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Two predator-prey models with nonmonotonic functional response and state-dependent impulsive harvesting are formulated and
analyzed. By using the geometry theory of semicontinuous dynamic system, we obtain the existence, uniqueness, and stability of the
periodic solution and analyse the dynamic phenomenon of homoclinic bifurcation of the first system by choosing the harvesting
rate 𝛽 as control parameter. Besides, we also study the homoclinic bifurcation of the second system about parameter 𝛿 on the basis
of the theory of rotated vector field. Finally, numerical simulations are presented to illustrate the results.

1. Introduction

Predator-prey interaction is one of the most important
relationships in the ecosystem, so it has long been a focus
of study in mathematical ecology. The functional response
of the predator to the prey describes how the predator
density changes with the prey density. The well-known
response functions, which have appeared in a lot of lit-
eratures, include linear function, Holling type-II function,
Holling type-III function, and so on. The above men-
tioned response functions are all monotonic, and they
are really accurate to describe the predator-prey interac-
tions in many cases. But in the recent decades, scholars
in different fields found through experiments that non-
monotonic functional response occurs in some predator-
prey interactions. For example, if the prey exhibits group
defense [1, 2], the predator growth rate will be inhibited
when the prey density reaches a high level. This phe-
nomenon is known to exist widely in nature and consid-
erable work on it has been studied [3–8]. To study the
predator-prey interaction when the prey exhibits group

defense, Ruan and Xiao in [4] proposed the following mod-
el:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) −

𝑥𝑦

𝑎 + 𝑥2
,

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝜇𝑥

𝑎 + 𝑥2
− 𝐷) ,

(1)

where 𝑥 and 𝑦 represent the population densities of prey
and predator, respectively; 𝐾 > 0 and 𝑟 > 0 represent
the carrying capacity and the intrinsic birth rate of the prey,
respectively, and 𝐷 > 0 is the death rate of the predator.
The function 𝑝(𝑥) = 𝑥/(𝑎 + 𝑥2) denotes the predator
functional response which can model the phenomenon of
group defense because there exists ℎ > 0 such that
𝑝(𝑥) > 0 for 0 ≤ 𝑥 < ℎ and 𝑝(𝑥) < 0 for 𝑥 >

ℎ.
Harvesting strategy of biological resources is also a focus

topic in mathematical bioeconomics because it relates to
the optimal management of renewable resources. In many
literatures, impulsive differential equations are used to model
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the human action of harvesting. Predator-prey systems with
periodic impulsive harvesting have been studied extensively
and important results have been achieved [9–12]. In recent
years, more andmore scholars begin to consider state depen-
dent impulsive harvesting instead of the periodic impulsive
form [13–17]. In point of ecology, we would better know some
information about the amount of the species whenwe harvest
them, thus we can avoid excessive exploitation and resource
exhaustion. To this end, we introduce a reliable real-time
monitoring system to estimate the number of the species.
Such monitoring systems exist in many cases. According to
the feedback information from the monitoring system, we
can manage our resources better. For predator-prey system
(1), we assume the predator has high commercial value for
human beings, and people increase its production mainly
through replenishing its prey. In such an ecosystem, we
suppose the amount of the prey can be estimated by a
monitoring system, and the monitoring data can help us
to decide if we harvest the predator or not. To model this
harvesting behavior, we can propose the following state-
dependent impulsive differential equations:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) −

𝑥𝑦

𝑎 + 𝑥2
,

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝜇𝑥

𝑎 + 𝑥2
− 𝐷) ,

𝑥 > ℎ,

Δ𝑥 = 𝜏,

Δ𝑦 = −𝛽𝑦,

𝑥 = ℎ,

(2)

where ℎ > 0 is a threshold. When the amount of the prey
is large than ℎ, which means the food of the predator is
abundant, and the development of the system coincide with
our economic interest. When the amount of the prey drops
to the threshold ℎ, which means the nutrition of the predator
will be deficient, we harvest the predator at rate 𝛽 ∈ (0, 1)
and replenish some prey at the same time. We denote the
recruitment of the prey as 𝜏.

A lot of research has shown that the population size of
the predator is influenced not only by the prey populations
but also by the relative rate of prey population growth. If
we take the relative growth rate effect into consideration, the
above model needs some changes. To this end, we propose
the following system:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) −

𝑥𝑦

𝑎 + 𝑥2
,

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝜇𝑥

𝑎 + 𝑥2
− 𝐷)+𝛿[𝑟 (1 −

𝑥

𝐾
) −

𝑦

𝑎 + 𝑥2
]
2

,

𝑥 > ℎ,

Δ𝑥 = 𝜏,

Δ𝑦 = −𝛽𝑦,

𝑥 = ℎ,

(3)

where the term 𝛿[𝑟(1 − (𝑥/𝐾)) − 𝑦/(𝑎 + 𝑥2)]
2 represents the

effect of the prey relative growth rate on the predator.
In this paper, we mainly discuss the dynamics properties

of the systems (2) and (3). The paper is organized as follows.
In Section 2, some notations and definitions of the geometric
theory of semicontinuous dynamical systems are provided. In
Section 3, by using the geometry theory of semicontinuous
dynamic system, we firstly study the existence, uniqueness,
and orbital stability of periodic solutions and analyse the
dynamic phenomenon of homoclinic bifurcation of system
(2) by choosing the harvesting rate 𝛽 as control parameter.
Then,we study the homoclinic bifurcation of system (3) about
parameter 𝛿 on the basis of the theory of rotated vector field.
The paper ends with a brief discussion and some numerical
simulations.

2. Preliminaries

In this section, we give some notations and definitions of
the geometric theory of semicontinuous dynamical systems
which will be useful for the following discussion.

Definition 1 (see [9]). Consider the state-dependent impul-
sive differential equations

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) , (𝑥, 𝑦) ∉ 𝑀 {𝑥, 𝑦} ,

Δ𝑥 = 𝛼 (𝑥, 𝑦) , Δ𝑦 = 𝛽 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ 𝑀 {𝑥, 𝑦} .

(4)

We define the dynamic system consisting of the solution
mapping of the system (4) a semicontinuous dynamical
system, denoted as (Ω, 𝑓, 𝜑,𝑀). We require that the initial
point𝑃 of the system (4) should not be in the set𝑀{𝑥, 𝑦}, that
is, 𝑃 ∈ Ω = 𝑅2

+
\ 𝑀{𝑥, 𝑦}, and the function 𝜑 is a continuous

mapping that satisfies𝜑(𝑀) = 𝑁. Here𝜑 is called the impulse
mapping, where 𝑀{𝑥, 𝑦} and 𝑁{𝑥, 𝑦} represent the straight
lines or curves in the plane 𝑅2

+
,𝑀{𝑥, 𝑦} is called the impulse

set, and𝑁{𝑥, 𝑦} is called the phase set.

Remark 2. For the systems (2) and (3), 𝑀 = {(𝑥, 𝑦) | 𝑥 =
ℎ, 𝑦 ≥ 0}, 𝑁 = {(𝑥, 𝑦) | 𝑥 = ℎ + 𝜏, 𝑦 ≥ 0}, and for any
(𝑥, 𝑦) ∈ 𝑀, we have 𝜑(𝑥, 𝑦) = (ℎ + 𝜏, (1 − 𝛽)𝑦).

Definition 3 (see [9]). For the semicontinuous dynamical
system defined by the state-dependent impulsive differential
equations (4), the solution mapping 𝑓(𝑃, 𝑡) : Ω → Ω
consists of two parts.

(1) Let 𝜋(𝑃, 𝑡) denote the poincaré mapping with the
initial point 𝑃 of the following system:

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) .

(5)

If 𝑓(𝑃, 𝑡) ∩ 𝑀{𝑥, 𝑦} = 0, then 𝑓(𝑃, 𝑡) = 𝜋(𝑃, 𝑡).
(2) If there exists a time point 𝑇

1
such that 𝑓(𝑃, 𝑇

1
) =

𝐻 ∈ 𝑀{𝑥, 𝑦}, 𝜑(𝐻) = 𝜑(𝑓(𝑃, 𝑇
1
)) = 𝑃

1
∈ 𝑁{𝑥, 𝑦},

and 𝑓(𝑃
1
, 𝑡) ∩ 𝑀{𝑥, 𝑦} = 0, then 𝑓(𝑃, 𝑡) = 𝜋(𝑃, 𝑇

1
) +

𝑓(𝑃
1
, 𝑡) (see Figure 1(a)).
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Figure 1: (a)The solutionmapping of the system (4). (b)The order one periodic solution of the system (4). (c)The order two periodic solution
of the system (4).

Remark 4. For (2) in Definition 3, if 𝑓(𝑃
1
, 𝑡) ∩ 𝑀{𝑥, 𝑦} ̸= 0,

and there exists a time point 𝑇
2
such that 𝑓(𝑃

1
, 𝑇
2
) = 𝐻

1
∈

𝑀{𝑥, 𝑦}, 𝜑(𝐻
1
) = 𝜑(𝑓(𝑃

1
, 𝑇
2
)) = 𝑃

2
∈ 𝑁{𝑥, 𝑦}, and 𝑓(𝑃

2
, 𝑡) ∩

𝑀{𝑥, 𝑦} = 0, then 𝑓(𝑃, 𝑡) = 𝜋(𝑃, 𝑇
1
) + 𝑓(𝑃

1
, 𝑡) = 𝜋(𝑃, 𝑇

1
) +

𝜋(𝑃
1
, 𝑇
2
) + 𝑓(𝑃

2
, 𝑡).

If 𝑓(𝑃
2
, 𝑡) ∩ 𝑀{𝑥, 𝑦} ̸= 0, . . . , 𝑓(𝑃

𝑘−1
, 𝑡) ∩ 𝑀{𝑥, 𝑦} ̸= 0 and

𝑓(𝑃
𝑘
, 𝑡)∩𝑀{𝑥, 𝑦} = 0, then we can repeat the above steps and

have the following form:

𝑓 (𝑃, 𝑡) =
𝑘

∑
𝑖=1

𝜋 (𝑃
𝑖−1
, 𝑇
𝑖
) + 𝑓 (𝑃

𝑘
, 𝑡) , 𝑃

0
= 𝑃. (6)

Definition 5 (see [9]). If there exists a point𝑃 ∈ 𝑁{𝑥, 𝑦} and a
time point 𝑇

1
such that 𝑓(𝑃, 𝑇

1
) = 𝐻 ∈ 𝑀{𝑥, 𝑦} and 𝜑(𝐻) =

𝜑(𝑓(𝑃, 𝑇
1
)) = 𝑃 ∈ 𝑁{𝑥, 𝑦}, then 𝑓(𝑃, 𝑡) is called an order

one periodic solution of the system (4) whose period is 𝑇
1

(see Figure 1(b)). The orbit of the order one periodic solution
is called an order one cycle. If there exists a singularity in
the order one cycle, we call it an order one singular cycle. If
the singularity is a saddle, we call it an order one homoclinic
cycle.

Definition 6 (see [9]). If there exists a point 𝑃 ∈ 𝑁{𝑥, 𝑦} and
a time point 𝑇

1
such that 𝑓(𝑃, 𝑇

1
) = 𝐻 ∈ 𝑀{𝑥, 𝑦}, 𝜑(𝐻) =

𝑃
1
∈ 𝑁{𝑥, 𝑦} and 𝑃 ̸= 𝑃

1
, and there also exists a time point

𝑇
2
such that 𝑓(𝑃

1
, 𝑇
2
) = 𝐻

1
∈ 𝑀{𝑥, 𝑦} and 𝜑(𝐻

1
) = 𝑃 ∈

𝑁{𝑥, 𝑦}, then 𝑓(𝑃, 𝑡) is called an order two periodic solution
of the system (4) whose period is 𝑇

1
+ 𝑇
2
(see Figure 1(c)).

Analogously, we can define the order 𝑘 periodic solution of
the system (4).
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Definition 7. Suppose Γ = 𝑓(𝑃, 𝑡) is an order one periodic
solution of the system (4). If for any 𝜀 > 0, theremust exist 𝛿 >
0 and 𝑡

0
≥ 0, such that for any point 𝑃

1
∈ 𝑈(𝑃, 𝛿) ∩ 𝑁{𝑥, 𝑦},

we have 𝜌(𝑓(𝑃
1
, 𝑡), Γ) < 𝜀 for 𝑡 > 𝑡

0
; then we call the order

one periodic solution Γ orbitally asymptotically stable.

Definition 8 (see [9]). Suppose the impulse set𝑀 and phase
set 𝑁 of the system (4) are straight lines and a coordinate
system can be defined in the phase set 𝑁. Let point 𝐴 ∈ 𝑁
and its coordinate is 𝑎. Assume that the trajectory from the
point 𝐴 intersects the impulse set𝑀 at a point 𝐴, and, after
impulsive effect, the point 𝐴 is mapped to the point 𝐴

1
∈

𝑁 with the coordinate 𝑎
1
; then we call point 𝐴

1
the order

one successor point of point 𝐴, and the order one successor
function of point 𝐴 is 𝐹

1
(𝐴) = 𝑎

1
− 𝑎.

Remark 9. For Definition 8, if the trajectory from the point
𝐴
1
intersects the impulse set𝑀 again at a point𝐴

1
, and, after

impulsive effect, the point 𝐴
1
is mapped to the point 𝐴

2
∈

𝑁 with the coordinate 𝑎
2
, then the point 𝐴

2
is obviously the

order one successor point of point 𝐴
1
; we also call point 𝐴

2

the order two successor point of point 𝐴, and the order two
successor function of point𝐴 is 𝐹

2
(𝐴) = 𝑎

2
−𝑎. If the process

can be repeated over and over again, then we can define the
order 𝑘 successor point of point 𝐴 (which we denote as 𝐴

𝑘

and its coordinate is 𝑎
𝑘
) and the order 𝑘 successor function of

𝐴 which we denote as 𝐹
𝑘
(𝐴) = 𝑎

𝑘
− 𝑎.

Remark 10. For the systems (2) and (3), for any point𝐻 ∈ 𝑁,
we define the directed distance between point 𝐻 and the 𝑥-
axis as the coordinate of point𝐻. In this paper, we denote the
coordinate of point𝐻 as 𝑦

𝐻
.

Lemma 11 (see [9]). Successor function 𝐹
𝑘
(𝐴) is continuous.

Lemma 12. For the systems (2) and (3), if there exists two
points 𝐴 ∈ 𝑁, 𝐵 ∈ 𝑁 such that 𝐹

1
(𝐴)𝐹
1
(𝐵) < 0, then there

must exist a point 𝐶 ∈ 𝑁 which is between the points 𝐴 and 𝐵
such that 𝐹

1
(𝐶) = 0; thus, the system must have an order one

periodic solution which passes through the point 𝐶.

Proof. By Lemma 11, we can easily get that there must exist a
point 𝐶 ∈ 𝑁 which is between the points 𝐴 and 𝐵 such that
𝐹
1
(𝐶) = 0. According to Definition 6, we know Γ = 𝑓(𝐶, 𝑡) is

an order one periodic solution.That completes the proof.

Lemma 13. For the systems (2) and (3), suppose point 𝐴 ∈
𝑁 and 𝐹

𝑘
(𝐴) ̸= 0, then the system does not have an order 𝑘

periodic solution which passes through the point 𝐴.

3. Periodic Solution and
Homoclinic Bifurcation

In this section, we firstly discuss the existence, uniqueness,
and stability of the periodic solution of the system (2) by using
differential equation geometry theory then study the dynamic
phenomena of homoclinic bifurcation of both systems (2)
and (3). We now list some results about the system (1) that
are given by Ruan and Xiao in [4].

For the system (1), there is always a hyperbolic saddle
point at the origin (0, 0) and an equilibrium (𝐾, 0) in the 𝑥-
axis.When 𝜇2− 4𝑎𝐷2 > 0, the system (1)may have one or two
positive equilibria. If the positive equilibria exist, we denote
them as (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), where

𝑥
1
=
𝜇 − √𝜇2 − 4𝑎𝐷2

2𝐷
, 𝑦

1
= 𝑟 (1 −

𝑥
1

𝐾
) (𝑎 + 𝑥2

1
) ,

𝑥
2
=
𝜇 + √𝜇2 − 4𝑎𝐷2

2𝐷
, 𝑦

2
= 𝑟 (1 −

𝑥
2

𝐾
) (𝑎 + 𝑥2

2
) .

(7)

Now, we give some results appeared in [4].

Lemma 14 (see [4]). If 4𝑎𝐷2 < 𝜇2 ≤ (16/3)𝑎𝐷2 and 𝑥
1
<

𝐾 < 𝑥
2
(or if 𝜇2 > (16/3)𝑎𝐷2 and 𝑥

1
< 𝐾 < −𝑥

1
+2√𝜇𝑥

1
/𝐷),

then the system (1) has three equilibria: two hyperbolic saddles
(0, 0) and (𝐾, 0) and a globally asymptotically stable equilib-
rium (𝑥

1
, 𝑦
1
) in the interior of the first quadrant.

Lemma 15 (see [4]). If 4𝑎𝐷2 < 𝜇2 < (16/3)𝑎𝐷2 and 𝑥
2
<

𝐾 < (2𝜇 − √𝜇2 − 4𝑎𝐷2)/2𝐷 (or if 𝜇2 > 4𝑎𝐷2 and 𝐾 >

(2𝜇+√𝜇2 − 4𝑎𝐷2)/2𝐷), then the system (1) has four equilibria:
two hyperbolic saddles (0, 0) and (𝑥

2
, 𝑦
2
), a hyperbolic stable

node (𝐾, 0), and a stable (an unstable) equilibrium (𝑥
1
, 𝑦
1
),

and system (1) has no closed orbits.

3.1. Periodic Solution and Homoclinic Bifurcation of System
(2) about Parameter 𝛽. According to the model (2), the
threshold ℎ and the recruitment 𝜏 of the prey should satisfy
the condition 0 < ℎ < ℎ + 𝜏 < 𝐾 by ecological significance.
For this consideration, we have the following results.

Theorem 16. If 4𝑎𝐷2 < 𝜇2 ≤ (16/3)𝑎𝐷2, 𝑥
1
< 𝐾 < 𝑥

2
(or

if 𝜇2 > (16/3)𝑎𝐷2, 𝑥
1
< 𝐾 < −𝑥

1
+ 2√𝜇𝑥

1
/𝐷), and 𝑥

1
<

ℎ < ℎ + 𝜏 < 𝐾, then there must exist a fixed value 𝛽0 ∈ (0, 1)
such that for every 𝛽 ∈ (𝛽0, 1), the system (2) has a unique
order one periodic solution in region Ω

1
, where region Ω

1
is

the region enclosed by the 𝑥-axis, the impulse set 𝑥 = ℎ, and
the unstable flow of the saddle (𝐾, 0).

Proof. According to Lemma 14, the system (1) has three
equilibria: two hyperbolic saddles (0, 0) and (𝐾, 0) and a
globally asymptotically stable equilibrium (𝑥

1
, 𝑦
1
) in the

interior of the first quadrant. For convenience, we suppose
the 𝑥-axis intersects the impulse set 𝑥 = ℎ and the phase
set 𝑥 = ℎ + 𝜏 at point 𝐴 and point 𝐵, respectively. The
unstable flow of (𝐾, 0) also passes through the impulse set
and the phase set, we denote the intersections by point𝐴 and
point𝑂, respectively. Besides, we suppose the vertical isocline
𝑑𝑥/𝑑𝑡 = 0 intersects the impulse set and the phase set at point
𝐶 and point𝐷, respectively.Then the regionΩ

1
is the interior

of the closed curve 𝐸
0
𝑂𝐴∪𝐴𝐶𝐴 ∪𝐴𝐵𝐸

0
, where 𝐸

0
denotes

the equilibrium (𝐾, 0) (see Figure 2).
According to the impulsive conditions of the system (2),

there must exist a fixed value 𝛽0 ∈ (0, 1), when 𝛽 = 𝛽0, point
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Figure 2: Existence of order one periodic solution of (2).

𝐴 is mapped to the point 𝐷 after impulsive effect, that is to
say, (1 − 𝛽0)𝑦

𝐴
= 𝑦
𝐷
.

When 𝛽0 < 𝛽 < 1, after impulsive effect, point 𝐴 is
mapped to a point between points 𝐵 and 𝐷. Select a point
𝐵
0
next to 𝐵 in the phase set 𝑥 = ℎ + 𝜏, the trajectory of the

system (2) from point 𝐵
0
must intersect the impulse set 𝑥 = ℎ

at a point 𝐵
0
which is next to point 𝐴, and after impulsive

effect, point 𝐵
0
is mapped to a point 𝐵

1
which is the order

one successor point of 𝐵
0
; then, we have 𝑦

𝐵
1

= (1 − 𝛽)𝑦
𝐵


0

<

(1−𝛽)𝑦
𝐴
< 𝑦
𝐷
.That is to say point𝐵

1
is between points𝐷 and

𝐵
0
. The trajectory from point 𝐵

1
must intersect the impulse

set 𝑥 = ℎ again at a point 𝐵
1
, and after impulsive effect,

point 𝐵
1
is mapped to a point 𝐵

2
. Since distinct trajectories

do not intersect, we can easily have 𝑦
𝐶
< 𝑦
𝐵


1

< 𝑦
𝐵


0

and
𝑦
𝐵
2

= (1 − 𝛽)𝑦
𝐵


1

< (1 − 𝛽)𝑦
𝐵


0

= 𝑦
𝐵
1

. Obviously, point 𝐵
2
is

the order one successor point of point 𝐵
1
, and then we have

the following results of the order one successor function:

𝐹
1
(𝐵
0
) = 𝑦
𝐵
1

− 𝑦
𝐵
0

> 0,

𝐹
1
(𝐵
1
) = 𝑦
𝐵
2

− 𝑦
𝐵
1

< 0.
(8)

By Lemma 12, we know that there must exist a point𝑀 in the
phase set 𝑥 = ℎ + 𝜏 which is between the points 𝐵

0
and 𝐵

1

such that 𝐹
1
(𝑀) = 0. Then we know the system (2) has an

order one periodic solution which passes through the point
𝑀.

In the following, we prove the uniqueness of the order one
periodic solution. Arbitrarily choose two points 𝐴

1
and 𝐴

2

in the phase set 𝑥 = ℎ + 𝜏, where 0 ≤ 𝑦
𝐴
1

< 𝑦
𝐴
2

≤ 𝑦
𝐷
.

The trajectories of the system (2) through points 𝐴
1
and 𝐴

2

must intersect the impulse set 𝑥 = ℎ at some points 𝐴
1

and 𝐴
2
, respectively, and after impulsive effect, the points

𝐴
1
and 𝐴

2
must be mapped to the phase set 𝑥 = ℎ + 𝜏 at

some points 𝐴
1
and 𝐴

2
, respectively (see Figure 3). Because

distinct trajectories do not intersect, we can easily have 𝑦
𝐶
<

𝑦
𝐴


2

< 𝑦
𝐴


1

< 𝑦
𝐴
and 𝑦

𝐴


2

= (1 − 𝛽)𝑦
𝐴


2

< 𝑦
𝐴


1

= (1 − 𝛽)𝑦
𝐴


1

;
then we get the order one successor functions must satisfy

𝐹
1
(𝐴
2
) − 𝐹
1
(𝐴
1
) = (𝑦

𝐴


2

− 𝑦
𝐴
2

) − (𝑦
𝐴


1

− 𝑦
𝐴
1

)

= (𝑦
𝐴


2

− 𝑦
𝐴


1

) + (𝑦
𝐴
1

− 𝑦
𝐴
2

) < 0,
(9)
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Figure 3: Uniqueness of order one periodic solution of (2).
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Figure 4: Illustration of the orbital asymptotic stability of the order
one periodic solution of the system (2).

which means the order one successor function 𝐹
1
is mono-

tone decreasing in the line segment 𝐵𝐷, thus there exists only
one point𝑀 ∈ 𝐵𝐷 such that 𝐹

1
(𝑀) = 0.

Besides, for any point 𝐻 ∈ 𝐷𝑂, it is easy to know that
𝐹
1
(𝐻) < 0. So the system (2) has only one order one periodic

solution in the regionΩ
1
. That completes the proof.

Theorem 17. Under the conditions of Theorem 16, the order
one periodic solution of the system (2) is orbitally asymptoti-
cally stable.

Proof. According toTheorem 16, the system (2) has a unique
order one periodic solution that passes through the point𝑀
which is in the phase set 𝑥 = ℎ + 𝜏, where 𝑦

𝐵
0

< 𝑦
𝑀
< 𝑦
𝐵
1

.
The trajectory of the system (2) through point 𝐵

1
intersects

the impulse set 𝑥 = ℎ at point 𝐵
1
, and after impulsive effect,

the point 𝐵
1
is mapped to point 𝐵

2
, where 𝑦

𝐵
< 𝑦
𝐵
2

< 𝑦
𝑀
.

Besides, the trajectory of the system (2) from point 𝐵
2
must

intersect the impulse set 𝑥 = ℎ again at a point 𝐵
2
, and after

impulsive effect, the point 𝐵
2
is mapped to a point 𝐵

3
in the

phase set 𝑥 = ℎ + 𝜏, where 𝑦
𝐵
1

> 𝑦
𝐵
3

> 𝑦
𝑀
(see Figure 4).
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Repeat the above steps, the trajectory from point 𝐵
0
will

come across impulsive effect infinite times. Denote the phase
point corresponding to the 𝑖th impulsive effect by 𝐵

𝑖
, 𝑖 =

1, 2, . . .. Obviously, 𝐵
𝑖
is also the order 𝑖 successor point of

point 𝐵
0
. Then we have

𝑦
𝐵
0

< 𝑦
𝐵
2

< 𝑦
𝐵
4

< ⋅ ⋅ ⋅ < 𝑦
𝐵
2𝑘

< 𝑦
𝐵
2(𝑘+1)

< ⋅ ⋅ ⋅ < 𝑦
𝑀
,

𝑦
𝐵
1

> 𝑦
𝐵
3

> 𝑦
𝐵
5

> ⋅ ⋅ ⋅ > 𝑦
𝐵
2𝑘+1

> 𝑦
𝐵
2(𝑘+1)+1

> ⋅ ⋅ ⋅ > 𝑦
𝑀
.

(10)

Thus {𝑦
𝐵
2𝑘

}, 𝑘 = 0, 1, 2, . . . is a monotonically increasing
sequence, and {𝑦

𝐵
2𝑘+1

}, 𝑘 = 0, 1, 2, . . . is a monotonically
decreasing sequence. Because the order one successor func-
tion 𝐹

1
is monotone decreasing in the line segment 𝐵𝐷, we

have

𝐹
1
(𝐵
0
) = 𝑦
𝐵
1

− 𝑦
𝐵
0

> 𝐹
1
(𝐵
2
) = 𝑦
𝐵
3

− 𝑦
𝐵
2

> 𝐹
1
(𝐵
4
)

= 𝑦
𝐵
5

− 𝑦
𝐵
4

> ⋅ ⋅ ⋅ > 0,
(11)

and furthermore,

𝑦
𝐵
2𝑘

→ 𝑦
𝑀
, as 𝑘 → ∞;

𝑦
𝐵
2𝑘+1

→ 𝐼
𝑀
, as 𝑘 → ∞.

(12)

Pick any point𝑄
0
∈ 𝐵
0
𝐵
1
different from the point𝑀; without

loss of generality, we assume 𝑦
𝐵
0

< 𝑦
𝑄
0

< 𝑦
𝑀

(otherwise,
𝑦
𝑀
< 𝑦
𝑄
0

< 𝑦
𝐵
1

; the discussions are similar), there must exist
a natural number 𝑛

0
such that 𝑦

𝐵
2𝑛0

< 𝑦
𝑄
0

< 𝑦
𝐵
2(𝑛0+1)

. The
trajectory from point 𝑄

0
will also undergo impulsive effect

infinite times, and we denote the phase point corresponding
to the 𝑘th impulsive effect as 𝑄

𝑘
, 𝑘 = 1, 2, . . .. For any natural

number 𝑙, we have 𝑦
𝐵
2(𝑛0+𝑙)

< 𝑦
𝑄
2𝑙

< 𝑦
𝐵
2(𝑛0+𝑙+1)

and 𝑦
𝐵
2(𝑛0+𝑙+1)+1

<

𝑦
𝑄
2𝑙+1

< 𝑦
𝐵
2(𝑛0+𝑙)+1

. Then {𝑦
𝑄
2𝑙

}, 𝑙 = 0, 1, 2, . . . is also a
monotonically increasing sequence, {𝑦

𝑄
2𝑙+1

}, 𝑙 = 0, 1, 2, . . . is
also a monotonically decreasing sequence, and we get

𝑦
𝑄
2𝑙

→ 𝑦
𝑀
, as 𝑙 → ∞;

𝑦
𝑄
2𝑙+1

→ 𝐼
𝑀
, as 𝑙 → ∞.

(13)

This indicates that the trajectory of the system (2) from point
𝑄
0
∈ 𝐵
0
𝐵
1
ultimately tends to the trajectory passing through

point 𝑀, which means the order one periodic solution is
orbitally asymptotically stable.That completes the proof.

Theorem 18. Under the conditions of Theorem 16, the system
(2) has no order 𝑘 periodic solution in regionΩ

1
, where 𝑘 ≥ 2.

Proof. For any point 𝑆 ∈ 𝐵
1
𝑂, 𝑦
𝐵
1

< 𝑦
𝑆
< 𝑦
𝑂
, the trajectory

from point 𝑆 will undergo impulsive effect infinite times.
Denote the impulsive point and phase point corresponding
to the 𝑘th (𝑘 = 1, 2, . . .) impulsive effect by 𝑆

𝑘
and 𝑆

𝑘
,

respectively. Similar to the discussions inTheorem 17, we can
easily know 𝑦

𝐶
< 𝑦
𝑆


𝑘

< 𝑦
𝐵


0

, 𝑘 = 1, 2, . . ., then we have
𝑦
𝑆
𝑘

= (1 − 𝛽)𝑦
𝑆


𝑘

< (1 − 𝛽)𝑦
𝐵


0

= 𝑦
𝐵
1

< 𝑦
𝑆
. Obviously,

point 𝑆
𝑘
is the order 𝑘 successor point of point 𝑆, then the

order 𝑘 successor function𝐹
𝑘
(𝑆) = 𝑦

𝑆
𝑘

−𝑦
𝑆
̸= 0. By Lemma 13,

there does not exist an order 𝑘 (𝑘 = 1, 2, . . .) periodic solution
through point 𝑆.

For any point 𝑆 ∈ 𝐵𝑀, 𝑦
𝐵
< 𝑦
𝑆
< 𝑦
𝑀
, according to

the proof of Theorem 17, there must exist a natural number
𝑛
0
such that 𝑦

𝐵
2𝑛0

< 𝑦
𝑆
< 𝑦
𝐵
2(𝑛0+1)

. Denote the order 𝑘 (𝑘 =
1, 2, . . .) successor point of point 𝑆 by point 𝑆

𝑘
, then we have

𝑦
𝐵
2(𝑛0+𝑙)

< 𝑦
𝑆
2𝑙

< 𝑦
𝐵
2(𝑛0+𝑙+1)

< 𝑦
𝑀

and 𝑦
𝑀
< 𝑦
𝐵
2(𝑛0+𝑙+1)+1

<

𝑦
𝑆
2𝑙+1

< 𝑦
𝐵
2(𝑛0+𝑙)+1

. Then {𝑦
𝑆
2𝑙

}, 𝑙 = 0, 1, 2, . . . is amonotonically
increasing sequence where 𝑆

0
= 𝑆, {𝑦

𝑆
2𝑙+1

}, 𝑙 = 0, 1, 2, . . . is a
monotonically decreasing sequence, and

𝑦
𝑆
2𝑙

→ 𝑦
𝑀
, as 𝑙 → ∞;

𝑦
𝑆
2𝑙+1

→ 𝐼
𝑀
, as 𝑙 → ∞.

(14)

When 𝑘 = 2𝑙, we have 𝑦
𝑀
> 𝑦
𝑆
𝑘

> 𝑦
𝑆
0

= 𝑦
𝑆
and the order 𝑘

successor function 𝐹
𝑘
(𝑆) = 𝑦

𝑆
𝑘

− 𝑦
𝑆
> 0. When 𝑘 = 2𝑙 + 1, we

have 𝑦
𝑆
𝑘

> 𝑦
𝑀
> 𝑦
𝑆
0

= 𝑦
𝑆
and 𝐹

𝑘
(𝑆) = 𝑦

𝑆
𝑘

− 𝑦
𝑆
> 0. That is

to say there does not exist an order 𝑘 (𝑘 = 1, 2, . . .) periodic
solution passing through point 𝑆.

Analogously, for any point 𝑆 ∈ 𝑀𝐵
1
, 𝑦
𝑀
< 𝑦
𝑆
< 𝑦
𝐵
1

,
we can prove there does not exist an order 𝑘 (𝑘 = 1, 2, . . .)
periodic solution passing through point 𝑆.

From the above discussion, we know that the order one
periodic solution is the unique periodic solution of the system
(2) and there is no order 𝑘 (𝑘 ≥ 2) periodic solution in region
Ω
1
. That completes the proof.

Theorem 19. If 4𝑎𝐷2 < 𝜇2 < (16/3)𝑎𝐷2, 𝑥
2
< 𝐾 < (2𝜇 −

√𝜇2 − 4𝑎𝐷2)/2𝐷 (or if 𝜇2 > 4𝑎𝐷2, 𝐾 > (2𝜇 + √𝜇2 − 4𝑎𝐷2)/
2𝐷), 𝑥

1
< ℎ < ℎ + 𝜏 < 𝑥

2
and 𝐾 ≤ √3𝑎, then there must exist

two fixed values 𝛽0 and 𝛽∗ which satisfy 0 < 𝛽0 < 𝛽∗ < 1 such
that

(1) when 𝛽 = 𝛽∗, the system (2) has an order one
homoclinic cycle;

(2) if 𝛽0 < 𝛽 < 𝛽∗, then the homoclinic cycle of system
(2) disappears and bifurcates an order one periodic
solution in region Ω

2
, where region Ω

2
is the region

enclosed by the 𝑥-axis, the impulse set 𝑥 = ℎ, and the
unstable flow of the saddle (𝑥

2
, 𝑦
2
). Furthermore, the

order one periodic solution is unique and is orbitally
asymptotically stable;

(3) if 𝛽∗ < 𝛽 < 1, then the homoclinic cycle of system
(2) also disappears and there is no periodic solution in
region Ω

2
.

Proof. For 𝐾 ≤ √3𝑎, it is easy to know that 𝑦
1
> 𝑦
2
.

According to Lemma 15, the system (1) has four equilibria:
two hyperbolic saddles (0, 0) and (𝑥

2
, 𝑦
2
), a hyperbolic stable

node (𝐾, 0), and a node or focus (𝑥
1
, 𝑦
1
). Obviously, the 𝑥-

axis, the vertical isocline 𝑑𝑥/𝑑𝑡 = 0, and the unstable and
stable flow of (𝑥

2
, 𝑦
2
) are all intersected with the impulse set
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Figure 5: Illustration of homoclinic bifurcation of system (2) by
choosing the harvesting rate 𝛽 as control parameter.

𝑥 = ℎ and phase set 𝑥 = ℎ + 𝜏. For convenience, we denote
the intersections by points 𝐴 and 𝐵, 𝐶 and𝐷, 𝐴 and𝑂, and
𝐴
1
and 𝐵, respectively (see Figure 5). Then the region Ω

2
is

the interior of the closed curve 𝐸
0
𝐸
2
𝑂𝐴 ∪ 𝐴𝐶𝐴 ∪ 𝐴𝐵𝐸

0
,

where 𝐸
0
and 𝐸

2
denote the equilibria (𝐾, 0) and (𝑥

2
, 𝑦
2
),

respectively. According to the impulsive conditions of the
system (2), there must exist a fixed value 𝛽0 ∈ (0, 1), when
𝛽 = 𝛽0, point 𝐴 is mapped to the point 𝐷 after impulsive
effect. Also, there must exist a fixed value 𝛽∗ ∈ (𝛽0, 1), when
𝛽 = 𝛽∗, point 𝐴 is mapped to the point 𝐵 after impulsive
effect. Thus we have (1 − 𝛽0)𝑦

𝐴
= 𝑦
𝐷
and (1 − 𝛽∗)𝑦

𝐴
= 𝑦
𝐵
.

When 𝛽 = 𝛽∗, we have (1 − 𝛽)𝑦
𝐴
= 𝑦
𝐵
; we know the

curve 𝐵𝐸
2
𝑂𝐴∪𝐴𝐵 is an order one circle which has the saddle

𝐸
2
(𝑥
2
, 𝑦
2
) in it; that is to say, the system (2) has an order one

homoclinic cycle.
If 𝛽 ∈ (𝛽0, 𝛽∗), after impulsive effect, point 𝐴 is mapped

to a point between points 𝐵 and 𝐷. Similar to the discussion
of Theorems 16 and 17, we can prove that the system (2) has
an order one periodic solution which passes through a point
𝑀 ∈ 𝐵𝐷 and is orbitally asymptotically stable. Besides, for
any point𝐻 ∈ 𝐵𝐵, the trajectory of the system (2) frompoint
𝐻must ultimately tend to the equilibrium (𝐾, 0) and does not
undergo any impulsive effect, that is to say the system (2) has
no periodic solution passing through the point𝐻; so we can
know the system (2) has a unique order one periodic solution
in the regionΩ

2
which is orbitally asymptotically stable.

When 𝛽 ∈ (𝛽∗, 1), we have 0 < (1 − 𝛽)𝑦
𝐴
< 𝑦
𝐵
. Then the

trajectory of the system (2) through point𝐻 ∈ 𝑂𝐵must tend
to the equilibrium (𝐾, 0) after coming across once impulsive
effect and the trajectory passing through point 𝐻 ∈ 𝐵𝐵
must tend to the equilibrium (𝐾, 0) without undergoing any
impulsive effect. So we get that the system (2) has no periodic
solution in regionΩ

2
. That completes the proof.

3.2. Homoclinic Bifurcation of System (3) about Parameter 𝛿.
By above analysis, we know there exists a 𝛽∗ ∈ (0, 1) such that
system (2) has an order one homoclinic cycle and when the
parameter 𝛽 is appropriately changed, the homoclinic cycle
disappears and bifurcates a unique stable order one periodic
solution. In the following, we will choose 𝛿 as a control

parameter and study homoclinic bifurcation of system (3)
by using the theory of rotated vector fields. For the sake of
convenience, we give some properties about rotated vector
fields.

The perturbed system of system (4) with parameter 𝛿 is
as follows:

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦, 𝛿) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦, 𝛿) ,

(𝑥, 𝑦) ∉ 𝑀{𝑥, 𝑦} ,

Δ𝑥 = 𝛼 (𝑥, 𝑦) , Δ𝑦 = 𝛽 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ 𝑀{𝑥, 𝑦} .

(15)

Let

Δ =



𝑃 𝑄

𝜕𝑃

𝜕𝛿

𝜕𝑄

𝜕𝛿



, (16)

then we have the following definitions.

Definition 20 (see [18]). For any point on the trajectory of
system (15), if Δ > 0, then system (15) constitutes positive
rotated vector fields concerning the parameter 𝛿; otherwise,
if Δ < 0, system (15) constitutes negative rotated vector fields.

Lemma 21 (see [18]). In the positive (negative) rotated vector
fields of system (15), the rotated direction of vector fields is
counterclockwise (clockwise) when parameter 𝛿 changes from
𝛿 = 0 to 𝛿 > 0.

Theorem 22. If 4𝑎𝐷2 < 𝜇2 < (16/3)𝑎𝐷2, 𝑥
2
< 𝐾 < (2𝜇 −

√𝜇2 − 4𝑎𝐷2)/2𝐷 (or if 𝜇2 > 4𝑎𝐷2, 𝐾 > (2𝜇 + √𝜇2 − 4𝑎𝐷2)/
2𝐷), 𝑥

1
< ℎ < ℎ + 𝜏 < 𝑥

2
, 𝐾 ≤ √3𝑎, 𝛽 = 𝛽∗, 𝛿 > 0, and

𝛿 ≪ 1, then the system (3) has a unique order one periodic
solution. Furthermore, it is orbitally asymptotically stable.

Proof. From the discussion in Theorem 19, we know that
when 𝛽 = 𝛽∗ and 𝛿 = 0, the system (3) has an order one
homoclinic circle 𝐵𝐸

2
𝑂𝐴 ∪ 𝐴𝐵.

For the system (3), we denote 𝑃(𝑥, 𝑦) = 𝑟𝑥(1 − (𝑥/𝐾)) −
𝑥𝑦/(𝑎 + 𝑥2) and 𝑄(𝑥, 𝑦) = 𝑦(𝜇𝑥/(𝑎 + 𝑥2) − 𝐷) + 𝛿[𝑟(1 −
(𝑥/𝐾)) − 𝑦/(𝑎 + 𝑥2)]2. By simple calculation, we have

Δ =



𝑃 𝑄
𝜕𝑃

𝜕𝛿

𝜕𝑄

𝜕𝛿



= 𝑥[𝑟 (1 −
𝑥

𝐾
) −

𝑦

𝑎 + 𝑥2
]
3

. (17)

Divided by the vertical isocline [𝑟(1 − (𝑥/𝐾)) − 𝑦/(𝑎 + 𝑥2)] =
0, the rotated direction of vector fields below the vertical
isocline is counterclockwise, but above the vertical isocline,
the rotated direction of vector fields of system (3) is clockwise.
When the parameter 𝛿 changes from 0 (the value in which
heteroclinic cycle exists) to 0 < 𝛿

1
≪ 1, both the unstable

and stable flow of (𝑥
2
, 𝑦
2
) move away from their original
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positions. We denote the new intersections of the unstable
and stable flowof (𝑥

2
, 𝑦
2
) and the impulse set𝑥 = ℎ and phase

set 𝑥 = ℎ + 𝜏 are 𝐴 and 𝑂, and 𝐴
1
and 𝐵, respectively (see

Figure 6). According toTheorem 19, we have (1−𝛽∗)𝑦
𝐴
= 𝑦
𝐵
;

then there must exist a point 𝐹 which is in the impulse set
𝑥 = ℎ and below the point 𝐴 such that (1 − 𝛽∗)𝑦

𝐹
= 𝑦
𝐵
.

Obviously, system (3) must have a trajectory passing through
the point 𝐹, and we suppose it intersects with the phase set
𝑥 = ℎ + 𝜏 at point 𝐹.

Obviously, point 𝐵 is the order one successor point of
point 𝐹, then the order one successor function 𝐹

1
(𝐹) = 𝑦

𝐵
−

𝑦
𝐹
< 0. Besides, select a point 𝐵

0
next to 𝐵 in the phase set

𝑥 = ℎ+ 𝜏; the trajectory of the system (3) from point 𝐵
0
must

intersect the impulse set 𝑥 = ℎ at a point 𝐵
0
which is next to

point𝐴 and above point𝐴, and after impulsive effect, point𝐵
0

ismapped to a point𝐵
1
which is the order one successor point

of 𝐵
0
, then we have 𝑦

𝐵
1

= (1−𝛽∗)𝑦
𝐵


0

> (1−𝛽∗)𝑦
𝐴
= 𝑦
𝐵
.That

is to say point𝐵
1
is above point𝐵.Thenwe have the successor

function 𝐹
1
(𝐵
0
) = 𝑦
𝐵
1

− 𝑦
𝐵
0

> 0. By Lemma 12, we know that
there must exist a point𝑀 in the phase set 𝑥 = ℎ + 𝜏 which
is between the points 𝐵 and 𝐹 such that 𝐹

1
(𝑀) = 0. Then we

know the system (3) has an order one periodic solutionwhich
passes through the point𝑀.

Similar to the discussion of Theorems 16 and 17, we can
prove the uniqueness and stability of the order one periodic
solution. That completes the proof.

4. Numerical Simulations and Discussions

In this paper, we have proposed two predator-prey models
with nonmonotonic functional response and state dependent
impulsive harvesting. If we take no account of the predator
harvesting, Ruan and Xiao (2001) showed that the system
(1) has no periodic solution under the conditions listing
in the Theorem 16. Our numerical simulations also confirm
such conclusions (see Figure 7). However, under the same
conditions, if we further consider an impulsive predator
harvesting, we get that the system (2) has a periodic solution
in some cases. We also showed that the existence is mainly
dependent on the harvesting rate 𝛽. We found that there
exists a threshold 𝛽0 ∈ (0, 1), and the system must have
a unique orbitally asymptotically stable order one periodic
solution when the harvesting rate 𝛽 is higher than 𝛽0. When
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Figure 9: The time series and the portrait phase of the system (1) when 𝑟 = 0.5, 𝐾 = 15, 𝑎 = 100, 𝜇 = 0.8, 𝐷 = 0.038, and (𝑥(0), 𝑦(0)) =
(12, 20).

the periodic solution exists, our numerical simulations show
that, with a bigger harvesting rate, the solution has a longer
period and a larger amplitude (see Figure 8).

Besides, we also prove that the system (2) does not have
order 𝑘, (𝑘 = 2, 3, . . .) periodic solutions in Theorem 18;
then the order one periodic solution is the unique periodic
solution. These results illustrate that if we can satisfy the
conditions listing in Theorem 16, we can not only form a
sustainable ecological system but also obtain large amounts
of valuable biological resources.

Under the conditions listing in Theorem 19, the system
(1) also does not have any periodic solution (see Figure 9)
and we also give the conditions under which the system (2)
has an order one periodic solution. Besides, according to the
conclusions ofTheorem 19, we can choose the parameter 𝛽 as

a bifurcation parameter such that the impulsive differential
equation system (2) exhibits the phenomenon of homoclinic
bifurcation. Similar to many ordinary differential equation
systems, we can see that there exists a bifurcation point 𝛽 =
𝛽∗ for the system (2). When 𝛽 = 𝛽∗, the system (2) has
an order one homoclinic cycle which is the unique order
one circle in region Ω

2
. When 𝛽 gradually changes from

𝛽 = 𝛽∗ to 𝛽0 < 𝛽 < 𝛽∗, the order one homoclinic cycle
is broken and a new order one periodic solution which is
orbitally asymptotically stable is generated (see Figure 10).
When 𝛽 gradually changes from 𝛽 = 𝛽∗ to 𝛽 > 𝛽∗, the order
one homoclinic cycle is also broken but no new order one
periodic solution is generated at the same time; that is to say,
the system (2) will have no periodic solution (see Figure 11).
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Figure 11: Time series and portrait phase of the system (2) when 𝑟 = 0.5, 𝐾 = 15, 𝑎 = 100, 𝜇 = 0.8, 𝐷 = 0.038, ℎ = 9, 𝜏 = 2, 𝛽 = 0.8, and
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These results illustrate that it demands reasonable control of
the harvest yield to form a good ecological environment.
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