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A weighted semiparameter estimate model is proposed. The parameter components and nonparameter components are weighted.
The weights are determined by the characters of different data. Simulation data and real GPS data are both processed by the new
model and least square estimate, ridge estimate, and semiparameter estimate. The main research method is to combine qualitative
analysis and quantitative analysis.The deviation between estimated values and the true value and the estimated residuals fluctuation
of different methods are used for qualitative analysis. The mean square error is used for quantitative analysis. The results of
experiment show that the model has the smallest residual error and the minimummean square error.The weighted semiparameter
estimate model has effectiveness and high precision.

1. Introduction

With the development of surveying andmapping technology,
there are more and more nonlinear problems [1, 2]. When
we solve the nonlinear problems, linearization is the main
method. Owing to the nonlinear characteristics of model, the
linearization methods maybe cause large model error [3, 4].

Parameter estimation is primarily solving the unknown
parameters according to certain model and criterion [5].
At the same time, nonparameter estimations are flexible in
reducingmodeling biases [6].There are both parameter com-
ponents and nonparameter components in semiparameter
estimatemodel [7, 8]. Semiparametermodel is more efficient.
It can be superior to the limitation of nonparametric model
and parametric model. Semiparameter has been applied in
many fields. Its properties has been studied extensively.

We propose a weighted semiparameter estimate model.
The parameter components and nonparameter components
are weighted against the characters of different data. The
minimal error of mean square can be got by adjusting
the weights of parameter components and nonparameter
components.Themost appropriate weights correspond to the
minimal mean square error. Then the weights are confirmed
through this method. Considering the characters of different
data, the weighted semiparameter estimate model improves

the equally weighted semiparameter model. The weighted
semiparameter estimate model is contrasted with LS, ridge
estimate, and semiparameter estimate. The simulated data
and leveling network date are used to check the model.
We take the deviation between estimated values and the
true value, the estimated residuals fluctuation, and the mean
square error as the index.The results of the experiments show
the feasibility and effectiveness of model.

2. Four Models

2.1. Nonlinear Least Squares Model. Nonlinear model is
defined as follows:
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needs to be satisfied; that is,
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The corresponding residual error is
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The least square solution of equation has relationship with
intrinsic curvature and parameter effect curvature [9]. Only
in this case, nonlinear degree is low and the estimate value is
close to the true value. Otherwise, error is big.

2.2. Ridge Estimate. Ridge estimate is one of the most
common biased methods when we process ill-conditioning
problem [10, 11]. It can reduce the mean squared error.

Ridge estimate model is defined as follows:

𝑋 = (𝑁 + 𝑘𝐼)
−1
𝐵
𝑇
𝑃𝐿, (6)

where 0 ≤ 𝑘 < ∞ is ridge parameters and 𝑁 = 𝐵
𝑇
𝑃𝐵.

When 𝑘 = 0, ridge estimate is LS estimate.The determination
of ridge parameters is the most important thing in ridge
estimate. The main methods to determined ridge parameters
are ridge track method, L curve method, and generalized
cross-validation (GCV) method [12]. Ridge track method is
chosen in this paper.

2.3. Semiparameter Model. Semiparameter model is defined
as follows:

𝐿 = 𝐵𝑋 + 𝑆 + Δ, (7)
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Linear model is used to estimate the parameter compo-
nent. Weight function is used to estimate the nonparameter
component. On the selected point, weight function𝑊

𝑖
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defined as follows [13]:

𝑤
𝑖
(𝑡
𝑘
) =

[𝐾 (𝑡
𝑘
− 𝑡
𝑖
) /ℎ
−1
]

∑
𝑛

𝑗=1
[𝐾 (𝑡
𝑘
− 𝑡
𝑗
) /ℎ−1]

, 𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛,

(8)

where 𝐾(⋅) is kernel function and ℎ is the corresponding
window width.

Least square cross-validation method (LSCV) is used to
determine the best window width [14]. 𝑓(𝑥) is the kernel

estimate of probability density function (PDF) 𝑓(𝑥). LSCV
can minimize the integrated squared error (ISE) of 𝑓(𝑥),
where

ISE (𝑓 (𝑥)) = ∫ [𝑓 (𝑥) − 𝑓 (𝑥)]
2

𝑑𝑥

= ∫𝑓
2
(𝑥) 𝑑𝑥 + ∫𝑓

2
(𝑥) 𝑑𝑥 − 2∫𝑓 (𝑥) 𝑓 (𝑥) 𝑑𝑥.

(9)
It is assumed that 𝑥 is known. The nonparametric kernel
estimation of 𝑠(𝑡

𝑘
) is

𝑠 (𝑡
𝑘
, 𝑋) =

𝑛

∑

𝑖=1

𝑊
𝑖
(𝑡
𝑘
) (𝐿
𝑖
− 𝐵
𝑖
𝑋) . (10)

The residual error of estimate value is
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The vector form of (11) is 𝑉 = (𝐼 −𝑊)(𝐵𝑋 − 𝐿).
The least square criterion is
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The normal equation of (12) is
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If 𝐵 is nonsingular, the semiparametric least squares estima-
tion of𝑋 is
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2.4. Weighted Semiparameter Model. In model (7), parame-
ter component is weighted 𝛼; nonparameter component is
weighted 𝛽. Then the residual error of estimate value is
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where 𝛼 + 𝛽 = 2.
The weights 𝛼 and 𝛽 are adjusted appropriately based on

the error of mean square. The formula of mean square error
is shown as follows:

𝐷 = [
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Step length is equal to 0.1. 𝛼 go from 0 to 2 per step and 𝛽

reduce from 2 to 0. There are one-to-one match from 𝛼, 𝛽 to
mean square error.Themost appropriate weights correspond
to the minimal mean square error.

When 𝛼 = 𝛽 = 1, the weighted semiparameter model
becomes semiparameter model. When 𝛼 = 2, 𝛽 = 0, the
weighted semiparameter model becomes LS model. In this
paper step length is 0.1. The weights 𝛼 and 𝛽 are obtained
using the MMSE principle.



Journal of Applied Mathematics 3

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

Observed value
True value

O
bs

er
ve

d 
va

lu
e a

nd
 tr

ue
 v

al
ue

i

Figure 1:Data comparison between true value and simulation value.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight of parametric components

M
ea

n 
sq

ua
re

 er
ro

r

Figure 2: Mean square error with different weight.

3. Experiment Results and Analyses

3.1. Simulated Data. In this case, 𝐿 = 𝐵𝑋 + 𝑠 + Δ, 𝐵 =

(𝑏
𝑖,𝑗
)
100×1

, 𝑛 = 200, 𝑖 = 1, 2, . . . , 𝑛, 𝑏
𝑖
= 𝑡
𝑖
, true value 𝑋 = 5,

𝑠 = 6 sin(2𝑡
𝑖
) + 2, 𝑡

𝑖
= (2(𝑖 − 1)𝜋)/𝑛, and Δ : 𝑁(0, 1). 𝑃 is the

weight matrix of observation values and 𝑃 = 𝐼.
Figure 1 shows the data comparison between true value

and simulation value.
In semiparameter and weighted semiparameter

model, 𝐾(⋅) = {
1/2 |𝑥|≤1

0 |𝑥|>1
, where 𝐾(⋅) is kernel weighted

function. Window width is 1.
Figure 2 shows the mean square error (MSE) with differ-

ent weight.
So in this case 𝛼 = 1.5, 𝛽 = 0.5.
Table 1 shows the estimate value and the gap between true

value and simulation value.
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Figure 3: Mean square error with different weight.

From the value in Table 1, weighted semiparameter esti-
mate model is the best. Using the weighted semiparameter
estimate model, the estimate value is the nearest to the true
value. The gap between true value and simulation value is
significantly smaller than that in other models.

3.2. Data of Leveling Network. The data of leveling network
comes from [15, page 109]. There are four points and five
routes in leveling network. The condition number of coeffi-
cient matrix of equations is 8.4879e + 004. Its ill condition is
not serious. So ridge estimate is not used. The weight kernel
function is probability density function of standard normal
distribution. Window width ℎ equals 1.

In weighted semiparameter estimate model, mean square
error is changing with weight 𝛼. Figure 3 shows the change
process. It is evident from Figure 3 that 𝛼 = 0.4, 𝛽 = 1.6 are
the best choice.

Figure 4 shows the estimated residuals of different meth-
ods.

From Figure 4, the residual errors of weighted semipa-
rameter estimate model and LS estimate are smaller than
those of semiparameter estimate model. The model that has
the least fluctuation is weighted semiparameter estimate.

Table 2 shows the mean square errors of three models.
The MSE follows weighted semiparameter—

semiparameter—LS. The result of experiment indicates
that the new method is more stable than others.

To summarize, according to the above experiments,
weighted semiparameter estimate model is superior to other
three estimate models.

4. Conclusions

A weighted semiparameter estimate model is proposed. The
parameter components and nonparameter components are
weighted by the characters of different data. Simulating data
and leveling network data are used to test the model. Two
indexes, namely, estimated residuals and MSE, are applied
to analyze and verify the experimental result. The mean
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Table 1: The estimate value and the gap between true and simulation value.

True value LS Ridge estimate (𝑘 = 0.7) Semiparameter Weighted semiparameter 𝛼 = 1.5, 𝛽 = 0.5

Estimate value 5 5.2350 5.2336 4.0787 4.9581
Gap 0 0.2350 0.2336 0.9213 0.0419
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Figure 4: Estimated residuals of different methods.

Table 2: Mean square errors of three models.

LS Semiparameter Weighted semiparameter
MSE 8.4477 30.4628 6.1035

square error and the range of residual error are the smallest.
So weighted semiparameter estimate model has a better
performance in effectiveness and high precision.
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