟨

𝜕𝑆total
𝜕𝑧

⟩

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑧=0

,

(47)

where the angular brackets correspond to a horizontal aver-
age and

𝑇total = 𝑇0 − Δ𝑇
𝑧

𝑑

+ 𝑇 (𝑥, 𝑧, 𝑡) ,

𝑆total = 𝑆0 − Δ𝑆
𝑧

𝑑

+ 𝑆 (𝑥, 𝑧, 𝑡) .

(48)

Substituting (32)–(34) into (48) and using the resultant
equation (48) yield

𝐻 =

𝜅
𝑇
Δ𝑇

𝑑

(1 − 2𝜋𝐵
2
) ,

𝐽 =

𝜅
𝑆
Δ𝑆

𝑑

(1 − 2𝜋𝐶
2
) .

(49)

The Nusselt and Sherwood numbers are defined by

Nu = 𝐻𝑑

𝜅
𝑇
Δ𝑇

= 1 − 2𝜋𝐵
2
,

Sh = 𝐽𝑑

𝜅
𝑆
Δ𝑆

= 1 − 2𝜋𝐶
2
.

(50)

Substituting 𝐵
2
and 𝐶

2
of (41) into (51) gives

Nu = 1 +
4𝜋
2
𝑎
2
𝐹 (𝑧)𝐴

2

1

2 (4𝜋
2
− 𝑅
𝑖
) (𝑅
𝑖
− 𝛿
2
) − 𝜋
2
𝑎
2
𝐴
2

1

,

Sh = 1 +
2𝑎
2Le2𝐴2

1

8𝛿
2
+ 𝑎
2Le2𝐴2

1

.

(51)

5. Results and Discussion

5.1. Linear Stability Analysis. The linear stability analysis
of double diffusive convection in a binary Maxwell fluid
saturated porous layer with internal heat source has been
studied analytically. In this section, we discuss the effects
of the parameters in the governing equations on the onset
of the double diffusive convection numerically and graph-
ically. Figure 1 shows the neutral curves for stationary and
oscillatory mode for fixed values of Va = 12, Ra

𝑆
=

500, 𝜆 = 0.01, 𝑅
𝑖
= 3, Le = 7, and 𝜂 = 0.8

with variation in one of the parameters. From Figure 1, it
can be found that the increase in the value of normalized
porosity parameter 𝜂, stress relaxation time 𝜆, and Lewis
number Le decreases the oscillatory critical Rayleigh number.
This indicates that those parameters advance the onset of
double diffusive convection. Figure 1(d) depicts the station-
ary Rayleigh number increases with an increasing solutal
Rayleigh number Ra

𝑆
, which indicates that the effect of the

solutal Rayleigh number is to enhance the stability of the
system. On the other hand, the oscillatory Rayleigh number
decreases with the increasing solutal Rayleigh number, which
means that the solutal Rayleigh number has a stabilizing effect
on the oscillatory onset. In Figure 1(f), we observe that the
stationary Rayleigh number decreases with the increase in
internal Rayleigh number𝑅

𝑖
, which indicates that the internal

Rayleigh number destabilizes the system. Additionally, the
increasing internal Rayleigh number decreases theminimum
of oscillatory Rayleigh number, whichmeans that the internal
Rayleigh number has a destabilizing effect on the oscillatory
onset. Figure 1(e) shows the effect of Vadasz number on the
critical Rayleigh number of stationary mode for fixed values
of other parameters. When 𝑎 is small, the increasing Va
decreases the critical Rayleigh number, indicating that the



Journal of Applied Mathematics 7

a

Ra

𝜂 = 1

𝜂 = 0.7

𝜂 = 0.5

𝜂 = 0.4

0 5 10 15 20

100
200
300
400
500
600
700
800
900

1000

Oscillatory
Stationary

Va = 12, RaS = 500, 𝜆 = 0.01, Ri = 3, Le = 7

(a)

Oscillatory
Stationary

0
0

5 10 15 20

100
200
300
400
500
600
700
800
900

1000

a

Ra

𝜆 = 0.001

𝜆 = 0.01

𝜆 = 0.03

𝜆 = 0.05

Va = 12, RaS = 500, Ri = 3, 𝜂 = 0.8, Le = 7

(b)

0 5 10 15 20
0

200

400

600

800

1000

1200

Oscillatory
Stationary

a

Ra

Va = 12, 𝜂 = 0.8, 𝜆 = 0.01, Ri = 3, Le = 7

RaS = 800

RaS = 600

RaS = 500

RaS = 400

(c)

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Oscillatory
Stationary

a

Ra
Va = 12, RaS = 500, 𝜆 = 0.01, Ri = 3, 𝜂 = 0.8

Le = 3

Le = 5

Le = 10

Le = 15

(d)

0 5 10 15 20
0

100
200
300
400
500
600
700
800
900

1000

Oscillatory
Stationary

a

Ra

RaS = 500, 𝜆 = 0.01, Ri = 3, 𝜂 = 0.8, Le = 7

Va = 5

Va = 8

Va = 14

Va = 18

(e)

0 5 10 15
0

100

200

300

400

500

600

700

800

Oscillatory
Stationary

Ri = 0.1

Ri = 1

Ri = 5

Ri = 7

a

Ra

Va = 12, 𝜂 = 0.8, 𝜆 = 0.01, RaS = 500, Le = 7

(f)

Figure 1: Variation of Ra
𝑇
with respect to wave number 𝑎 for neutral stability curves for different values of parameters.
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Figure 2: Variation in Nusselt number Nu and Sherwood number Sh with respect to Rayleigh number Ra
𝑇
for steady nonlinear stability at

different values of parameters.
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Figure 3: Variation in Nusselt number Nu with respect to time 𝑡 for unsteady nonlinear stability at different values of parameters.

effect of the increasing Va is to stabilize the system. However,
for large value of the wavenumber, the facts are just the
opposite.

5.2. Nonlinear Analysis. The weak nonlinear analysis pro-
vides the quantification of heat and mass transport. The
effects of various parameters on the rate of heat and mass
transfer are shown in Figure 2. The values of parameters are
fixed at 𝑅

𝑖
= 3, Ra

𝑆
= 100, 𝜂 = 0.8, 𝜆 = 0.01, and Le = 3

with variation in one of the parameters. Figures 2(a) and 2(b)
show that an increase in the value of Lewis number Le
increases the value of Nu and Sh. Thus, the effect of Lewis
number is to increase the rate of heat and mass transfer.

Figures 2(c) and 2(d) present that both the rate of heat and
mass transfer decrease with the increasing solutal Rayleigh
number. Figures 2(e) and 2(f) show that an increase in the
value of the internal Rayleigh number 𝑅

𝑖
increases both the

rate of heat and mass transfer.
Using the Runge-Kutta method with suitable initial con-

ditions, we solve the autonomous system numerically given
by (37). For fixed parameters 𝑅

𝑖
= 3, Ra

𝑆
= 100, 𝜂 =

0.8, 𝜆 = 0.1, and Le = 3 with variation in one of the
parameters, the results of Nusselt number Nu and Sherwood
number Sh with respect to time 𝑡 are graphically shown in
Figures 3 and 4, respectively. Although the maximum ampli-
fication of Nu and Sh occurs at the beginning time, it gen-
erates spatial oscillations of increasing frequency. Eventually
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Figure 4: Variation in Nusselt number Sh with respect to time 𝑡 for unsteady nonlinear stability at different values of parameters.

the oscillations reach a steady state when time is large
enough. Figures 3 and 4 show that the parameters have
insignificant effect on heat transfer; however, the effects of the
parameters onmass transfer are smaller. Notice by inspection
of Figures 3 and 4 that Nu and Sh are considerably reduced as
the value of relaxation time 𝜆 increases, and so are 𝜂 and 𝑅

𝑆
.

However, the internal Rayleigh number Ra
𝑖
increases the rate

of heat and mass transfer.

6. Conclusion

Linear and nonlinear analysis of double diffusive convection
in a Maxwell fluid saturated porous layer with internal heat
source, which is heated and salted from below, is investigated

analytically and numerically. The linear analysis is analyzed
using the normal mode technique. On the other hand, the
nonlinear analysis of the system is established through a
truncated form of the Fourier series. The effects of physical
parameters in governing equations, such as relaxation time,
Lewis number, normalized porosity parameter, Vadasz num-
ber, solutal Rayleigh number, and internal Rayleigh number,
on stationary, oscillatory convection, and heat and mass
transfer are shown graphically and the following conclusions
are drawn: Vadasz number Va, relaxation parameter 𝜆, and
Lewis number Le advance the onset of oscillatory convection.
The internal Rayleigh number 𝑅

𝑖
has a destabilizing effect

for the governing system, both stationary and oscillatory
mode, and the solutal Rayleigh number Ra

𝑆
stabilizes the

system. The rate heat and mass transfer increase with
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the increasing internal Rayleigh number, but Nu and Sh are
reduced as the solutal Rayleigh number, stress relaxation
time, and normalized porosity parameter increase.
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