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We study the regularity of stochastic current defined as Skorohod integral with respect to bifractional Brownian motion through
Malliavin calculus. Moreover, we similarly derive some results in the case of multidimensional multiparameter. Finally, we consider
stochastic current of bifractional Brownian motion as a distribution in Watanabe spaces.

1. Introduction

The fractional Brownianmotionwas first introducedwithin a
Hilbert space framework by Kolmogorov in [1]. It was further
studied by Mandelbrot and Van Ness in [2], who provided
a stochastic integral representation of this process in terms
of a standard Brownian motion in 1968. In recent years,
fractional Brownian motion has become an intense object
in stochastic analysis and related fields for the moment, due
to its interesting properties, such as self-similarity, and its
applications in various scientific areas. However, when Hurst
parameters 𝐻 ̸= 1/2, fractional Brownian motion is neither
a semimartingale nor a Markovian process. The techniques
used in Brownian motion cannot be directly applied.

Nevertheless, every fractional Brownian motion has its
limits in modelling certain phenomena. In order to fit
better in concrete situations, several authors have recently
introduced some generalized fractional Brownian motions.
For instance, we mention subfractional Brownian motion
(see [3, 4]) and bifractional Brownian motion (see [5, 6]).

The concept of current comes from geometric measure
theory. The simplest is the functional

𝜑 󳨀→ ∫

𝑇

0

⟨𝜑 (𝛾 (𝑡)) , 𝛾(𝑡)
󸀠
⟩
𝑅
𝑑
𝑑𝑡, (1)

where 𝜑 : 𝑅
𝑑

→ 𝑅
𝑑 and 𝛾(𝑡) is a rectifiable curve. This

functional 𝜉(𝑥) can be defined by

𝜉 (𝑥) = ∫

𝑇

0

𝛿 (𝑥 − 𝛾 (𝑡)) 𝛾(𝑡)
󸀠
𝑑𝑡, (2)

where 𝛿(𝑥) is a Dirac function (see [7]). If wewant to simulate
this current, we need to replace the deterministic curve 𝛾(𝑡)
with stochastic process 𝑋

𝑡
. At the same time, the stochastic

integral must be properly interpreted. Recently, people pay
attentions to the research on stochastic current. Give the
following map:

𝜑 󳨀→ 𝐼 (𝜑) = ∫

𝑇

0

⟨𝜑 (𝑋
𝑡
) , 𝑑𝑋

𝑡
⟩ , (3)

where 𝜑 is a vector function on 𝑅
𝑑 which belongs to some

Banach spaces 𝑉, 𝑋
𝑡
is a stochastic process, and the integral

is some version of a stochastic integral defined through
regularization. Stochastic current is a continuous version
of the mapping; that is, stochastic current is regarded as a
stochastic element of the dual space of 𝑉 in [8].

The problem of stochastic current is motivated by the
study of fluidodynamical models. In [9], in the study of the
energy of a vortex filament naturally appear some stochastic
double integrals related to Wiener process

∫
[0,𝑇]
2

𝑓 (𝑋
𝑠
− 𝑋

𝑡
) 𝑑𝑋

𝑠
𝑑𝑋

𝑡
, (4)

where 𝑓(𝑥) = 𝐾
𝛼
(𝑥) is the kernel of the pseudodifferential

operator (1 − Δ)
−𝛼. In the recent years, some results of

stochastic currents of Gaussian processes have been obtained
through different stochastic integrals in [7, 8, 10]. For exam-
ple, Flandoli and Tudor [7] have studied the existence and
regularity of stochastic currents through Malliavin calculus,
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where the integrals are defined as Skorohod integrals with
respect to the Brownian motion and fractional Brownian
motion, respectively. In [10] authors have shown the Sobolev
regularity of the stochastic current, which is associated with
the pathwise integral.

Recall that the bifractional Brownian motion 𝐵
𝐻,𝐾 is a

centered Gaussian process with covariance function

𝑅
𝐻,𝐾 (𝑡, 𝑠) =

1

2𝐾
((𝑡

2𝐻
+ 𝑠

2𝐻
)
𝐾

− |𝑡 − 𝑠|
2𝐻𝐾

) , (5)

where parameters 𝐻 ∈ (0, 1) and 𝐾 ∈ (0, 1]. It is well
known that, when 𝐾 = 1, bifractional Brownian motion is
a fractional Brownian motion. Since bifractional Brownian
motion seems to be more flexible and more complex model
than fractional Brownianmotion, it seems desirable to extend
the stochastic current of fractional Brownian motion to the
case of bifractional Brownianmotion. For this aim,motivated
by [7, 11], we use Malliavin calculus and multiple integrals to
discuss the stochastic current defined as divergence integral
with respect to bifractional Brownianmotion. Let us compare
our results with the analogous ones from the case of frac-
tional Brownian stochastic current. Note that the regularity
condition of bifractional Brownian current does not depend
on parameters 𝐻 and 𝐾, while the situation is different in
the case of fractional Brownian motion. On the other hand,
because the problems of bifractional Brownian motion are
more complex, we need some useful techniques to deal with
bifractional Brownian current.

The paper is organized as follows. In Section 2, we pro-
vide some background materials from bifractional Brownian
motion. In Section 3, we firstly consider the regularity of
stochastic current of bifractional Brownian motion with
respect to 𝑥. Lastly, we regard stochastic current of bifrac-
tional Brownianmotion as a distribution inWatanabe spaces.

2. Bifractional Brownian Motion

In this section, we briefly recall some notations and facts of
bifractional Brownian motion, and for details see [5, 6, 11].

A bifractional Brownianmotion𝐵𝐻,𝐾 is a centerGaussian
process with variance

𝑅
𝐻,𝐾 (𝑡, 𝑠) =

1

2𝐾
((𝑡

2𝐻
+ 𝑠

2𝐻
)
𝐾

− |𝑡 − 𝑠|
2𝐻𝐾

) , (6)

where parameters 𝐻 ∈ (0, 1) and 𝐾 ∈ (0, 1]. In the case
𝐾 = 1 we retrieve the fractional Brownian motion, while in
the case 𝐾 = 1 and 𝐻 = 1/2 bifractional Brownian motion
corresponds to the Brownian motion.

LetH be a Hilbert space.H is defined as the completion
of the linear space generated by the I

[0,𝑡]
, 𝑡 ∈ [0, 𝑇] with

respect to the inner product

⟨I
[0,𝑡]

, I
[0,𝑠]

⟩
H

= 𝑅
𝐻,𝐾 (𝑡, 𝑠)

= ∬

𝑇

0

I
[0,𝑡] (𝑢) I[0,𝑠] (V)

𝜕
2
𝑅
𝐻,𝐾 (𝑢, V)
𝜕𝑢𝜕V

𝑑𝑢 𝑑V.

(7)

Sometimes working with the space H is not convenient,
because this space also contains distributions (see [11]) and
the norm in this space is not always tractable. We always
use the subspace H

1
of H, which is defined as the set of

measurable functions 𝑓 on [0, 𝑇] with

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

H1
≡ ∬

𝑇

0

󵄨󵄨󵄨󵄨𝑓 (𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (V)󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑅
𝐻,𝐾 (𝑢, V)
𝜕𝑢𝜕V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑢 𝑑V < ∞.

(8)

We can prove thatH
1
is a Banach space for the norm ‖ ⋅ ‖H1

.
At the same time, we have

𝐿
2
([0, 𝑇]) ⊂ H

1
⊂ H. (9)

Denote multiple stochastic integrals by 𝐼
𝑛
(𝑓

𝑛
) with

respect to 𝐵
𝐻,𝐾, where 𝑓

𝑛
∈ H⊗𝑛. For each 𝐹 ∈ 𝐿

2
([0, 𝑇]),

𝐹 has chaos expansion 𝐹 = ∑
∞

𝑛=0
𝐼
𝑛
(𝑓

𝑛
). Let 𝐿 be Ornstein-

Uhlenbeck operator

𝐿𝐹 = −

∞

∑

𝑛=0

𝑛𝐼
𝑛
(𝑓

𝑛
) . (10)

For each 𝑝 ∈ (1,∞) and 𝛼 ∈ R, define Sobolev-Watanabe
𝐷
𝛼,𝑝 as the closure of the set of polynomial variables with

respect to the norm

‖𝐹‖𝛼,𝑝 =
󵄩󵄩󵄩󵄩󵄩
(𝐼𝑑 − 𝐿)

𝛼/2󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)
, (11)

where 𝐼 denotes the identity. Malliavin derivative operator𝐷
is defined as follows:

𝐷
𝑡
(𝐼
𝑛
(𝑓

𝑛
)) = 𝑛𝐼

𝑛−1
(𝑓

𝑛 (⋅, 𝑡)) . (12)

It is well known that stochastic variable 𝐹 belongs to 𝐷
𝛼,2 if

and only if

∞

∑

𝑛=0

(1 + 𝑛)
𝛼󵄩󵄩󵄩󵄩𝐼𝑛(𝑓𝑛)

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

< ∞. (13)

The adjoint of 𝐷 is always called the divergence integral
(or Skorohod integral). For adapted integrands, the diver-
gence integral coincides with the classical Itô integral. Hence
the divergence integral is called generalized Itô integral. If 𝑢
is a stochastic process, it has the following chaos expansion:

𝑢
𝑠
= ∑

𝑛≥0

𝐼
𝑛
(𝑓

𝑛 (⋅, 𝑠)) , (14)

where 𝑓
𝑛
(⋅, 𝑠) ∈ H⊗(𝑛+1). Skorohod integral of 𝑢 is defined as

∫

𝑇

0

𝑢
𝑠
𝑑𝐵

𝐻,𝐾

𝑠
= ∑

𝑛≥0

𝐼
𝑛+1

(𝑓
𝑛(⋅, 𝑠)

(𝑠)
) , (15)

where 𝑓(𝑠)

𝑛
denotes the symmetrization of 𝑓

𝑛
with respect to

𝑛 + 1 variables.
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3. Stochastic Current of Bifractional
Brownian Motion

3.1. Stochastic Current of One-Dimensional Case with respect
to 𝑥. In this section, we give stochastic current of bifractional
Brownian motion as follows:

𝜉 (𝑥) = ∫
[0,𝑇]
𝑁

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) 𝑑𝐵

𝐻,𝐾

𝑠
, (16)

where the integral is a Skorohod integral, 𝑥 ∈ R, and 𝑇 > 0.
Put

𝛽
𝑥

𝑛
(𝑠) =

𝑝
𝑠
2𝐻𝐾 (𝑥)

[𝑠2𝐻𝐾]
𝑛/2

𝐻
𝑛
(

𝑥

𝑠𝐻𝐾
)

= (𝑅
𝐻,𝐾 (𝑠))

−(𝑛/2)
𝑝
𝑅𝐻,𝐾(𝑠)

(𝑥)𝐻𝑛
(

𝑥

𝑅
𝐻,𝐾(𝑠)

1/2
) ,

(17)

where 𝑝
𝑠
2𝐻𝐾(𝑥) is a Gaussian kernel function of variance 𝑠2𝐻𝐾

and𝐻
𝑛
(𝑥) is the Hermite polynomial of degree 𝑛.

By Lemma 3.1 in [7], the following lemma is obtained.
Indeed, the lemma can be regarded as a version in the case
of bifractional Brownian motion.

Lemma 1. Use 𝛽𝑥
𝑛
(𝑠) to denote the Fourier transform of the

function 𝑥 → 𝛽
𝑥

𝑛
(𝑠); then

𝛽
𝑥

𝑛
(𝑠) = exp{−𝑥

2

2
𝑅
𝐻,𝐾 (𝑠)}

(−𝑖)
𝑛
𝑥
𝑛

𝑛!
. (18)

Applying Lemma 1 and as in [7], we can obtain the
stochastic current of bifractional Brownian motion.

Theorem 2. Let 𝐵𝐻,𝐾 be a bifractional Brownian motion with
Hurst parameters 𝐻 ∈ (0, 1), 𝐾 ∈ (0, 1] satisfying 2𝐻𝐾 > 1

and let 𝜉(𝑥) be given by (16). Then, for each 𝜔 ∈ Ω and when
𝑟 > 1/2, 𝜉(𝑥) belongs to the negative Sobolev space𝐻−𝑟

(R;R).

Proof. By the chaos expansion of 𝛿(𝑥−𝐵𝐻,𝐾) (see [11] or [5]),
we have

𝛿 (𝑥 − 𝐵
𝐻,𝐾

)

= ∑

𝑛≥0

𝑝
𝑠
2𝐻𝐾 (𝑥)

𝑠𝑛𝐻𝐾
𝐻
𝑛
(

𝑥

𝑠2𝐻𝐾
) 𝐼

𝐵
𝐻,𝐾

𝑛
(I⊗𝑛
[0,𝑠]

(⋅))

= ∑

𝑛≥0

𝛽
𝑥

𝑛
(𝑠) 𝐼

𝐵
𝐻,𝐾

𝑛
(I⊗𝑛
[0,𝑠]

(⋅)) ,

(19)

where 𝐼𝐵
𝐻,𝐾

𝑛
denotes multiple stochastic integrals with respect

to bifractional Brownian motion 𝐵
𝐻,𝐾.

Let us consider the Fourier transform of 𝛿(𝑥 − 𝐵
𝐻,𝐾

):

𝛿 (𝑥 − 𝐵
𝐻,𝐾

) = ∑

𝑛≥0

𝛽
𝑥

𝑛
(𝑠) 𝐼

𝐵
𝐻,𝐾

𝑛
(I⊗𝑛
[0,𝑠]

(⋅)) . (20)

By Lemma 1, we obtain

𝛽
𝑥

𝑛
(𝑠) = exp{−𝑥

2

2
𝑠
2𝐻𝐾

}
(−𝑖𝑥)

𝑛

𝑛!
. (21)

Hence

𝜉 (𝑥) = ∑

𝑛≥0

(−𝑖𝑥)
𝑛

𝑛!
𝐼
𝐵
𝐻,𝐾

𝑛+1
((exp{−𝑥

2

2
𝑠
2𝐻𝐾

} I⊗𝑛
[0,𝑠]

(⋅))

(𝑠)

) ,

(22)

where (𝑠) denotes the symmetrization with respect to 𝑛 + 1

variables.
By the definition of ‖ ⋅ ‖

𝐻
−𝑟
(R;R) and taking advantage of

(22), we get

𝐸
󵄩󵄩󵄩󵄩𝜉(𝑥)

󵄩󵄩󵄩󵄩

2

𝐻
−𝑟
(R;R)

= 𝐸 [∫
R

(1 + 𝑥
2
)
−𝑟󵄨󵄨󵄨󵄨󵄨

𝜉 (𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥]

≤ ∫
R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥0

𝑥
2𝑛

(𝑛!)
2
(𝑛 + 1)!

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(exp{−𝑥
2

2
𝑠
2𝐻𝐾

} I⊗𝑛
[0,𝑠]

(⋅))

(𝑠)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

H⊗(𝑛+1)

𝑑𝑥.

(23)

From the following fact:

(exp{−𝑥
2

2
𝑠
2𝐻𝐾

} I⊗𝑛
[0,𝑠]

(⋅))

(𝑠)

(𝑡
1
, . . . , 𝑡

𝑛+1
)

=
1

𝑛 + 1

𝑛+1

∑

𝑖=1

exp{−𝑥
2

2
𝑡
2𝐻𝐾

𝑖
} I⊗𝑛

[0,𝑡𝑖]
(𝑡
1
, . . . , 𝑡̂

𝑖
, . . . , 𝑡

𝑛+1
) ,

(24)

we show that

𝐸
󵄩󵄩󵄩󵄩𝜉(𝑥)

󵄩󵄩󵄩󵄩

2

𝐻
−𝑟
(R;R)

≤ ∫
R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥0

𝑥
2𝑛

(𝑛!)
2
(𝑛 + 1)!

×∬

[0,𝑇]
𝑛+1

𝑛

∑

𝑖,𝑗=1

1

(𝑛 + 1)
2
exp{−𝑥

2

2
𝑠
2𝐻𝐾

𝑖
}

⋅ exp{−𝑥
2

2
𝑡
2𝐻𝐾

𝑗
} I⊗𝑛

[0,𝑠𝑖]
(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛+1
)

× I⊗𝑛
[0,𝑡𝑗]

(𝑡
1
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛+1
)

⋅

𝑛+1

∏

𝑞=1

𝜕
2

𝜕𝑠
𝑞
𝜕𝑡

𝑞

𝑅
𝐻,𝐾

× (𝑠
𝑞
, 𝑡
𝑞
) 𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛+1
𝑑𝑡

1
⋅ ⋅ ⋅ 𝑑𝑡

𝑛+1
𝑑𝑥

= ∫
R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥0

𝑥
2𝑛

(𝑛 + 1)!

×

𝑛+1

∑

𝑖=1

∬

[0,𝑇]
𝑛+1

exp{−𝑥
2

2
𝑠
2𝐻𝐾

𝑖
}

⋅ exp{−𝑥
2

2
𝑡
2𝐻𝐾

𝑖
} I⊗𝑛

[0,𝑠𝑖]
(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛+1
)

× I⊗𝑛
[0,𝑡𝑖]

(𝑡
1
, . . . , 𝑡̂

𝑖
, . . . , 𝑡

𝑛+1
)

⋅

𝑛+1

∏

𝑞=1

𝜕
2

𝜕𝑠
𝑞
𝜕𝑡

𝑞

𝑅
𝐻,𝐾

(𝑠
𝑞
, 𝑡
𝑞
) 𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛+1
𝑑𝑡

1
⋅ ⋅ ⋅ 𝑑𝑡

𝑛+1
𝑑𝑥
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+ ∫
R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥0

𝑥
2𝑛

(𝑛 + 1)!

×

𝑛+1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

∬

[0,𝑇]
𝑛+1

exp{−𝑥
2

2
𝑠
2𝐻𝐾

𝑖
}

⋅ exp{−𝑥
2

2
𝑡
2𝐻𝐾

𝑗
}

× I⊗𝑛
[0,𝑠𝑖]

(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛+1
)

× I⊗𝑛
[0,𝑡𝑗]

(𝑡
1
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛+1
)

⋅

𝑛+1

∏

𝑞=1

𝜕
2

𝜕𝑠
𝑞
𝜕𝑡

𝑞

× 𝑅
𝐻,𝐾

(𝑠
𝑞
, 𝑡
𝑞
) 𝑑𝑠

1

⋅ ⋅ ⋅ 𝑑𝑠
𝑛+1

𝑑𝑡
1
⋅ ⋅ ⋅ 𝑑𝑡

𝑛+1
𝑑𝑥

≡ Δ
1
+ Δ

2
.

(25)
Firstly, we turn to estimate Δ

1
. Using the similar methods in

[7, 11] and the following fact:

∬

𝑇

0

I
[0,𝑡] (𝑢) I[0,𝑠] (V)

𝜕
2

𝜕𝑢𝜕V
𝑅
𝐻,𝐾 (𝑢, V) 𝑑𝑢 𝑑V = 𝑅

𝐻,𝐾 (𝑡, 𝑠) ,

(26)

we find

Δ
1
= ∫

R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥0

𝑥
2𝑛

(𝑛 + 1)!

×

𝑛+1

∑

𝑖=1

∬

[0,𝑇]
𝑛+1

exp{−𝑥
2

2
𝑠
2𝐻𝐾

1
}

⋅ exp{−𝑥
2

2
𝑡
2𝐻𝐾

1
} I⊗𝑛

[0,𝑠1]
(𝑠
2
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛+1
)

× I⊗𝑛
[0,𝑡1]

(𝑡
2
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛+1
)

⋅

𝑛+1

∏

𝑞=2

𝜕
2

𝜕𝑠
𝑞
𝜕𝑡

𝑞

𝑅
𝐻,𝐾

(𝑠
𝑞
, 𝑡
𝑞
)

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

× 𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
) 𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛+1
𝑑𝑡

1
⋅ ⋅ ⋅ 𝑑𝑡

𝑛+1
𝑑𝑥

= ∫
R

(1 + 𝑥
2
)
−𝑟

× ∑

𝑛≥0

𝑥
2𝑛

𝑛!
∬

[0,𝑇]

exp{−𝑥
2

2
𝑠
2𝐻𝐾

1
}

⋅ exp{−𝑥
2

2
𝑡
2𝐻𝐾

1
}𝑅

𝑛

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

× 𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
) 𝑑𝑠

1
𝑑𝑡

1
𝑑𝑥

= ∫
R

(1 + 𝑥
2
)
−𝑟

∬
[0,𝑇]

exp{−𝑥
2

2
𝑠
2𝐻𝐾

1
} exp{−𝑥

2

2
𝑡
2𝐻𝐾

1
}

⋅ ∑

𝑛≥0

𝑥
2𝑛

𝑛!
𝑅
𝑛

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

× 𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
) 𝑑𝑠

1
𝑑𝑡

1
𝑑𝑥

= ∫
R

(1 + 𝑥
2
)
−𝑟

∬

[0,𝑇]

exp{−𝑥
2

2
𝑠
2𝐻𝐾

1
} exp{−𝑥

2

2
𝑡
2𝐻𝐾

1
}

⋅ exp {𝑥2𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
)}

×
𝜕
2

𝜕𝑠
1
𝜕𝑡

1

𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
) 𝑑𝑠

1
𝑑𝑡

1
𝑑𝑥,

(27)

where the last equality is established due to Taylor expansion
formula of exponential function.

Since

2𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
) − 𝑠

2𝐻𝐾

1
− 𝑡

2𝐻𝐾

1
= −𝐸 [(𝐵

𝐻,𝐾

𝑠1
− 𝐵

𝐻,𝐾

𝑡1
)
2

] , (28)

we get

exp{𝑥
2

2
(2𝑅

𝐻,𝐾
(𝑠
1
, 𝑡
1
) − 𝑠

2𝐻𝐾

1
− 𝑡

2𝐻𝐾

1
)}

= exp{−𝑥
2

2
𝐸 [(𝐵

𝐻,𝐾

𝑠1
− 𝐵

𝐻,𝐾

𝑡1
)
2

]} .

(29)

By [5], for each 𝑠
1
, 𝑡
1
∈ [0, 𝑇], we have

2
−𝐾󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
≤ 𝐸 [(𝐵

𝐻,𝐾

𝑠1
− 𝐵

𝐻,𝐾

𝑡1
)
2

] ≤ 2
1−𝐾󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
,

(30)

which implies that

𝐸 [(𝐵
𝐻,𝐾

𝑠1
− 𝐵

𝐻,𝐾

𝑡1
)
2

] ≥ 0. (31)

Use the change of variables 𝑦 = 𝑥{𝐸[(𝐵
𝐻,𝐾

𝑠1
− 𝐵

𝐻,𝐾

𝑡1
)
2
]}
1/2.

Furthermore, we have

𝑑𝑥 = (𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

1
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

1
)
𝐾󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
] )

−1/2

𝑑𝑦,

(1 + 𝑥
2
)
−𝑟

= {1 + (𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

1
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

1
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
])

−1

𝑦
2
}

−𝑟

.

(32)

On the other hand, by [11], there exists a constant 𝐶
3,1
(𝐻,𝐾)

depending on𝐻 and𝐾 such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
3,1 (𝐻,𝐾) (𝑠1𝑡1)

𝐻𝐾−1
. (33)

Putting (32)-(33) into (27), calculate

Δ
1
≤ 𝐶

3,1 (𝐻,𝐾)∬

𝑇

0

(𝑠
1
𝑡
1
)
𝐻𝐾−1

× (𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

1
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

1
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
] )

𝑟−1/2
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× ∫
R

exp{−
𝑦
2

2
}

⋅ (𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

1
−

1

2𝐾−1

⋅ [(𝑠
2𝐻

1
+ 𝑡

2𝐻

1
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
]

+𝑦
2
)

−𝑟

𝑑𝑦𝑑𝑠
1
𝑑𝑡

1

≤ 𝐶
3,1 (𝐻,𝐾)

×∬

𝑇

0

(𝑠
1
𝑡
1
)
𝐻𝐾−1

(𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

1
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

1
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

1

󵄨󵄨󵄨󵄨

2𝐻𝐾
] )

𝑟−1/2

× ∫
R

exp{−
𝑦
2

2
}𝑦

−2𝑟
𝑑𝑦𝑑𝑠

1
𝑑𝑡

1
.

(34)

When 𝐻𝐾 − 1 + 2𝐻𝐾(𝑟 − 1/2) > −1, that is, 𝑟 > 0, (34) is
finite.

Secondly, using the similar estimation method in the first
part, consider the estimation of Δ

2
as follows:

Δ
2
= ∫

R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥1

𝑥
2𝑛

(𝑛 + 1)!
𝑛 (𝑛 + 1)

×∬

[0,𝑇]
𝑛+1

exp{−𝑥
2

2
𝑠
2𝐻𝐾

1
}

⋅ exp{−𝑥
2

2
𝑡
2𝐻𝐾

2
} I⊗𝑛

[0,𝑠1]
(𝑠
2
, . . . , 𝑠

𝑛+1
)

× I⊗𝑛
[0,𝑡2]

(𝑡
1
, 𝑡
3
, . . . , 𝑡

𝑛+1
)

⋅

𝑛+1

∏

𝑞=1

𝜕
2

𝜕𝑠
𝑞
𝜕𝑡

𝑞

× 𝑅
𝐻,𝐾

(𝑠
𝑞
, 𝑡
𝑞
) 𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛+1
𝑑𝑡

1
⋅ ⋅ ⋅ 𝑑𝑡

𝑛+1
𝑑𝑥

= ∫
R

(1 + 𝑥
2
)
−𝑟

∑

𝑛≥1

𝑥
2𝑛

(𝑛 − 1)!

×∭∫

𝑇

0

exp{−𝑥
2

2
𝑠
2𝐻𝐾

1
} exp{−𝑥

2

2
𝑡
2𝐻𝐾

2
}

⋅ I
[0,𝑠1]

(𝑠
2
) I

[0,𝑡2]
(𝑡
1
)

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

× 𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
)

𝜕
2

𝜕𝑠
2
𝜕𝑡

2

𝑅
𝐻,𝐾

(𝑠
2
, 𝑡
2
)

⋅ 𝑅
𝑛−1

𝐻,𝐾
(𝑠
1
, 𝑡
2
) 𝑑𝑠

1
𝑑𝑠

2
𝑑𝑡

1
𝑑𝑡

2
𝑑𝑥.

(35)

By Taylor expansion formula, the following equality is obvi-
ous:

Δ
2

= ∫
R

(1 + 𝑥
2
)
−𝑟

𝑥
2

×∭∫

𝑇

0

exp{−𝑥
2

2
(𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
− 𝑅

𝐻,𝐾
(𝑠
1
, 𝑡
2
))}

⋅ I
[0,𝑠1]

(𝑠
2
) I

[0,𝑡2]
(𝑡
1
)

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

𝑅
𝐻,𝐾

(𝑠
1
, 𝑡
1
)

×
𝜕
2

𝜕𝑠
2
𝜕𝑡

2

𝑅
𝐻,𝐾

(𝑠
2
, 𝑡
2
)

⋅ 𝑅
𝑛−1

𝐻,𝐾
(𝑠
1
, 𝑡
2
) 𝑑𝑠

1
𝑑𝑠

2
𝑑𝑡

1
𝑑𝑡

2
𝑑𝑥.

(36)

Recalling some results in [11], there exist parameters𝐻,𝐾 and
a constant 𝐶

3,2
(𝐻,𝐾) depending on𝐻 and𝐾 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝜕𝑠
2
𝜕𝑡

2

𝑅
𝐻,𝐾

(𝑠
2
, 𝑡
2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
3,2 (𝐻,𝐾) (𝑠2𝑡2)

𝐻𝐾−1
. (37)

Thus, by (33) and (37), we obtain

Δ
2
≤ 𝐶

3,1 (𝐻,𝐾)𝐶3,2 (𝐻,𝐾)

× ∫
R

(1 + 𝑥
2
)
−𝑟

×∭∫

𝑇

0

𝑥
2
⋅ exp{−𝑥

2

2
[𝑠

2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× ((𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
) ]}

⋅ (𝑠
1
𝑡
1
)
𝐻𝐾−1

(𝑠
2
𝑡
2
)
𝐻𝐾−1I

[0,𝑠1]
(𝑠
2
)

× I
[0,𝑡2]

(𝑡
1
) 𝑑𝑠

1
𝑑𝑠

2
𝑑𝑡

1
𝑑𝑡

2
𝑑𝑥.

(38)

Calculate

∭∫

𝑇

0

exp{−𝑥
2

2
[𝑠

2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× ((𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
) ]}

⋅ (𝑠
1
𝑡
1
)
𝐻𝐾−1

(𝑠
2
𝑡
2
)
𝐻𝐾−1I

[0,𝑠1]
(𝑠
2
)

× I
[0,𝑡2]

(𝑡
1
) 𝑑𝑠

1
𝑑𝑠

2
𝑑𝑡

1
𝑑𝑡

2

= ∬

𝑇

0

exp{−𝑥
2

2
[𝑠

2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× ((𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
) ]}

⋅ (𝑠
1
𝑡
2
)
𝐻𝐾−1

(∫

𝑇

0

𝑠
𝐻𝐾−1

2
I
[0,𝑠1]

(𝑠
2
) 𝑑𝑠

2
)

× (∫

𝑇

0

𝑡
𝐻𝐾−1

1
I
[0,𝑡2]

(𝑡
1
) 𝑑𝑡

1
)𝑑𝑠

1
𝑑𝑡

2
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=
1

(𝐻𝐾)
2

×∬

𝑇

0

exp{−𝑥
2

2
[𝑠

2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× ((𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
) ]}

× (𝑠
1
𝑡
2
)
2𝐻𝐾−1

𝑑𝑠
1
𝑑𝑡

2
.

(39)

Use the change of variables 𝑦 = [𝑠
2𝐻𝐾

1
+𝑡

2𝐻𝐾

2
−(1/2

𝐾−1
)((𝑠

2𝐻

1
+

𝑡
2𝐻

2
)
𝐾
− |𝑠

1
− 𝑡

2
|
2𝐻𝐾

)]
1/2

𝑥. Hence

Δ
2
≤ 𝐶

3,3 (𝐻,𝐾)

×∬

𝑇

0

(𝑠
1
𝑡
2
)
2𝐻𝐾−1

(𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
] )

𝑟−3/2

× ∫
R

exp{−
𝑦
2

2
}

⋅ (𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
] + 𝑦

2
)
−𝑟

𝑑𝑦𝑑𝑠
1
𝑑𝑡

2

≤ 𝐶
3,3 (𝐻,𝐾)∬

𝑇

0

(𝑠
1
𝑡
2
)
2𝐻𝐾−1

× (𝑠
2𝐻𝐾

1
+ 𝑡

2𝐻𝐾

2
−

1

2𝐾−1

× [(𝑠
2𝐻

1
+ 𝑡

2𝐻

2
)
𝐾

−
󵄨󵄨󵄨󵄨𝑠1 − 𝑡

2

󵄨󵄨󵄨󵄨

2𝐻𝐾
] )

𝑟−3/2

× ∫
R

exp{−
𝑦
2

2
}𝑦

−2𝑟
𝑑𝑦𝑑𝑠

1
𝑑𝑡

2
,

(40)

where 𝐶
3,3
(𝐻,𝐾) = 𝐶

3,1
(𝐻,𝐾)𝐶

3,2
(𝐻,𝐾).

When 2𝐻𝐾 − 1 + 2𝐻𝐾(𝑟 − 3/2) > −1, (40) is finite. In
other words, when 𝑟 > 1/2, (40) is finite.

From what we have said above we can draw a conclusion
that when 𝑟 > 1/2,

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝐻
𝑟
(R;R)

< ∞. (41)

From Theorem 2 we see that when 𝑟 > 1/2, the
mapping 𝜉(𝑥) = ∫

[0,𝑇]
𝑁 𝛿(𝑥 −𝐵

𝐻,𝐾

𝑠
)𝑑𝐵

𝐻,𝐾

𝑠
belongs to negative

Sobolev space 𝐻−𝑟
(R;R). Note that the regularity condition

in Theorem 2 does not depend on 𝐻 and 𝐾. The condition
is interesting, because the condition of 𝜉(𝑥) = ∫

[0,𝑇]
𝑁 𝛿(𝑥 −

𝐵
𝑠
)𝑑𝐵

𝑠
which belongs to negative Sobolev space is also 𝑟 >

1/2, where 𝐵
𝑠
is the Brownian motion (see [7]). In other

words, they have the same regularity condition. However,
the situation is different in the case of fractional Brownian
motion, because the regularity condition of fractional Brow-
nian stochastic current is 𝑟 > 1/2𝐻−1/2, which is dependent
on Hurst parameter𝐻.

3.2. Stochastic Current of d-Dimensional Case with respect
to 𝑥. As in [7], we can extend stochastic current of one-
dimensional bifractional Brownian motion to the case of d-
dimensional bifractional Brownian motion.

Let 𝐵
𝐻,𝐾 be the vector valued bifractional Brownian

motion; that is, 𝐵𝐻,𝐾 = (𝐵
𝐻1 ,𝐾1 , . . . , 𝐵

𝐻𝑑 ,𝐾𝑑), where 𝐵𝐻𝑖 ,𝐾𝑖 are
independent one-dimensional bifractional Brownian sheet.
In this part, we consider 𝜉(𝑥) as follows:

𝜉 (𝑥) = (∫
[0,𝑇]
𝑁

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) 𝑑𝐵

𝐻1 ,𝐾1

𝑠
, . . . ,

∫
[0,𝑇]
𝑁

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) 𝑑𝐵

𝐻𝑑 ,𝐾𝑑

𝑠
) ,

(42)

where the integrals are Skorohod integrals with respect to
bifractional Brownian motion.

Denote

𝑅
𝑙

𝐻,𝐾
(𝑡, 𝑠) =

𝑁

∏

𝑖=1

𝑅
𝑙

𝐻,𝐾
(𝑡
𝑖
, 𝑠
𝑖
) = ⟨I

[0,t], I[0,s]⟩H𝐻𝑙
. (43)

Theorem 3. Let 𝐵𝐻,𝐾 be d-dimensional bifractional Brownian
motion with parameters 𝐻

𝑖
and 𝐾

𝑖
satisfying 2𝐻

𝑖
𝐾
𝑖
> 1 (𝑖 =

1, . . . , 𝑑) and let 𝜉(𝑥) be given by (42); then, for each𝜔 ∈ Ω and
when 𝑟 > 𝑑/2 − 1, 𝜉(𝑥) belongs to Sobolev space𝐻−𝑟

(R;R).

Proof. Denote 𝜉
𝑙
(𝑥) by

𝜉
𝑙 (𝑥) = ∫

[0,𝑇]
𝑁

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) 𝑑𝐵

𝐻𝑙 ,𝐾𝑙

𝑠

= ∫
[0,𝑇]
𝑁

𝛿
𝑙
(𝑥 − 𝐵

𝐻,𝐾

𝑠
) 𝛿 (𝑥

𝑙
− 𝐵

𝐻𝑙 ,𝐾𝑙

𝑠
) 𝑑𝐵

𝐻𝑙 ,𝐾𝑙

𝑠

= ∫
[0,𝑇]
𝑁

𝛿
𝑙
(𝑥 − 𝐵

𝐻,𝐾

𝑠
)

× ∑

𝑛𝑙≥0

𝛽
𝑥𝑙

𝑛𝑙
(𝑠) 𝐼

𝐵
𝐻𝑙,𝐾𝑙

𝑛𝑙
(I
[0,s]

⊗𝑛𝑙
(⋅)) 𝑑𝐵

𝐻𝑙 ,𝐾𝑙

𝑠
,

(44)

where 𝛿
𝑙
(𝑥 − 𝐵

𝐻,𝐾

𝑠
) = ∏

𝑑

𝑞=1,𝑞 ̸= 𝑙
𝛿(𝑥

𝑞
− 𝐵

𝐻𝑞 ,𝐾𝑞

𝑠 ).
Calculate the Fourier transform of (44) as follows:

𝜉
𝑙 (𝑥) = ∑

𝑛𝑙≥0

𝐼
𝐵
𝐻𝑙,𝐾𝑙

𝑛𝑙+1
((exp{−𝑖

𝑑

∑

𝑟=1,𝑟 ̸= 𝑙

𝑥
𝑟
𝐵
𝐻𝑟 ,𝐾𝑟

𝑠
}

×
(−𝑖)

𝑛𝑙𝑥
𝑛𝑙

𝑙

𝑛
𝑙
!

×exp{−𝑥
2

2
|𝑠|

2𝐻𝑙𝐾𝑙} I⊗𝑛𝑙
[0,𝑠]

(⋅))

(𝑠)

) .

(45)
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According to the definition of the normal ‖𝜉(𝑥)‖2
𝐻
−𝑟
(R;R) and

using Euler formula, we can prove that

𝐸
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑙
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

= ∑

𝑛𝑙≥0

𝑥
2𝑛𝑙

𝑙

(𝑛
𝑙
+ 1)!

×

𝑛𝑙+1

∑

𝑖,𝑗=1

∬

[0,𝑇]
𝑁(𝑛𝑙+1)

𝑛𝑙+1

∏

𝑞=1

𝜕
2

𝜕𝑠𝜕𝑡
𝑅
𝑞

𝐻,𝐾
(𝑠, 𝑡)

⋅ cos(
𝑑

∑

𝑟=1,𝑟 ̸= 𝑙

𝑥
𝑟
𝐵
𝐻𝑟 ,𝐾𝑟

𝑠
𝑖 ) cos(

𝑑

∑

𝑟=1,𝑟 ̸= 𝑙

𝑥
𝑟
𝐵
𝐻𝑟 ,𝐾𝑟

𝑡
𝑗 )

× exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑠
𝑖󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
} ⋅ exp{−

𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}

× I⊗𝑛𝑙
[0,𝑠
𝑖
]
(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛𝑙+1)

× I⊗𝑛𝑙
[0,𝑡
𝑗
]
(𝑡
1
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛𝑙+1) 𝑑𝑠 𝑑𝑡

+ ∑

𝑛𝑙≥0

𝑥
2𝑛𝑙

𝑙

(𝑛
𝑙
+ 1)!

×

𝑛𝑙+1

∑

𝑖,𝑗=1

∬

[0,𝑇]
𝑁(𝑛𝑙+1)

𝑛𝑙+1

∏

𝑞=1

𝜕
2

𝜕𝑠𝜕𝑡
𝑅
𝑞

𝐻,𝐾
(𝑠, 𝑡)

⋅ sin(
𝑑

∑

𝑟=1,𝑟 ̸= 𝑙

𝑥
𝑟
𝐵
𝐻𝑟 ,𝐾𝑟

𝑠
𝑖 ) sin(

𝑑

∑

𝑟=1,𝑟 ̸= 𝑙

𝑥
𝑟
𝐵
𝐻𝑟 ,𝐾𝑟

𝑡
𝑗 )

× exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑠
𝑖󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}

⋅ exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
} I⊗𝑛𝑙

[0,𝑠
𝑖
]
(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛𝑙+1)

× I⊗𝑛𝑙
[0,𝑡
𝑗
]
(𝑡
1
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛𝑙+1) 𝑑𝑠 𝑑𝑡,

(46)

where |𝑠
𝑖
|
2𝐻𝑙𝐾𝑙 = ∏

𝑁

𝑗=1
(𝑠
𝑖

𝑗
)
2𝐻𝑙𝐾𝑙 , I

[0,𝑠
𝑖
]

= ∏
𝑁

𝑗=1
I
[0,𝑠
𝑖

𝑗
]
and

𝑅
𝑞

𝐻,𝐾
(𝑠, 𝑡) = 𝑅

𝐻𝑞 ,𝐾𝑞
(𝑠
𝑞
, 𝑡
𝑞
).

By the bound of sin(𝑥) and cos(𝑥), we can get the
following inequality:

𝐸
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑙
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶
3,4

∑

𝑛𝑙≥0

𝑥
2𝑛𝑙

𝑙

(𝑛
𝑙
+ 1)!

×

𝑛𝑙+1

∑

𝑖,𝑗=1

∬
[0,𝑇]
𝑁(𝑛𝑙+1)

𝑛𝑙+1

∏

𝑞=1

𝜕
2

𝜕𝑠𝜕𝑡
𝑅
𝑞

𝐻,𝐾
(𝑠, 𝑡)

⋅ exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑠
𝑖󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}

× exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}

⋅ I⊗𝑛𝑙
[0,𝑠
𝑖
]
(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛𝑙+1)

× I⊗𝑛𝑙
[0,𝑡
𝑗
]
(𝑡
1
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛𝑙+1) 𝑑𝑠 𝑑𝑡

+ 𝐶
3,5

∑

𝑛𝑙≥0

𝑥
2𝑛𝑙

𝑙

(𝑛
𝑙
+ 1)!

×

𝑛𝑙+1

∑

𝑖,𝑗=1

∬

[0,𝑇]
𝑁(𝑛𝑙+1)

𝑛𝑙+1

∏

𝑞=1

𝜕
2

𝜕𝑠𝜕𝑡
𝑅
𝑞

𝐻,𝐾
(𝑠, 𝑡)

⋅ exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑠
𝑖󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
} exp{−

𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}

⋅ I⊗𝑛𝑙
[0,𝑠
𝑖
]
(𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑛𝑙+1)

× I⊗𝑛𝑙
[0,𝑡
𝑗
]
(𝑡
1
, . . . , 𝑡̂

𝑗
, . . . , 𝑡

𝑛𝑙+1) 𝑑𝑠 𝑑𝑡

≡ Δ
3,𝑙
+ Δ

4,𝑙
,

(47)

where 𝐶
3,4

and 𝐶
3,5

are both constants.
By the same estimation techniques of Δ

2
in Theorem 2,

we can obtain the estimation of Δ
4,𝑙
. Here we need to discuss

the estimation of Δ
3,𝑙
.

Applying ∬
𝑇

0
I
[0,𝑡]

(𝑢)I
[0,𝑠]

(V)(𝜕2/𝜕𝑢𝜕V)𝑅
𝐻,𝐾

(𝑢, V)𝑑𝑢𝑑V =

𝑅
𝐻,𝐾

(𝑡, 𝑠) again, we can write

Δ
3,𝑙

= 𝐶
3,4

∑

𝑛𝑙≥0

𝑥
2𝑛𝑙

𝑙

𝑛
𝑙
!

×∬

[0,𝑇]
𝑁(𝑛𝑙+1)

𝑛𝑙+1

∏

𝑞=1

𝜕
2

𝜕𝑠1𝜕𝑡1
𝑅
𝑞

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

⋅ exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑠
1󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
} exp{−

𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑡
1󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}

⋅ I⊗𝑛𝑙
[0,𝑠
1
]
(𝑠
2
, . . . , 𝑠

𝑛𝑙+1)

× I⊗𝑛𝑙
[0,𝑡
1
]
(𝑡
2
, . . . , 𝑡

𝑛𝑙+1) 𝑑𝑠 𝑑𝑡

= 𝐶
3,4

∑

𝑛𝑙≥0

𝑥
2𝑛𝑙

𝑙

𝑛
𝑙
!

×∬

[0,𝑇]
𝑁

(𝑅
𝑙

𝐻,𝐾
(𝑠
1
, 𝑡
1
))

𝑛𝑙
⋅
𝜕
2

𝜕𝑠𝜕𝑡
𝑅
𝑙

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

× exp{−
𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑠
1󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
} exp{−

𝑥
2

𝑙

2

󵄨󵄨󵄨󵄨󵄨
𝑡
1󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
}𝑑𝑠

1
𝑑𝑡

1

= 𝐶
3,4
∬

[0,𝑇]
𝑁

𝜕
2

𝜕𝑠1𝜕𝑡1
𝑅
𝑙

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

⋅ exp{
𝑥
2

𝑙

2
(2𝑅

𝑙

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

−
󵄨󵄨󵄨󵄨󵄨
𝑠
1󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
−
󵄨󵄨󵄨󵄨󵄨
𝑡
1󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
)}𝑑𝑠

1
𝑑𝑡

1
.

(48)

According to [11], there exists a constant 𝐶
3,6
(𝐻,𝐾, 𝑙)

depending upon𝐻,𝐾, and 𝑙 such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝜕𝑠1𝜕𝑡1
𝑅
𝑙

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
3,6 (𝐻,𝐾, 𝑙) (𝑠

1
𝑡
1
)
𝐻𝑙𝐾𝑙−1

. (49)
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Therefore

∫
R𝑑

(1 + |𝑥|
2
)
−𝑟

Δ
3,𝑙
𝑑𝑥

≤ 𝐶
3,6 (𝐻,𝐾, 𝑙)

× ∫
R𝑑

∬

[0,𝑇]
𝑁

(𝑠
1
𝑡
1
)
𝐻𝑙𝐾𝑙−1

⋅ exp{−𝑥
2

2
𝐸 [(𝐵

𝐻𝑙 ,𝐾𝑙

𝑠
1 − 𝐵

𝐻𝑙,𝐾𝑙

𝑡
1 )

2

]} 𝑑𝑠
1
𝑑𝑡

1
𝑑𝑥.

(50)

Use the change of variables 𝑦
𝑙
= 𝑥

𝑙
{𝐸[(𝐵

𝐻𝑙 ,𝐾𝑙

𝑠
1 − 𝐵

𝐻𝑙 ,𝐾𝑙

𝑡
1 )

2
]}
1/2.

Thus

∫
R𝑑

(1 + |𝑥|
2
)
−𝑟

Δ
3,𝑙
𝑑𝑥

≤ 𝐶
3,7 (𝐻,𝐾, 𝑙)

×∬
[0,𝑇]
𝑁

(𝑠
1
𝑡
1
)
𝐻𝑙𝐾𝑙−1

{𝐸 [(𝐵
𝐻𝑙 ,𝐾𝑙

𝑠
1 − 𝐵

𝐻𝑙 ,𝐾𝑙

𝑡
1 )

2

]}

𝑟−𝑑/2

⋅ ∫
R𝑑

exp{−
𝑦
2

𝑙

2
}

× (𝐸 [(𝐵
𝐻𝑙 ,𝐾𝑙

𝑠
1 − 𝐵

𝐻𝑙 ,𝐾𝑙

𝑡
1 )

2

] + 𝑦
2

𝑙
)

−𝑟

𝑑𝑠
1
𝑑𝑡

1
𝑑𝑦,

(51)

where 𝑦 = (𝑦
1
, . . . , 𝑦

𝑑
).

On the other hand, by [6] for arbitrary 𝜀 ≥ 0, 𝑠
1
, 𝑡
1
∈

[𝜀, 1]
𝑁, there exists a constant 𝐶

3,8
such that

𝐸 [(𝐵
𝐻𝑙 ,𝐾𝑙

𝑠
1 − 𝐵

𝐻𝑙,𝐾𝑙

𝑡
1 )

2

] ≤ 𝐶
3,8

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑠
1

𝑗
− 𝑡

1

𝑗

󵄨󵄨󵄨󵄨󵄨

2𝐻𝑙𝐾𝑙
. (52)

In order to be simple, here we only consider the case of𝑇 = 1.
Comparing (51) with (52), we find that

∫
R𝑑

(1 + |𝑥|
2
)
−𝑟

Δ
3,𝑙
𝑑𝑥

≤ 𝐶
3,9
∬

[0,𝑇]
𝑁

(𝑠
1
𝑡
1
)
𝐻𝑙𝐾𝑙−1

⋅ (

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑠
1

𝑗
− 𝑡

1

𝑗

󵄨󵄨󵄨󵄨󵄨

2𝐻𝑗𝐾𝑗
)

𝑟−𝑑/2

× ∫
R𝑑

exp{−
𝑦
2

𝑙

2
}𝑦

−2𝑟
𝑑𝑦𝑑𝑠 𝑑𝑡.

(53)

When 𝐻
𝑙
𝐾
𝑙
− 1 + 2𝐻

𝑙
𝐾
𝑙
(𝑟 − 𝑑/2) > −1, that is, 𝑟 > 𝑑/2 − 1,

(53) is finite. That is to say, when 𝑟 > 𝑑/2 − 1, there is

∫
R𝑑

(1 + |𝑥|
2
)
−𝑟

𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝜉 (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑥

= ∫
R𝑑

(1 + |𝑥|
2
)
−𝑟

𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝜉
1 (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑑 (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑥

< ∞.

(54)

It is interesting to contrastTheorems 2 and 3 with Propo-
sitions 3 and 4 in [7]. Parameters 𝐻 and 𝐾 of bifractional
Brownian motion do not affect the regularity condition
of bifractional Brownian current. However, the regularity
condition of stochastic current of one-dimensional fractional
Brownian motion is different from the case of d-dimensional
setting (see [7]). In other words, Hurst parameters 𝐻 of
fractional Brownian motion have influence on fractional
Brownian currents in the case of different dimension.

3.3. Stochastic Current of d-Dimensional Bifractional Brow-
nian Motion with respect to 𝜔. Let 𝐵

𝐻,𝐾 be vector val-
ued bifractional Brownian motion where vectors 𝐻 =

(𝐻
1
, . . . , 𝐻

𝑑
) ∈ (0, 1)

𝑑 and 𝐾 = (𝐾
1
, . . . , 𝐾

𝑑
) ∈ (0, 1]

𝑑; that
is, 𝐵𝐻,𝐾 = (𝐵

𝐻1 ,𝐾1 , . . . , 𝐵
𝐻𝑑 ,𝐾𝑑). In this part, 𝜉(𝑥) is given by

𝜉 (𝑥) = ∫

𝑇

0

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) 𝑑𝐵

𝐻,𝐾

𝑠
, (55)

where

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) =

𝑑

∏

𝑖=1

𝛿 (𝑥
𝑖
− 𝐵

𝐻𝑖 ,𝐾𝑖

𝑠
)

= ∑

𝑛=(𝑛1 ,...,𝑛𝑑)

𝛽
𝑛 (𝑠, 𝑥) 𝐼

𝐵
𝐻𝑖,𝐾𝑖

𝑛
(I⊗|𝑛|
[0,𝑠]

(⋅)) ,

𝛽
𝑛 (𝑠, 𝑥) =

𝑑

∏

𝑖=1

1

𝑅
𝑖

𝐻,𝐾
(𝑠)

𝑛𝑖/2
𝑝
𝑅
𝑖

𝐻,𝐾
(𝑥𝑖)

𝐻
𝑛𝑖
(

𝑥
𝑖

𝑅
𝑖

𝐻,𝐾
(𝑠)

1/2
) ,

𝑅
𝑖

𝐻,𝐾
(𝑠) = 𝑅

𝑖

𝐻,𝐾
(𝑠, 𝑠) = 𝑠

2𝐻𝑖𝐾𝑖 ,

𝐼
𝐵
𝐻,𝐾

𝑛
(I⊗|𝑛|
[0,𝑠]

(⋅)) =

𝑑

∏

𝑖=1

𝐼
𝐵
𝐻𝑖,𝐾𝑖

𝑛𝑖
(I⊗𝑛𝑖
[0,𝑠]

(⋅)) .

(56)

Using the chaos expansion of divergent integral with
respect to bifractional Brownian motion, we can obtain the
following expression:

𝜉
𝑖 (𝑥) = ∫

𝑇

0

𝛿 (𝑥 − 𝐵
𝐻,𝐾

𝑠
) 𝑑𝐵

𝐻𝑖 ,𝐾𝑖

𝑠

= ∑

𝑛=(𝑛1 ,...,𝑛𝑑)

𝐼
𝐵
𝐻𝑖,𝐾𝑖

𝑛𝑖+1
[

[

(𝛽
𝑛 (𝑠, 𝑥) I

⊗𝑛𝑖

[0,𝑠]
(𝑠
1
, . . . , 𝑠

𝑛𝑖
) I

[0,𝑇] (𝑠)

⋅

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝐼
𝐵
𝐻𝑗,𝐾𝑗

𝑛𝑗
(I⊗𝑛𝑗
[0,𝑠]

(⋅)))
(𝑠)
]

]

.

(57)

Theorem 4. Let 𝐵
𝐻,𝐾 be a bifractional Brownian motion

with parameters 𝐻 = (𝐻
1
, . . . , 𝐻

𝑑
) ∈ (0, 1)

𝑑 and 𝐾 =

(𝐾
1
, . . . , 𝐾

𝑑
) ∈ (0, 1]

𝑑 satisfying 2𝐻
𝑖
𝐾
𝑖
> 1 (𝑖 = 1, . . . , 𝑑).

If 𝜉(𝑥) is given by (55), then, for every 𝑥 ∈ R𝑑 and 𝛼 <

1/2(𝐻𝐾)
∗
− 𝑑/2, 𝜉(𝑥) is one member of Sobolev-Watanabe

spaces 𝐷𝛼−1,2, where (𝐻𝐾)
∗
= max{𝐻

1
𝐾
1
, . . . , 𝐻

𝑑
𝐾
𝑑
}.

Proof. In order to be convenient, we always replace the
normal ‖ ⋅ ‖H⊗(𝑛+1) with the normal ‖ ⋅ ‖

H
⊗(𝑛+1)

1

. Using the chaos
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expansion of 𝛿(𝑥 − 𝐵
𝐻,𝐾

) and by the definition of the normal
of ‖𝜉(𝑥)‖2

2,𝛼−1
, we verify that

󵄩󵄩󵄩󵄩𝜉𝑖(𝑥)
󵄩󵄩󵄩󵄩

2

2,𝛼−1

≤ ∑

𝑚≥1

(𝑚 + 1)
𝛼−1

∑

|𝑛|=𝑛1+⋅⋅⋅+𝑛𝑑=𝑚−1

(𝑛
𝑖
+ 1)!

⋅ ∬

[0,𝑇]
𝑛𝑖+1

𝑛𝑖+1

∑

𝑙,𝑘=1

𝛽
𝑛
(𝑠
𝑙
) 𝛽

𝑛
(𝑡
𝑘
) I

[0,𝑇]
(𝑠
𝑙
) I

[0,𝑇]
(𝑡
𝑘
)

⋅ I⊗𝑛𝑖
[0,𝑠𝑙]

(𝑠
1
, . . . , 𝑠

𝑙
, . . . , 𝑠

𝑛𝑖+1
)

× I⊗𝑛𝑖
[0,𝑡𝑘]

(𝑡
1
, . . . , 𝑡̂

𝑘
, . . . , 𝑡

𝑛𝑖+1
)

⋅

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑛
𝑗
!𝑅

𝑗

𝐻,𝐾
(𝑠
𝑙
, 𝑡
𝑘
)
𝑛𝑗

×

𝑛𝑖+1

∏

𝑞=1

𝜕
2

𝜕𝑠
𝑞
𝜕𝑡

𝑞

𝑅
𝑖

𝐻,𝐾
(𝑠
𝑞
, 𝑡
𝑞
)𝑑𝑡

1
⋅ ⋅ ⋅ 𝑑𝑡

𝑛𝑖+1
𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛𝑖+1
.

(58)

Because 𝛼 < 0, the following inequalities: (𝑚 + 2)
𝛼−1

≤ (𝑚 +

1)
𝛼−1 and 𝑛

𝑖
+ 1 ≤ 𝑚 + 1, are obvious. Similarly to what is

performed in [11] (or see [7]), we have

󵄩󵄩󵄩󵄩𝜉𝑖(𝑥)
󵄩󵄩󵄩󵄩

2

2,𝛼−1
≤ ∑

𝑚≥0

(𝑚 + 1)
𝛼

∑

|𝑛|=𝑛1+⋅⋅⋅+𝑛𝑑=𝑚

𝑛
𝑖
!

× [(1 −
1

𝑛
𝑖
+ 1

)

×∬

[0,𝑇]
2

𝛽
𝑛
(𝑠
1
) 𝛽

𝑛
(𝑡
2
)

⋅ I
[0,𝑇]

(𝑠
1
) I

[0,𝑇]
(𝑡
2
)

× 𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
2
)
𝑛𝑖−1

]

×

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑛
𝑗
!𝑅

𝑗

𝐻,𝐾
(𝑠
1
, 𝑡
2
)
𝑛𝑗
⋅ I

[0,𝑠1]
(𝑠
2
)

× I
[0,𝑡2]

(𝑡
1
)

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

×
𝜕
2

𝜕𝑠
2
𝜕𝑡

2

𝑅
𝑖

𝐻,𝐾
(𝑠
2
, 𝑡
2
) 𝑑𝑠

1
𝑑𝑠

2
𝑑𝑡

1
𝑑𝑡

2

+
1

𝑛
𝑖
+ 1

×∬

[0,𝑇]
2

𝛽
𝑛
(𝑠
1
) 𝛽

𝑛
(𝑡
1
) I

[0,𝑇]
(𝑠
1
)

× I
[0,𝑇]

(𝑡
1
) 𝑅

𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
1
)
𝑛𝑖−1

⋅

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑛
𝑗
!𝑅

𝑗

𝐻,𝐾
(𝑠
1
, 𝑡
1
)
𝑛𝑗I

[0,𝑠1]
(𝑠
2
)

× I
[0,𝑡1]

(𝑡
2
) ⋅

𝜕
2

𝜕𝑠
1
𝜕𝑡

1

𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
1
)

𝜕
2

𝜕𝑠
2
𝜕𝑡

2

× 𝑅
𝑖

𝐻,𝐾
(𝑠
2
, 𝑡
2
) 𝑑𝑠

1
𝑑𝑠

2
𝑑𝑡

1
𝑑𝑡

2

≤ ∑

𝑚≥0

(𝑚 + 1)
𝛼

∑

|𝑛|=𝑛1+⋅⋅⋅+𝑛𝑑=𝑚

𝑛
𝑖
!

× [(1 −
1

𝑛
𝑖
+ 1

)

× ∫
[0,𝑇]
2

𝛽
𝑛
(𝑠
1
) 𝛽

𝑛
(𝑡
2
)

⋅ 𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
2
)
𝑛𝑖−1

×

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑛
𝑗
!𝑅

𝑗

𝐻,𝐾
(𝑠
1
, 𝑡
2
)
𝑛𝑗−1

⋅
𝜕

𝜕𝑠
1

𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
2
)

×
𝜕

𝜕𝑡
2

𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
2
) 𝑑𝑠

1
𝑑𝑡

2

+
1

𝑛
𝑖
+ 1

× ∫
[0,𝑇]
2

𝛽
𝑛
(𝑠
1
) 𝛽

𝑛
(𝑡
1
) 𝑅

𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
1
)
𝑛𝑖−1

⋅

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑛
𝑗
!𝑅

𝑗

𝐻,𝐾
(𝑠
1
, 𝑡
1
)
𝑛𝑗

×
𝜕
2

𝜕𝑠
1
𝜕𝑡

1

𝑅
𝑖

𝐻,𝐾
(𝑠
1
, 𝑡
1
) 𝑑𝑠

1
𝑑𝑡

1
] .

(59)

According to (4.37) in [6], for 𝛽 ∈ [1/4, 1/2), it follows that

𝑑

∏

𝑗=1

𝛽
𝑛 (𝑢) ≤ 𝐶

3,10

𝑑

∏

𝑗=1

1

√𝑛
𝑗
!(𝑛

𝑗
∨ 1)

((8𝛽−1)/12)
, (60)

where 𝐶
3,10

is a constant.
On the other hand, as in [11] and using the inequality 𝑎2+

𝑏
2
≤ 2𝑎𝑏, for 𝑎, 𝑏 ∈ R

+
, there exists a constant 𝐶

3,11
(𝐻,𝐾)

depending on𝐻 and𝐾 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑅
𝑖

𝐻,𝐾
(𝑠, 𝑡)

𝜕𝑡

𝜕𝑅
𝑖

𝐻,𝐾
(𝑠, 𝑡)

𝜕𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
3,11 (𝐻,𝐾) (𝑠𝑡)

2𝐻𝑖𝐾𝑖−1,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑅
𝑖

𝐻,𝐾
(𝑠, 𝑡)

𝜕𝑠𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
3,11 (𝐻,𝐾) (𝑠𝑡)

𝐻𝑖𝐾𝑖−1,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
𝑖

𝐻,𝐾
(𝑠, 𝑡)

(𝑠𝑡)
𝐻𝑖𝐾𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
3,11 (𝐻,𝐾) .

(61)

Putting (60) and (61) into (59) and applying the self-similarity
of the covariance 𝑅(𝑠, 𝑡), we have

󵄩󵄩󵄩󵄩𝜉𝑖(𝑥)
󵄩󵄩󵄩󵄩

2

2,𝛼−1

≤ 𝐶
3,12

∑

𝑚≥0

(1 + 𝑚)
𝛼

× ∑

|𝑛|=𝑛1+⋅⋅⋅+𝑛𝑑=𝑚

𝑑

∏

𝑗=1

1

(𝑛
𝑗
∨ 1)

(8𝛽−1)/6
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⋅ ∫
[0,𝑇]
2

𝑅
𝑖

𝐻,𝐾
(𝑠, 𝑡)

𝑛𝑖−1

(𝑠𝑡)
(𝑛𝑖−1)𝐻𝑖𝐾𝑖

(𝑠𝑡)
𝐻𝑖𝐾𝑖−1

×

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑅
𝑗

𝐻,𝐾
(𝑠, 𝑡)

𝑛𝑗

(𝑠𝑡)
𝑛𝑗𝐻𝑗𝐾𝑗

𝑑𝑠 𝑑𝑡

≤ 𝐶
3,12

∑

𝑚≥0

(1 + 𝑚)
𝛼

× ∑

|𝑛|=𝑛1+⋅⋅⋅+𝑛𝑑=𝑚

𝑑

∏

𝑗=1

1

(𝑛
𝑗
∨ 1)

(8𝛽−1)/6

⋅ ∫

𝑇

0

𝑡
2𝐻𝑖𝐾𝑖−1𝑑𝑡∫

1

0

𝑧
𝐻𝑖𝐾𝑖−1(

𝑅
𝑖

𝐻𝑖 ,𝐾𝑖
(1, 𝑧)

𝑧𝐻𝑖𝐾𝑖
)

𝑛𝑖−1

×

𝑑

∏

𝑗=1,𝑗 ̸= 𝑖

𝑅
𝑗

𝐻,𝐾
(1, 𝑧)

𝑛𝑗

𝑧
𝐻𝑗𝐾𝑗

𝑑𝑧,

(62)

where we use the change of variables 𝑡 = 𝑡 and 𝑧 = 𝑠/𝑟 (see
[6, 11]). According to (4.9) in [6], the bounded condition of
integral part in (62) is proved.

Indeed,

∫

1

0

𝑑

∏

𝑗=1

(

𝑅
𝑗

𝐻,𝐾
(1, 𝑧)

𝑧
𝐻𝑗𝐾𝑗

)

𝑛𝑗

𝑑𝑧 ≤ 𝐶
3,13

𝑚
−1/2(𝐻𝐾)

∗

, (63)

where (𝐻𝐾)
∗
= max{𝐻

1
𝐾
1
, . . . , 𝐻

𝑑
𝐾
𝑑
}.

Therefore, when 𝛼 < 1/2(𝐻𝐾)
∗
− 𝑑(1 − (8𝛽 − 1)/6),

󵄩󵄩󵄩󵄩𝜉𝑖(𝑥)
󵄩󵄩󵄩󵄩

2

2,𝛼−1

≤ 𝐶
3,14

∑

𝑚≥1

(1 + 𝑚)
𝛼
𝑚
−1/2(𝐻𝐾)

∗
−1+𝑑(1−(8𝛽−1)/6)

< ∞.
(64)

Since 𝛽 ∈ [1/4, 1/2), we may choose 𝛽 to tend to 1/2. Hence,
when 𝛼 < 1/2(𝐻𝐾)

∗
− 𝑑/2, (64) is finite.
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