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This paper studies identification problems of two-input single-output controlled autoregressivemoving average systems by using an
estimated noise transfer function to filter the input-output data.Through data filtering, we obtain two simple identificationmodels,
one containing the parameters of the system model and the other containing the parameters of the noise model. Furthermore,
we deduce a data filtering based recursive least squares method for estimating the parameters of these two identification models,
respectively, by replacing the unmeasurable variables in the information vectors with their estimates. The proposed algorithm has
high computational efficiency because the dimensions of its covariance matrices become small.The simulation results indicate that
the proposed algorithm is effective.

1. Introduction

Studies on identification methods have been active in recent
years [1–3].The recursive least squares algorithm is a popular
and important identification method for many different
systems [4–6]. Recently, Wang and Ding presented an input-
output data filtering based recursive least squares parameter
estimation for CARARMA systems [7]; Wang et al. proposed
a data filtering based recursive least squares algorithm for
Hammerstein systems using the key-term separation princi-
ple [8]; and Ding and Duan presented a two-stage param-
eter estimation algorithm for Box-Jenkins systems [9]. Hu
proposed an iterative and recursive least squares estimation
algorithm for moving average systems [10].

The filtering technique has receivedmuch attention in the
field of system identification [7, 11, 12] and signal processing
[13, 14]. For example, Xie et al. studied recursive least squares
parameter estimation methods for nonuniformly sampled
systems based on data filtering [11]; Wang et al. discussed
filtering based recursive least squares algorithm for Ham-
merstein nonlinear FIR-MA systems [12]; Wang proposed a
filtering and auxiliary model-based recursive least squares
identification algorithm for output error moving average

systems [15]; Shi and Fang developed a recursive algorithm
for parameter estimation by modifying the Kalman filter-
based algorithm after designing a missing output estimator
[16]; and Wang et al. derived a hierarchical generalized
stochastic gradient algorithm and a filtering based hierarchi-
cal stochastic gradient algorithm to estimate the parameter
vectors and parameter matrix of the multivariable colored
noise systems by using the hierarchical identification princi-
ple [17].

For several decades,multiple-input single-output systems
[18] or multiple-input multiple-output systems [19, 20] have
attracted researchers’ attention, but most of the work focused
on the single-input single-output systems [21]. For example,
Li proposed parameter estimation for Hammerstein con-
trolled autoregressive moving average systems based on the
Newton iteration [22]. Yao andDing derived a two-stage least
squares based iterative identification algorithm for controlled
autoregressive moving average (CARMA) systems; the basic
idea is to decompose a CARMA system into two subsystems
and to identify each subsystem, respectively [23]. This paper
considers the identification problems of two-input single-
output controlled autoregressive moving average systems by
using input-output data filtering and derives a data filtering
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Figure 1: The two-input single-output system with moving average
noise.

based recursive least squares method. The proposed algo-
rithm has high computational efficiency because the dimen-
sions of its covariance matrices become small. Although
this paper focuses on two-input single-output systems, the
proposed method can be extended to multiple-input single-
output systems.

The rest of the paper is organized as follows. Section 2
proposes a data filtering based recursive least squares algo-
rithm for a two-input single-output system with moving
average noise. Section 3 introduces the recursive extended
least squares algorithm for comparison. In Section 4, we
give an example to prove the effectiveness of the proposed
algorithm. Finally, concluding remarks are given in Section 5.

2. Data Filtering Based Recursive Least
Squares Algorithm

Consider the two-input single-output system, described
by the following controlled autoregressive moving average
model, depicted in Figure 1:

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵
1
(𝑧) 𝑢
1
(𝑡) + 𝐵

2
(𝑧) 𝑢
2
(𝑡) + 𝐷 (𝑧) V (𝑡) , (1)

where {𝑢
1
(𝑡), 𝑢
2
(𝑡)} are the input sequences of the system,

{𝑦(𝑡)} is the output sequence of the system, {V(𝑡)} is a white
noise sequence with zero mean and variance 𝜎

2, and 𝐴(𝑧),
𝐵
1
(𝑧), 𝐵

2
(𝑧), and 𝐷(𝑧) are the polynomials in the unit

backward shift operator 𝑧
−1 [i.e., 𝑧−1𝑦(𝑡) = 𝑦(𝑡 − 1)] and

defined by

𝐴 (𝑧) := 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑎

𝑧
−𝑛
𝑎 ,

𝐵
1
(𝑧) := 𝑏

11
𝑧
−1

+ 𝑏
12
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑏
1𝑛
1

𝑧
−𝑛
1 ,

𝐵
2
(𝑧) := 𝑏

21
𝑧
−1

+ 𝑏
22
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑏
2𝑛
2

𝑧
−𝑛
2 ,

𝐷 (𝑧) := 1 + 𝑑
1
𝑧
−1

+ 𝑑
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑑
𝑛
𝑑

𝑧
−𝑛
𝑑 .

(2)

Assume that the degrees 𝑛
𝑎
, 𝑛
1
, 𝑛
2
, and 𝑛

𝑑
are known and

𝑦(𝑡) = 0, 𝑢
1
(𝑡) = 0, and 𝑢

2
(𝑡) and V(𝑡) = 0 for 𝑡 ⩽ 0.

Define the parameter vector 𝜃 and the information vector
𝜑(𝑡) as

𝜃 := [
𝜃
𝑠

𝜃
𝑛

] ∈ R
𝑛
, 𝑛 := 𝑛

𝑎
+ 𝑛
1
+ 𝑛
2
+ 𝑛
𝑑
,

𝜃
𝑠
:= [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
𝑎

, 𝑏
11
, 𝑏
12
, . . . , 𝑏

1𝑛
1

, 𝑏
21
, 𝑏
22
, . . . , 𝑏

2𝑛
2

]
T

∈ R
𝑛
𝑎
+𝑛
1
+𝑛
2 ,

𝜃
𝑛
:= [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
𝑑

]
T
∈ R
𝑛
𝑑 ,

𝜑
0
(𝑡) := [
𝜑
𝑠
(𝑡)

𝜑
𝑛
(𝑡)

] ∈ R
𝑛
,

𝜑
𝑠
(𝑡) := [−𝑦 (𝑡 − 1) , −𝑦 (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛

𝑎
) ,

𝑢
1
(𝑡 − 1) , 𝑢

1
(𝑡 − 2) , . . . , 𝑢

1
(𝑡 − 𝑛

1
) ,

𝑢
2
(𝑡 − 1) , 𝑢

2
(𝑡 − 2) , . . . , 𝑢

2
(𝑡 − 𝑛

2
)]

T

∈ R
𝑛
𝑎
+𝑛
1
+𝑛
2 ,

𝜑
𝑛
(𝑡) := [V (𝑡 − 1) , V (𝑡 − 2) , . . . , V (𝑡 − 𝑛

𝑑
)]

T
∈ R
𝑛
𝑑 .

(3)

The goal of this paper is to apply the data filtering technique
and to develop a new recursive least squares for estimating
the system parameters.

If we use the rational fraction 1/𝐷(𝑧) (a liner filter) to
filter the input-output data, we can get a simple “equation
error model” which is easy to identify, then the recursive
least squares algorithm can be applied. Because 1/𝐷(𝑧) is
unknown, we use its estimate 1/𝐷(𝑡, 𝑧) to filter the input-
output data [7]. The identification method based on this
approach will be referred to as the data filtering based
recursive least squares (F-RLS) method.

For the model in (1), define the filtered inputs 𝑢
𝑓1
(𝑡) and

𝑢
𝑓2
(𝑡), the filtered output 𝑦

𝑓
(𝑡), and the filtered information

vector 𝜑
𝑓
(𝑡) as

𝑢
𝑓1

(𝑡) :=
1

𝐷 (𝑧)
𝑢
1
(𝑡) , 𝑢

𝑓2
(𝑡) :=

1

𝐷 (𝑧)
𝑢
2
(𝑡) ,

𝑦
𝑓
(𝑡) :=

1

𝐷 (𝑧)
𝑦 (𝑡) ,

𝜑
𝑓
(𝑡) := [−𝑦

𝑓
(𝑡 − 1) , −𝑦

𝑓
(𝑡 − 2) , . . . , −𝑦

𝑓
(𝑡 − 𝑛

𝑎
) ,

𝑢
𝑓1

(𝑡 − 1) , 𝑢
𝑓1

(𝑡 − 2) , . . . , 𝑢
𝑓1

(𝑡 − 𝑛
1
) ,

𝑢
𝑓2

(𝑡 − 1) , 𝑢
𝑓2

(𝑡 − 2) , . . . , 𝑢
𝑓2

(𝑡 − 𝑛
2
)]

T

∈ R
𝑛
𝑎
+𝑛
1
+𝑛
2 .

(4)

Dividing both sides of (1) by𝐷(𝑧) gives

𝐴 (𝑧)
1

𝐷 (𝑧)
𝑦 (𝑡) = 𝐵

1
(𝑧)

1

𝐷 (𝑧)
𝑢
1
(𝑡)

+ 𝐵
2
(𝑧)

1

𝐷 (𝑧)
𝑢
2
(𝑡) + V (𝑡) .

(5)
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It can be written as

𝐴 (𝑧) 𝑦
𝑓
(𝑡) = 𝐵

1
(𝑧) 𝑢
𝑓1

(𝑡) + 𝐵
2
(𝑧) 𝑢
𝑓2

(𝑡) + V (𝑡) . (6)

This filtered model is an equation error model and can be
rewritten in a vector form

𝑦
𝑓
(𝑡) = [1 − 𝐴 (𝑧)] 𝑦𝑓 (𝑡) + 𝐵

1
(𝑧) 𝑢
𝑓1

(𝑡)

+ 𝐵
2
(𝑧) 𝑢
𝑓2

(𝑡) + V (𝑡)

= −

𝑛
𝑎

∑

𝑖=1

𝑎
𝑖
𝑦 (𝑡 − 𝑖) +

𝑛
1

∑

𝑖=1

𝑏
1𝑖
𝑢
𝑓1

(𝑡 − 𝑖)

+

𝑛
2

∑

𝑖=1

𝑏
2𝑖
𝑢
𝑓2

(𝑡 − 𝑖) + V (𝑡)

= 𝜑
T
𝑓
(𝑡) 𝜃 + V (𝑡) .

(7)

Define the inner variable:

𝑤 (𝑡) := 𝐷 (𝑧) V (𝑡) = 𝜑T
𝑛
(𝑡) 𝜃
𝑛
+ V (𝑡) . (8)

For two identification models (7) and (8), we can obtain the
following recursive least squares algorithm for computing the
estimates �̂�

𝑠
(𝑡) and �̂�

𝑛
(𝑡) of 𝜃

𝑠
and 𝜃

𝑛
:

�̂�
𝑠
(𝑡) = �̂�

𝑠
(𝑡 − 1) + L

𝑓
(𝑡) [𝑦
𝑓
(𝑡) − 𝜑

T
𝑓
(𝑡) �̂�
𝑠
(𝑡 − 1)] , (9)

L
𝑓
(𝑡) =

P
𝑓
(𝑡 − 1)𝜑

𝑓
(𝑡)

1 + 𝜑T
𝑓
(𝑡)P
𝑓
(𝑡 − 1)𝜑

𝑓
(𝑡)

, (10)

P
𝑓
(𝑡) = [I − L

𝑓
(𝑡)𝜑

T
𝑓
(𝑡)]P
𝑓
(𝑡 − 1) , (11)

�̂�
𝑛
(𝑡) = �̂�

𝑛
(𝑡 − 1) + L

𝑛
(𝑡) [𝑤 (𝑡) − 𝜑

T
𝑛
(𝑡) �̂�
𝑛
(𝑡 − 1)] , (12)

L
𝑛
(𝑡) =

P
𝑛
(𝑡 − 1)𝜑

𝑛
(𝑡)

1 + 𝜑T
𝑛
(𝑡)P
𝑛
(𝑡 − 1)𝜑

𝑛
(𝑡)

, (13)

P
𝑛
(𝑡) = [I − L

𝑛
(𝑡)𝜑

T
𝑛
(𝑡)]P
𝑛
(𝑡 − 1) . (14)

Note that the filtered input 𝑢
𝑓1
(𝑡), the filtered input 𝑢

𝑓2
(𝑡),

and the filtered output 𝑦
𝑓
(𝑡) are all unknown because of the

unknown polynomial𝐷(𝑧) and the unmeasurable noise term
V(𝑡) in the information vector 𝜑

𝑛
(𝑡) and 𝑤(𝑡) are unknown.

So it is impossible to implement the algorithm in (9)–(14).
The solution we adopted here is to replace the unknown
variables with their estimates according to the auxiliary
model identification idea [24–26].

From (1), we get

𝑤 (𝑡) = 𝐴 (𝑧) 𝑦 (𝑡) − 𝐵
1
(𝑧) 𝑢
1
(𝑡) − 𝐵

2
(𝑧) 𝑢
2
(𝑡)

= 𝑦 (𝑡) − 𝜑
T
𝑠
(𝑡) 𝜃
𝑠
.

(15)

Substituting (8) into the above equation, we get

𝑦 (𝑡) = 𝜑
T
𝑠
(𝑡) 𝜃
𝑠
+ 𝑤 (𝑡)

= 𝜑
T
0
(𝑡) 𝜃 + V (𝑡) .

(16)

Replacing 𝜃
𝑠
on the right-hand side of (15) with its esti-

mate �̂�
𝑠
(𝑡 − 1), the estimate 𝑤(𝑡) can be computed by

𝑤(𝑡) = 𝑦(𝑡) − 𝜑
T
𝑠
(𝑡)�̂�
𝑠
(𝑡 − 1). Let V̂(𝑡) be the estimate of V(𝑡)

and construct the estimate of 𝜑
𝑛
(𝑡) as

�̂�
𝑛
(𝑡) := [V̂ (𝑡 − 1) , V̂ (𝑡 − 2) , . . . , V̂ (𝑡 − 𝑛

𝑑
)]

T
∈ R
𝑛
𝑑 . (17)

From (8), we have V(𝑡) = 𝑤(𝑡) −𝜑
T
𝑛
(𝑡)𝜃
𝑛
. Replacing 𝜑

𝑛
(𝑡) and

𝜃
𝑛
(𝑡) with �̂�

𝑛
(𝑡) and �̂�

𝑛
(𝑡), the estimate V̂(𝑡) can be computed

by V̂(𝑡) = 𝑤(𝑡) − �̂�
T
𝑛
(𝑡)�̂�
𝑛
(𝑡).

Using the parameter estimates of the noise model,

�̂�
𝑛
(𝑡) = [𝑑

1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑛
𝑑

(𝑡)]
T
∈ R
𝑛
𝑑 ; (18)

to construct the estimate of𝐷(𝑧),

𝐷(𝑡, 𝑧) := 1 + 𝑑
1
(𝑡) 𝑧
−1

+ 𝑑
2
(𝑡) 𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑑
𝑛
𝑑

(𝑡) 𝑧
−𝑛
𝑑 .

(19)

Filter 𝑢
1
(𝑡), 𝑢
2
(𝑡), and 𝑦(𝑡) with 1/𝐷(𝑡, 𝑧) to get the estimates

of 𝑢
𝑓1
(𝑡), 𝑢
𝑓2
(𝑡), and 𝑦

𝑓
(𝑡) as follows:

𝐷 (𝑡, 𝑧) �̂�
𝑓1

(𝑡) = 𝑢
1
(𝑡) , 𝐷 (𝑡, 𝑧) �̂�

𝑓2
(𝑡) = 𝑢

2
(𝑡) ,

𝐷 (𝑡, 𝑧) 𝑦
𝑓
(𝑡) = 𝑦 (𝑡) .

(20)

From the above equations, we can recursively compute �̂�
𝑓1
(𝑡),

�̂�
𝑓2
(𝑡), and 𝑦

𝑓
(𝑡) by the following equations:

�̂�
𝑓1

(𝑡) = −𝑑
1
(𝑡) �̂�
𝑓1

(𝑡 − 1) − 𝑑
2
(𝑡) �̂�
𝑓1

(𝑡 − 2)

− ⋅ ⋅ ⋅ − 𝑑
𝑛
𝑑

(𝑡) �̂�
𝑓1

(𝑡 − 𝑛
𝑑
) + 𝑢
1
(𝑡) ,

�̂�
𝑓2

(𝑡) = −𝑑
1
(𝑡) �̂�
𝑓2

(𝑡 − 1) − 𝑑
2
(𝑡) �̂�
𝑓2

(𝑡 − 2)

− ⋅ ⋅ ⋅ − 𝑑
𝑛
𝑑

(𝑡) �̂�
𝑓2

(𝑡 − 𝑛
𝑑
) + 𝑢
2
(𝑡) ,

𝑦
𝑓
(𝑡) = −𝑑

1
(𝑡) 𝑦
𝑓
(𝑡 − 1) − 𝑑

2
(𝑡) 𝑦
𝑓
(𝑡 − 2)

− ⋅ ⋅ ⋅ − 𝑑
𝑛
𝑑

(𝑡) 𝑦
𝑓
(𝑡 − 𝑛

𝑑
) + 𝑦 (𝑡) .

(21)

Construct the estimate of the �̂�
𝑓
(𝑡):

�̂�
𝑓
(𝑡) := [−𝑦

𝑓
(𝑡 − 1) , −𝑦

𝑓
(𝑡 − 2) , . . . , −𝑦

𝑓
(𝑡 − 𝑛

𝑎
) ,

�̂�
𝑓1

(𝑡 − 1) , �̂�
𝑓1

(𝑡 − 2) , . . . , �̂�
𝑓1

(𝑡 − 𝑛
1
) ,

�̂�
𝑓2

(𝑡 − 1) , �̂�
𝑓2

(𝑡 − 2) , . . . , �̂�
𝑓2

(𝑡 − 𝑛
2
)]

T

∈ R
𝑛
𝑎
+𝑛
1
+𝑛
2 .

(22)

Replacing the unknown information vector 𝜑
𝑓
(𝑡) in (9)–(11)

with �̂�
𝑓
(𝑡), 𝑦
𝑓
(𝑡) in (9) with 𝑦

𝑓
(𝑡), 𝜑
𝑛
(𝑡) in (12)–(14) with

�̂�
𝑛
(𝑡), and the unknown noise terms 𝑤(𝑡) in (12) with 𝑤(𝑡),
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we obtain the data filtering based recursive least squares (F-
RLS) algorithm for estimating the parameter vectors 𝜃

𝑠
and

𝜃
𝑛
for the two-input single-output system [1]:

�̂�
𝑠
(𝑡) = �̂�

𝑠
(𝑡 − 1) + L

𝑓
(𝑡) [𝑦
𝑓
(𝑡) − �̂�

T
𝑓
(𝑡) �̂�
𝑠
(𝑡 − 1)] , (23)

L
𝑓
(𝑡) =

P
𝑓
(𝑡 − 1) �̂�

𝑓
(𝑡)

1 + �̂�
T
𝑓
(𝑡)P
𝑓
(𝑡 − 1) �̂�

𝑓
(𝑡)

, (24)

P
𝑓
(𝑡) = [I − L

𝑓
(𝑡) �̂�

T
𝑓
(𝑡)]P
𝑓
(𝑡 − 1) , P

𝑓
(0) = 𝑝

0
I, (25)

�̂�
𝑓
(𝑡) = [−𝑦

𝑓
(𝑡 − 1) , −𝑦

𝑓
(𝑡 − 2) , . . . , −𝑦

𝑓
(𝑡 − 𝑛

𝑎
) ,

�̂�
𝑓1

(𝑡 − 1) , �̂�
𝑓1

(𝑡 − 2) , . . . , �̂�
𝑓1

(𝑡 − 𝑛
1
) ,

�̂�
𝑓2

(𝑡 − 1) , �̂�
𝑓2

(𝑡 − 2) , . . . , �̂�
𝑓2

(𝑡 − 𝑛
2
)]

T
,

(26)

𝑦
𝑓
(𝑡) = −𝑑

1
(𝑡) 𝑦
𝑓
(𝑡 − 1) − 𝑑

2
(𝑡) 𝑦
𝑓
(𝑡 − 2)

− ⋅ ⋅ ⋅ − 𝑑
𝑛
𝑑

(𝑡) 𝑦
𝑓
(𝑡 − 𝑛

𝑑
) + 𝑦 (𝑡) ,

(27)

�̂�
𝑓1

(𝑡) = −𝑑
1
(𝑡) �̂�
𝑓1

(𝑡 − 1) − 𝑑
2
(𝑡) �̂�
𝑓1

(𝑡 − 2)

− ⋅ ⋅ ⋅ − 𝑑
𝑛
𝑑

(𝑡) �̂�
𝑓1

(𝑡 − 𝑛
𝑑
) + 𝑢
1
(𝑡) ,

(28)

�̂�
𝑓2

(𝑡) = −𝑑
1
(𝑡) �̂�
𝑓2

(𝑡 − 1) − 𝑑
2
(𝑡) �̂�
𝑓2

(𝑡 − 2)

− ⋅ ⋅ ⋅ − 𝑑
𝑛
𝑑

(𝑡) �̂�
𝑓2

(𝑡 − 𝑛
𝑑
) + 𝑢
2
(𝑡) ,

(29)

�̂�
𝑛
(𝑡) = �̂�

𝑛
(𝑡 − 1) + L

𝑛
(𝑡) [𝑤 (𝑡) − �̂�

T
𝑛
(𝑡) �̂�
𝑛
(𝑡 − 1)] , (30)

L
𝑛
(𝑡) =

P
𝑛
(𝑡 − 1) �̂�

𝑛
(𝑡)

1 + �̂�
T
𝑛
(𝑡)P
𝑛
(𝑡 − 1) �̂�

𝑛
(𝑡)

, (31)

P
𝑛
(𝑡) = [I − L

𝑛
(𝑡) �̂�

T
𝑛
(𝑡)]P
𝑛
(𝑡 − 1) , P

𝑛
(0) = 𝑝

0
I, (32)

�̂�
𝑛
(𝑡) = [V̂ (𝑡 − 1) , V̂ (𝑡 − 2) , . . . , V̂ (𝑡 − 𝑛

𝑑
)]

T
, (33)

𝑤 (𝑡) = 𝑦 (𝑡) − 𝜑
T
𝑠
(𝑡) �̂�
𝑠
(𝑡 − 1) , (34)

V̂ (𝑡) = 𝑤 (𝑡) − �̂�
T
𝑛
(𝑡) �̂�
𝑛
(𝑡) , (35)

𝜑
𝑠
(𝑡) = [−𝑦 (𝑡 − 1) , −𝑦 (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛

𝑎
) ,

𝑢
1
(𝑡 − 1) , 𝑢

1
(𝑡 − 2) , . . . , 𝑢

1
(𝑡 − 𝑛

1
) ,

𝑢
2
(𝑡 − 1) , 𝑢

2
(𝑡 − 2) , . . . , 𝑢

2
(𝑡 − 𝑛

2
)]

T
,

(36)

�̂�
𝑠
(𝑡) = [𝑎

1
(𝑡) , 𝑎
2
(𝑡) , . . . , 𝑎

𝑛
𝑎

(𝑡) , �̂�
11
(𝑡) , �̂�
11
(𝑡) , . . . ,

�̂�
1𝑛
1

(𝑡) , �̂�
21
(𝑡) , �̂�
11
(𝑡) , . . . , �̂�

2𝑛
2

(𝑡)]
T
,

(37)

�̂�
𝑛
(𝑡) = [𝑑

1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑛
𝑑

(𝑡)]
T
. (38)

The data filtering based recursive least squares algorithm has
high computational efficiency because the dimensions of its
covariance matrices become small and can generate more

accurate parameter estimation. To initialize the algorithm,we
take

�̂�
𝑠
(𝑖) =

1
𝑛
𝑎
+𝑛
1
+𝑛
2

𝑝
0

, �̂�
𝑛
(𝑖) =

1
𝑛
𝑑

𝑝
0

, 𝑖 ⩽ 0,

P
𝑓
(0) = 𝑝

0
I
𝑛
𝑎
+𝑛
1
+𝑛
2

, P
𝑛
(0) = 𝑝

0
I
𝑛
𝑑

, 𝑝
0
= 10
6
.

(39)

The steps involved in the F-RLS algorithms are listed as
follows.

(1) Set 𝑦(𝑡) = 0, 𝑢
1
(𝑡) = 0, 𝑢

2
(𝑡) = 0 for 𝑡 ≤ 0.

(2) Let 𝑡 = 1; set the initial values of the parameter esti-
mation vectors and the covariancematrices according
to (39), and 𝑦

𝑓
(𝑖) = 1/𝑝

0
, �̂�
𝑓1
(𝑖) = 1/𝑝

0
, �̂�
𝑓2
(𝑖) =

1/𝑝
0
, 𝑤(𝑖) = 1/𝑝

0
, V̂(𝑖) = 1/𝑝

0
for 𝑖 ≤ 0.

(3) Collect the input–output data 𝑢
1
(𝑡), 𝑢
2
(𝑡), and 𝑦(𝑡)

and construct the information vectors 𝜑
𝑠
(𝑡) by (36),

�̂�
𝑓
(𝑡) by (26), and �̂�

𝑛
(𝑡) by (33).

(4) Compute 𝑤(𝑡) by (34), the gain vector L
𝑛
(𝑡) by (31)

and the covariance matrix P
𝑛
(𝑡) by (32).

(5) Update the parameter estimate �̂�
𝑛
(𝑡) by (30).

(6) Compute V̂(𝑡) by (35), 𝑦
𝑓
(𝑡) by (27), �̂�

𝑓1
(𝑡) by (28),

and �̂�
𝑓2
(𝑡) by (29).

(7) Compute the gain vector L
𝑓
(𝑡) by (24) and the

covariance matrix P
𝑓
(𝑡) by (25).

(8) Update the parameter estimate �̂�
𝑠
(𝑡) by (23).

(9) Increase 𝑡 by 1; go to Step (3).

3. The RELS Algorithm

To show the advantages of the algorithm we proposed, we
give the recursive extended least squares (RELS) algorithm
for comparison.

Let �̂�(𝑡) = [
�̂�
𝑠
(𝑡)

�̂�
𝑛
(𝑡)

] be the estimate of 𝜃 = [
𝜃
𝑠

𝜃
𝑛

]. Based
on the identification model in (16), the unknown variables
V(𝑡 − 𝑖) in the information vector 𝜑

0
(𝑡) are replaced with

their estimates V̂(𝑡 − 𝑖), so we can obtain the following
recursive extended least squares algorithm for identifying the
parameter vector 𝜃:

�̂� (𝑡) = �̂� (𝑡 − 1) + L (𝑡) [𝑦 (𝑡) − �̂�
T
(𝑡) �̂� (𝑡 − 1)] ,

L (𝑡) =
P (𝑡 − 1) �̂� (𝑡)

1 + �̂�
T
(𝑡)P (𝑡 − 1) �̂� (𝑡)

,

P (𝑡) = [I − L (𝑡) �̂�
T
(𝑡)]P (𝑡 − 1) ,

�̂� (𝑡) = [−𝑦 (𝑡 − 1) , −𝑦 (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛
𝑎
) ,

𝑢
1
(𝑡 − 1) , 𝑢

1
(𝑡 − 2) , . . . , 𝑢

1
(𝑡 − 𝑛

1
) ,

𝑢
2
(𝑡 − 1) , 𝑢

2
(𝑡 − 2) , . . . , 𝑢

2
(𝑡 − 𝑛

2
) ,

V̂ (𝑡 − 1) , V̂ (𝑡 − 2) , . . . , V̂ (𝑡 − 𝑛
𝑑
)]

T

V̂ (𝑡) = 𝑦 (𝑡) − �̂�
T
(𝑡) �̂� (𝑡) ,
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Table 1: The parameter estimates and their errors (𝜎2 = 0.50
2, 𝛿ns = 59.70%).

Algorithms 𝑡 𝑎
1

𝑎
2

𝑏
11

𝑏
12

𝑏
21

𝑏
22

𝑑
1

𝛿 (%)

F-RLS

100 0.49783 0.82362 0.47259 0.33889 0.45701 0.67571 −0.31256 10.87062
200 0.53237 0.83678 0.42607 0.30153 0.50390 0.70802 −0.26142 13.33636
500 0.51680 0.83056 0.43167 0.29518 0.50208 0.66555 −0.35787 6.59957
1000 0.50285 0.81789 0.42489 0.28951 0.50703 0.61872 −0.35247 4.41100
2000 0.50405 0.81391 0.42283 0.27871 0.49694 0.62908 −0.38038 3.56288
3000 0.50565 0.80834 0.41436 0.29579 0.49903 0.62586 −0.39109 2.37173

RELS

100 0.53926 0.86216 0.45846 0.28535 0.44404 0.76552 −0.23374 18.60645
200 0.54959 0.85622 0.40695 0.27414 0.46667 0.76896 −0.23790 18.13522
500 0.51636 0.83069 0.42841 0.27674 0.48978 0.67084 −0.38132 6.46314
1000 0.50859 0.81827 0.42018 0.27842 0.50739 0.62544 −0.36367 4.24112
2000 0.50723 0.81444 0.42236 0.27730 0.49418 0.62936 −0.38827 3.47473
3000 0.50794 0.80920 0.41212 0.28907 0.49876 0.62707 −0.39464 2.48087

True values 0.50000 0.80000 0.40000 0.30000 0.50000 0.60000 −0.40000

Table 2: The parameter estimates and their errors (𝜎2 = 0.10
2, 𝛿ns = 11.94%).

Algorithms 𝑡 𝑎
1

𝑎
2

𝑏
11

𝑏
12

𝑏
21

𝑏
22

𝑑
1

𝛿 (%)

F-RLS

100 0.48293 0.79642 0.41760 0.30069 0.49608 0.58878 −0.40118 1.99087
200 0.51101 0.81127 0.40743 0.30352 0.50298 0.61790 −0.37052 2.81593
500 0.50157 0.81012 0.40710 0.29963 0.50121 0.61021 −0.39941 1.17016
1000 0.49914 0.80525 0.40512 0.29771 0.50204 0.60182 −0.38316 1.35563
2000 0.50007 0.80429 0.40469 0.29566 0.49964 0.60499 −0.39422 0.78466
3000 0.49969 0.80258 0.40296 0.29869 0.49998 0.60404 −0.40137 0.43055

RELS

100 0.51462 0.82354 0.41087 0.30152 0.48869 0.64030 −0.14920 18.69550
200 0.51683 0.81951 0.40067 0.29934 0.49279 0.63819 −0.18953 15.98366
500 0.50478 0.81270 0.40486 0.29674 0.49758 0.61544 −0.33064 5.07263
1000 0.50338 0.80708 0.40371 0.29683 0.50111 0.60612 −0.34207 4.35710
2000 0.50298 0.80552 0.40417 0.29637 0.49871 0.60680 −0.37711 1.81881
3000 0.50223 0.80344 0.40231 0.29826 0.49969 0.60581 −0.38867 0.98907

True values 0.50000 0.80000 0.40000 0.30000 0.50000 0.60000 −0.40000

�̂� (𝑡) = [𝑎
1
(𝑡) , 𝑎
2
(𝑡) , . . . , 𝑎

𝑛
𝑎

(𝑡) , �̂�
11
(𝑡) ,

�̂�
11
(𝑡) , . . . , �̂�

1𝑛
1

(𝑡) , �̂�
21
(𝑡) , �̂�
11
(𝑡) , . . . ,

�̂�
2𝑛
2

(𝑡) , 𝑑
1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑛
𝑑

(𝑡)]
T
.

(40)

In this RELS algorithm, the forgetting factor used is 1.

4. Example

Consider the following example:

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵
1
(𝑧) 𝑢
1
(𝑡) + 𝐵

2
(𝑧) 𝑢
2
(𝑡) + 𝐷 (𝑧) V (𝑡) ,

𝐴 (𝑧) = 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

= 1 + 0.50𝑧
−1

+ 0.80𝑧
−2
,

𝐵
1
(𝑧) = 𝑏

11
𝑧
−1

+ 𝑏
12
𝑧
−2

= 0.40𝑧
−1

+ 0.30𝑧
−2
,

𝐵
2
(𝑧) = 𝑏

21
𝑧
−1

+ 𝑏
22
𝑧
−2

= 0.50𝑧
−1

+ 0.60𝑧
−2
,

𝐷 (𝑧) = 1 + 𝑑
1
𝑧
−1

= 1 − 0.40𝑧
−1
,

𝜃 = [𝑎
1
, 𝑎
2
, 𝑏
11
, 𝑏
12
, 𝑏
21
, 𝑏
22
, 𝑑
1
]
T

= [0.50, 0.80, 0.30, 0.40, 0.50, 0.60, −0.40]
T
.

(41)

The inputs {𝑢
1
(𝑡)}, {𝑢

2
(𝑡)} are taken as two uncorrelated

persistent excitation signal sequences with zero mean and
unit variance, {V(𝑡)} as a white noise sequence with zero
mean and variance 𝜎

2
= 0.50

2 and 𝜎
2

= 0.10
2, and the

corresponding noise-to-signal ratio are 𝛿ns = 59.70% and
𝛿ns = 11.94%, respectively. Applying the RELS and the F-
RLS algorithms to estimate the parameters of the system, the
parameter estimates and their errors are shown in Tables 1
and 2, and the estimation errors 𝛿 := ‖�̂� − 𝜃‖/‖𝜃‖ versus 𝑡 are
shown in Figure 2 with 𝜎

2
= 0.10

2.
From Tables 1 and 2 and Figure 2, we can draw the

following conclusions.

(i) The parameter estimation errors become (generally)
smaller and smaller with the data length 𝑡 increasing.
This shows that the proposed algorithm is effective.
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Figure 2: The estimation errors 𝛿 versus 𝑡 (𝜎2 = 0.10
2).

(ii) The F-RLS algorithm is more accurate than the
RELS algorithm. This means that the proposed F-
RLS algorithm has better identification performance
compared with the RELS algorithm.

(iii) The parameter estimates given by the F-RLS algo-
rithmconverge fast to their true values comparedwith
the RELS algorithm.

(iv) The F-RLS algorithm has a higher computational effi-
ciency than the RELS algorithm because the dimen-
sions of its covariance matrices are smaller than those
of the covariance in the RELS algorithm.

5. Conclusions

The data filtering based recursive least squares algorithm
for the two-input single-output system with moving average
noise is proposed by means of the data filtering technique.
Compared with the recursive least squares algorithm, the
proposed algorithms can require less computational load and
can give more accurate parameter estimates compared with
the recursive extended least squares algorithm.The proposed
method can be extended to nonuniformly sampled systems
and nonlinear systems. The convergence analysis of the pro-
posed filtering based algorithm is worth further studies. The
proposed method can combine the multi-innovation iden-
tification methods [27–36], the hierarchical identification
methods [37–42], the auxiliary model identificationmethods
[43–47], the iterative identification methods [48, 49], and
other identification methods [50–53] to study identification
and adaptive control problems for linear or nonlinear, single-
rate or dual-rate, and scalar or multivariable systems [54–61].
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