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We propose a fully discrete method for the multiscale Richards’ equation of van Genuchten-Mualem model which describes the
flow transport in unsaturated heterogenous porous media. Under the framework of heterogeneous multiscale method (HMM), a
fully discrete scheme combined with a regularized procedure is proposed. Including the numerical integration, the discretization is
given by 𝐶0 piecewise finite element in space and an implicit scheme in time. Error estimates between the numerical solution and
the solution of homogenized problem are derived under the assumption that the permeability is periodic. Numerical experiments
with periodic and random permeability are carried out for the van Genuchten-Mualem model of Richards’ equation to show the
efficiency and accuracy of the proposed method.

1. Physical Model

Richards’ equation ismost often used tomodel themovement
of groundwater flow in saturated-unsaturated porous media.
It was formulated by Richards in 1931 [1]. It is a nonlinear
partial differential parabolic equation. Depending on the sat-
uration and pressure, three main forms of Richards’ equation
are usually presented: pressure-based form, saturation-based
form, or mixed form. Combining the continuity equation
with Darcy’s law, the mixed form can be expressed as

𝜕
𝑡
Θ(𝑝) − ∇(𝐾(

𝑥

𝜖
, Θ (𝑝))∇ (𝑝 + 𝑧)) = 0, (1)

where the reduced saturation is defined byΘ = (𝜃 − 𝜃
𝑟
)/(𝜃

𝑠
−

𝜃
𝑟
) ∈ [0, 1]. 𝜃

𝑟
(the residual fluid content) and 𝜃

𝑠
(the fluid

content at saturation) are constants relying on the porous
medium. 𝜃 denotes the saturation and𝑝 denotes the pressure.
Due to the complex heterogeneity of natural medium, the
permeability 𝐾(𝑥/𝜖, Θ(𝑝)) of the medium oscillates rapidly

with large contrast. 𝜖(> 0) is the characteristic length present-
ing the small scale variability of the media. The coordinate in
the direction of gravity is denoted by 𝑧.

In this paper, we adopt the retention curves proposed
by van Genuchten [2] and Mualem [3]. The relations of the
reduced saturationΘ, pressure𝑝, and permeability𝐾 are read
as

Θ(𝑝) =

{{

{{

{

1

(1 +
󵄨󵄨󵄨󵄨𝑐𝑝
󵄨󵄨󵄨󵄨

𝑛
)
𝑚

for 𝑝 ≤ 0,

1 for 𝑝 > 0,

𝐾(
𝑥

𝜖
, Θ) = 𝐾

𝑠
(
𝑥

𝜖
)𝐾

𝑟
(Θ)

= 𝐾
𝑠
(
𝑥

𝜖
) ⋅ Θ

1/2
[1 − (1 − Θ

1/𝑚
)
𝑚

]
2

,

(2)

where 𝑐, 𝑚 ∈ (0, 1) and 𝑛 = 1/(1 − 𝑚) are the parameters of
porous medium. 𝐾

𝑠
and 𝐾

𝑟
can be presented as the absolute

and relative permeability, respectively. When 𝑝 > 0, Θ = 1,
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the medium is in the saturated state; otherwise, it is in the
unsaturated case.

Under the unsaturated case, Richards’ equation can also
be rewritten in terms of reduced saturation by using the above
relations. Consider

𝜕
𝑡
Θ − ∇(𝐷(

𝑥

𝜖
, Θ)∇Θ +

󳨀→
𝐾
𝑧
(
𝑥

𝜖
, Θ)) = 0, (3)

with the moisture diffusivity𝐷 defined by

𝐷(
𝑥

𝜖
, Θ) = −𝐾(

𝑥

𝜖
, Θ)

𝜕𝑝

𝜕Θ

=
(1 − 𝑚)𝐾𝑠 (𝑥/𝜖)

𝛼𝑚 (𝜃
𝑠
− 𝜃

𝑟
)
Θ
(1/2)−(1/𝑚)

× [(1 − Θ
1/𝑚
)
𝑚

+ (1 − Θ
1/𝑚
)
−𝑚

− 2]

≐ 𝐷
𝑠
(
𝑥

𝜖
)𝐷

𝑟
(Θ) .

(4)

Here, under the relations (2), we should point out that (1)
can model both saturated and unsaturated cases. In saturated
region, (1) is an elliptic equation; in unsaturated region, the
equation is parabolic. On the other hand, in unsaturated case,
(1) can be degenerated because 𝐾

𝑟
may approximate to zero

when Θ → 0 (in almost completely dry region). Richards’
equation (3) can onlymodel the unsaturated case. But (3)may
also be degenerated, because the diffusivity 𝐷may vanish or
explode (see Figure 1(a)). For Θ = 0 (in almost completely
dry region), the diffusivity 𝐷

𝑟
vanishes, while for Θ going

to 1 (in almost full saturated area) 𝐷
𝑟
goes to infinity. The

degeneracy of (1) and (3) leads to the fact that the solutions
must be understood in the sense of distribution as proposed
in [4–7].

Numerous papers have been published on numerical
scheme for the non-multiscale degenerate parabolic problem
(including Richards’ equation). For example, in [5–9], the
authors firstly regularized the degenerated problem then
used the FEM or mixed FEM for spatial discretization.
In [10–13], considering the time discretization aspect, the
authors developed some schemes for time discretization,
such as linear time discretization, adaptive time stepping, or
relaxation scheme. The relaxation-iteration scheme analyzed
in [13] for the fast diffusion case is a fixed point iteration
which was proposed in [8] (also see [12] for the mixed finite
element context).

Here, we should point out the work of [6, 7]. In [6], the
authors considered a class of degenerate parabolic equations
including Stefan problem, porous-medium problem, and
nonstationary filtration problem. Combining with a regular-
ization approach (when necessary), the authors developed
their fully discrete scheme including FEM in spatial and
Backward-Euler semi-implicit scheme in time. At the same
time, the effects of numerical integration and domain change
were taken into account. In [7], under the relations (2),
Backward-Euler implicit scheme in timewith a regularization
step for non-multiscale Richards’ equation (3)was established
and analyzed.

On the other hand, for this kind of multiscale problem, it
is impossible to account explicitly for the spatial variability at
fine scale because of the computational resource limitations
in realistic situation. So, traditional numerical methods such
as standard finite element methods (FEM) and finite differ-
ence methods (FDM) are generally not capable of solving
this multiscale problem directly. In recent years, a number
of multiscale numerical methods, such as multiscale finite
element method (MsFEM) [14], heterogeneous multiscale
method (HMM) [15], and upscaling method [16], have been
proposed to solve the general multiscale problems based on
similar ideas. Among them, the so-called heterogeneousmul-
tiscale method (HMM) has proved to be an efficient tool to
assemble information from microscale problems in order to
performmacroscale simulations. In [17], the author discussed
the modeling and analysis of finite element methods (such as
hybridmethods, coupling spectral or discontinuous Galerkin
methods with FEM) for multiscale problems constructed in
the framework of the HMM for multiscale PDEs (such as
elliptic and parabolic equations).

To our knowledge, there are few papers about the
numerical analysis of multiscale Richards’ equation of van
Genuchten-Mualem model. Based on the frame of HMM-
FEM, we will use the idea of [6, 7] to develop a fully discrete
method for multiscale Richards’ equation (5). In order to
overcome the above difficulties, we regularize the equation
firstly; secondly, a fully discrete multiscale numerical method
based on heterogeneous multiscale method (HMM) [15] and
FEM is developed on a macroscale mesh; at the same time,
we use the numerical quadrature for computing the integral
over each element. In the paper, we are only interested in (3).

Noticing that 𝐷(𝑥/𝜖, Θ) is separable, we set 𝜓(Θ) =

∫
Θ

0
𝐷
𝑟
(𝑠)𝑑𝑠 (see Figure 1(b)). By Kirchhoff transform [4], we

rewrite (3) as

𝜕
𝑡
Θ − ∇(𝐷

𝑠
(
𝑥

𝜖
)∇𝜓 (Θ) +

󳨀→
𝐾
𝑧
(
𝑥

𝜖
, Θ)) = 0 (5)

with 𝜓󸀠(Θ) = 𝐷
𝑟
(Θ). So, when 𝜓󸀠(Θ) → 0 (Θ → 0), (5)

may degenerate to hyperbolic equation; on the other hand,
𝜓
󸀠
(Θ) → +∞(Θ → 1), and (5) may transfer to elliptic

equation.

Notations. Ω ⊂ 𝑅
𝑑
(𝑑 ≥ 1) is a bounded polyhedral domain

with boundary 𝜕Ω. Set 𝑄 = Ω × [0, 𝑇], where 𝑇 > 0 is fixed.
For defining a solution in weak sense, we let (⋅, ⋅) stand for
the inner product on 𝐿2(Ω) or the duality pairing between
𝐻
−1
(Ω) and 𝐻1

0
(Ω), ‖ ⋅ ‖

0
stand for the norm in 𝐿2(Ω), and

‖ ⋅ ‖
−1

and ‖ ⋅ ‖
1
stand for the norm in𝐻−1

(Ω) and𝐻1

0
(Ω).

2. Formulation of the Problem

In this paper, wewill consider the following general nonlinear
parabolic equation which includes Richards’ equation (5):

𝜕
𝑡
𝑢
𝜖
− ∇(𝑎 (

𝑥

𝜖
)∇𝛽 (𝑢

𝜖
) + 𝑔 (

𝑥

𝜖
, 𝑢
𝜖
)) = 0, in 𝑄,

𝑢
𝜖
(𝑡 = 0) = 𝑢0 (𝑥) , in Ω,

𝑢
𝜖
= 0, on 𝜕Ω × (0, 𝑇] .

(6)
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Figure 1: (a)𝐷𝑟(𝑥) function. (b) 𝜓(𝑥) function.

Assumption 1. (H1)𝛽 is amaximalmonotone graph in [0, 1]×
𝑅 and 𝛽(0) = 0.

(H2) For all 𝑠 ∈ (0, 1], 𝛽󸀠(𝑠) > 0 and 𝛽
󸀠
(𝑠) has the

following asymptotic behavior:

∃ 𝛼 > 0, 0 < 𝛾 < 1,

s.t. 𝛽
󸀠
(𝑠) ∼ 𝑂 (𝑠

𝛼
) (𝑠 󳨀→ 0) ,

𝛽
󸀠
(𝑠) ∼ 𝑂 ((1 − 𝑠)

−𝛾
) (𝑠 󳨀→ 1) .

(7)

(H3) 0 ≤ 𝑢
0
(𝑥) ≤ 1 almost everywhere.

(H4) The matrix 𝑎(𝑥/𝜖) = (𝑎
𝑖𝑗
(𝑥/𝜖))

𝑑

𝑖,𝑗=1
is bounded and

uniformly elliptic. There exist constants 𝐶
𝑎
and 𝐶

𝑎
such that

𝐶
𝑎
‖𝜉‖

2
≤ (𝑎(𝑦)𝜉, 𝜉) ≤ 𝐶

𝑎
‖𝜉‖

2, ∀𝜉 ∈ 𝑅𝑑.
(H5) 𝑔(𝑦, 𝑠) : 𝑅

𝑛
× 𝑅 󳨃→ 𝑅

𝑛 is bounded, uniformly
Lipschitz continuous and satisfying

󵄨󵄨󵄨󵄨𝑔 (⋅, 𝑢1) − 𝑔 (⋅, 𝑢2)
󵄨󵄨󵄨󵄨

2
≤ 𝐶 (𝑢

1
− 𝑢

2
) (𝛽 (𝑢

1
) − 𝛽 (𝑢

2
)) . (8)

A weak solution of problem (6) is defined as follows.

Definition 2. Find 𝑢𝜖 ∈ 𝐻
1
(0, 𝑇;𝐻

−1
(Ω)) such that 𝑢𝜖(0) =

𝑢
0
and V𝜖 = 𝛽(𝑢

𝜖
) ∈ 𝐿

2
(0, 𝑇;𝐻

1

0
(Ω)) and, ∀𝜑 ∈

𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)),

(𝜕
𝑡
𝑢
𝜖
, 𝜑)

𝑄
+ (𝑎

𝜖
(
𝑥

𝜖
, 𝑢
𝜖
)∇𝛽 (𝑢

𝜖
) , ∇𝜑)

𝑄

+ (𝑔
𝜖
(
𝑥

𝜖
, 𝑢
𝜖
) , ∇𝜑)

𝑄

= 0.

(9)

Remark 3. The existence, uniqueness, and regularity results
for the above problem can be found in [4]. The solution of
problem (6) may denote the reduced saturation and therefore
should be bounded by 0 and 1. In the setting stated above,
themaximumprinciple holds for problem (6), so the solution
remains bounded by 0 and 1.

Remark 4. According to the constitution relations of the van
Genuchten-Mualem, the parameter in (H2) is determined
as 𝛼 = (1/2) + (1/𝑚) and 𝛾 = 𝑚 (𝑚 ∈ (0, 1)). In
Richards’ equation, the convective function 𝑔(𝑦, 𝑢) denotes
the permeability 𝐾

𝑠
(𝑦)𝐾

𝑟
(𝑢)

→

𝑒
𝑧
. And it is easy to verify that

(𝐾
𝑟
)
󸀠
(𝑢) ∼ 𝑂(𝑢

(2/𝑚)−(1/2)
) and 𝛽󸀠(𝑢) ∼ 𝑂(𝑢

(1/𝑚)+(1/2)
) when

𝑢 approaches to zero. Also, it is easy to verify that condition
(8) is valid when the second variable approaches to zero. The
other cases are obvious.

Let 0 < 𝛿 < 1 be a small perturbed parameter. We
approximate 𝛽 by, for all 𝑠 ∈ [0, 1],

𝛽
𝛿
(𝑠) = ∫

𝑠

0

max {𝛿,min {1
𝛿
, 𝛽

󸀠
(𝑠)}} 𝑑𝑠. (10)

So, we get

𝛽
󸀠

𝛿
(𝑠) =

{{{{{

{{{{{

{

𝛿, if 0 ≤ 𝑠 ≤ 𝐶𝛿1/𝛼,

𝛽
󸀠
(𝑠) , otherwise,

1

𝛿
, if 1 − 𝐶𝛿1/𝛾 ≤ 𝑠 ≤ 1.

(11)

Hence, 𝛽−1
𝛿

is also a maximal monotone graph in 𝑅 × [0, 1]
and it follows that

𝛿 ≤ (𝛽
−1

𝛿
)
󸀠

(𝑥) ≤
1

𝛿
,

󵄨󵄨󵄨󵄨󵄨
𝛽
−1

𝛿
(𝑥) − 𝛽

−1
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝛿

𝜇
, 𝜇 = min{1

𝛾
,
1

𝛼
} .

(12)

Let 𝑇
𝐻
= {𝐾}

𝐻
be a regular triangle decomposition of Ω,

where𝐻 stands for themesh size. Define the functional space

𝑋
𝐻
= {𝜒 is linear for all 𝐾 ∈ 𝑇

𝐻
} ,

𝑋
0

𝐻
= {𝜒 is linear for all 𝐾 ∈ 𝑇

𝐻
; 𝜒 = 0 on 𝜕Ω} .

(13)
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In order to simplify the computation, we will use the
numerical integration scheme as in [6]. Let Π

𝐻
be the local

linear interpolant operator; then,

(𝜙, 𝜑)
𝐻,𝐾

≐ ∫
𝐾

Π
𝐻
(𝜙𝜑) 𝑑𝑥, (14)

for any piecewise uniformly continuous functions 𝜙 and 𝜑.
So, for all 𝑊, 𝑉 ∈ 𝑋

𝐻
and every element 𝐾, the numerical

integration scheme satisfies that [6]

𝐸 (𝑊,𝑉) ≐
󵄨󵄨󵄨󵄨(𝑊,𝑉)𝐾 − (𝑊,𝑉)𝐻,𝐾

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐻‖𝑊‖𝐿2(𝐾)‖𝑉‖𝐻1(𝐾),

(15)

𝐸 (𝑊,𝑉) ≐
󵄨󵄨󵄨󵄨(𝑊,𝑉)𝐾 − (𝑊,𝑉)𝐻,𝐾

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐻
2
‖𝑊‖𝐻1(𝐾)‖𝑉‖𝐻1(𝐾),

(16)

𝐶
1‖𝑊‖

2

𝐿
2
(𝐾)

≤ (𝑊,𝑊)
𝐻,𝐾

≤ 𝐶
2‖𝑊‖

2

𝐿
2
(𝐾)
, (17)

󵄨󵄨󵄨󵄨(𝑊,𝑉)𝐻,𝐾
󵄨󵄨󵄨󵄨 ≤ 𝐶2‖𝑊‖𝐿2(𝐾)‖𝑉‖𝐿2(𝐾) (18)

and, for any 𝑏(𝑥) ∈ 𝑊1,∞
(𝐾) [18],

𝐸 (𝑏𝑊,𝑉) ≤ 𝐶𝐻‖𝑏‖𝑊1,∞(𝐾)‖𝑊‖𝐻1(𝐾)‖𝑉‖𝐻1(𝐾). (19)

𝐼
𝐻
stands for the piecewise linear interpolant operator and

satisfies
󵄩󵄩󵄩󵄩𝐼𝐻𝜑 − 𝜑

󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶𝐻
󵄩󵄩󵄩󵄩∇𝜑

󵄩󵄩󵄩󵄩𝐿2(Ω), 𝜑 ∈ 𝐻
1
(Ω) , (20)

and 𝐸
𝐻
stands for the discrete 𝐿2 projection operator; more

precisely, for any 𝑧 ∈ 𝐿2(Ω), 𝐸
𝐻
𝑧 ∈ 𝑋

𝐻
and satisfies

󵄩󵄩󵄩󵄩𝐸𝐻𝑧 − 𝑧
󵄩󵄩󵄩󵄩𝐻−1(Ω) ≤ 𝐶𝐻‖𝑧‖𝐿2(Ω). (21)

Let 𝑥
𝑟
and 𝜔

𝐾,𝑟
(𝑟 = 1, 𝐿) denote the quadrature nodes and

weights in 𝐾. Let𝑁 be an integer and let 𝜏 = 𝑇/𝑁. Our fully
discrete formulation for problem (6) is read as follows: find
V𝑖,𝐻 ∈ 𝑋

0

𝐻
, 𝑢𝑖,𝐻 = 𝐼

𝐻
𝛽
−1

𝛿
(V𝑖,𝐻) ∈ 𝑋

𝐻
(𝑖 = 1,𝑁), such that

∑

𝐾

(
𝑢
𝑖,𝐻
− 𝑢

𝑖−1,𝐻

𝜏
, 𝜒)

𝐻,𝐾

+∑

𝐾

𝐴
𝐻
(V𝑖,𝐻, 𝜒)

+∑

𝐾

𝐺
𝐻
(𝑢

𝑖,𝐻
, 𝜒) = 0, ∀𝜒 ∈ 𝑋

0

𝐻
,

V0,𝐻 = 𝐼
𝐻
𝛽 (𝑢

0
) , 𝑢

0,𝐻
= 𝐸

𝐻
𝑢
0
,

(22)

where

𝐴
𝐻
(V𝑖,𝐻, 𝜒)

≐

𝐿

∑

𝑟=1

𝜔
𝐾,𝑟

󵄨󵄨󵄨󵄨𝐼𝑙 (𝑥𝑟)
󵄨󵄨󵄨󵄨

∫
𝐼
𝑙
(𝑥
𝑟
)

𝑎 (
𝑥

𝜖
)∇𝑅

1
(V𝑖,𝐻) ∇𝑅

1
(𝜒) 𝑑𝑥

≐ (𝑎∇V𝑖,𝐻, ∇𝜒)
𝐻,𝐾

,

(23)

𝐺
𝐻
(𝑢

𝑖,𝐻
, 𝜒)

≐

𝐿

∑

𝑟=1

𝜔
𝐾,𝑟

󵄨󵄨󵄨󵄨𝐼𝑙 (𝑥𝑟)
󵄨󵄨󵄨󵄨

∫
𝐼
𝑙
(𝑥
𝑟
)

𝑔(
𝑥

𝜖
, 𝑢
𝑖,𝐻
)∇𝑅

1
(𝜒) 𝑑𝑥

≐ (𝑔 (𝑢
𝑖,𝐻
) , ∇𝜒)

𝐻,𝐾
,

(24)

and the operator 𝑅
1
is defined by the following problem:

− ∇ (𝑎
𝜖
(𝑥) ∇𝑅

1
(𝜒)) = 0 in 𝐼

𝑙
(𝑥
𝑟
) ,

𝑅
1
(𝜒) = 𝜒

𝑟
on 𝜕𝐼

𝑙
(𝑥
𝑟
) ,

(25)

where 𝜒
𝑟
= 𝜒(𝑥

𝑟
) + 𝜒

󸀠
(𝑥
𝑟
)(𝑥 − 𝑥

𝑟
) and the cell 𝐼

𝑙
(𝑥
𝑟
) is a

square of size 𝑙 centered at 𝑥
𝑟
. So far, our fully discrete HMM-

FEM is settled down and the porous media do not have to be
periodic.

3. Some Results on the Homogenized Problem

In this section, we will review the results of homogenization
and the analysis of the discrete homogenized problem. Under
the assumptions (H1)–(H5) and if the function 𝑎(𝑦) and
𝑔(𝑦, 𝑠) are periodic in 𝑦 with unit square 𝑌. In [19], the
authors have established the homogenization theory for (6). It
has been shown that, in suitable topology space, the solutions
𝑢
𝜖 of problem (6) converge to the solution of the following

problem as 𝜖 → 0.

𝜕
𝑡
𝑢 − ∇ (𝑎

∗
∇𝛽 (𝑢) + 𝑔

∗
(𝑢)) = 0, in 𝑄,

𝑢 (𝑡 = 0) = 𝑢0 (𝑥) , in Ω,

𝑢 = 0, on 𝜕Ω × (0, 𝑇] ,

(26)

where 𝑎∗ = (𝑎∗
𝑖𝑗
)
1≤𝑖,𝑗≤𝑑

and 𝑔∗ = (𝑔∗
𝑖
)
𝑑

𝑖=1
are defined as

(𝑎
∗
)
𝑖𝑗
= ∫

𝑌

(𝑎
𝑖𝑗
(𝑦) + 𝑎

𝑖𝑘
(𝑦)

𝜕Λ
𝑘
(𝑦)

𝜕𝑦
𝑗

)𝑑𝑦, (27)

𝑔
∗
(𝑠) = ∫

𝑌

(𝑔 (𝑦, 𝑠) + 𝑎 (𝑦) ∇
𝑦
𝜂 (𝑦, 𝑠)) 𝑑𝑦, (28)

and Λ
𝑘 and 𝜂 are the periodic solutions of following cell

problems, respectively.

−∇
𝑦
⋅ (𝑎 (𝑦) ∇

𝑦
Λ
𝑘
(𝑦)) = ∇

𝑦
⋅ (𝑎 (𝑦) ⋅ 𝑒

𝑘
) , in 𝑌,

∫
𝑌

Λ
𝑘
𝑑𝑦 = 0,

−∇
𝑦
⋅ (𝑎 (𝑦) ∇

𝑦
𝜂 (𝑦, 𝑠)) = ∇

𝑦
⋅ (𝑔 (𝑦, 𝑠)) , in 𝑌,

∫
𝑌

𝜂 𝑑𝑦 = 0,

(29)

and 𝑎∗ and 𝑔∗ inherit the property of 𝑎 and 𝑔 [16].

Remark 5. According to Alt and Luckhaus [4], we have at
least 𝑢 ∈ 𝐿∞(0, 𝑇; 𝐿1(Ω)) and 𝑢

𝑡
∈ 𝐿

2
(0, 𝑇;𝐻

−1
(Ω)). More-

over, the maximum principle leads to 𝑢 ∈ 𝐿∞(0, 𝑇; 𝐿∞(Ω)).
We therefore conclude that 𝑢 ∈ 𝐶(0, 𝑇; 𝐿2(Ω)). This gives us
𝑢(𝑡, ⋅) pointwise for every 𝑡 ∈ [0, 𝑇].
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The problem (26) can be read as follows.

Definition 6. For every time interval [𝑡
𝑖−1
, 𝑡
𝑖
] ⊂ [0, 𝑇], find

𝑢(𝑡
𝑖
) ∈ 𝐿

2
(Ω) such that ∫𝑡𝑖

𝑡
𝑖−1

𝛽(𝑢(𝑡))𝑑𝑡 ∈ 𝐻
1

0
(Ω) and, for all

𝜑 ∈ 𝐻
1

0
(Ω),

(𝑢 (𝑡
𝑖
) − 𝑢 (𝑡

𝑖−1
) , 𝜑)

Ω
+ (∫

𝑡
𝑖

𝑡
𝑖−1

𝑎
∗
∇𝛽 (𝑢) 𝑑𝑡, ∇𝜑)

Ω

+ (∫

𝑡
𝑖

𝑡
𝑖−1

𝑔
∗
(𝑢) 𝑑𝑡, ∇𝜑)

Ω

= 0.

(30)

We also give out the fully discrete scheme for the problem
(26) by a regularization procedure.

Definition 7. Find 𝑉𝑖 ∈ 𝑋0

𝐻
such that 𝑈𝑖 = 𝐼

𝐻
𝛽
−1

𝛿
(𝑉

𝑖
) ∈ 𝑋

𝐻

and, for all𝑊 ∈ 𝑋
0

𝐻
,

(𝑈
𝑖
− 𝑈

𝑖−1
,𝑊)

𝐻
+ 𝜏(𝑎

∗
∇𝑉

𝑖
, ∇𝑊)

𝐻

+ 𝜏(𝐼
𝐻
𝑔
∗
(𝑈

𝑖
) , ∇𝑊)

𝐻
= 0,

𝑉
0
= 𝐼

𝐻
𝛽 (𝑢

0
) , 𝑈

0
= 𝐸

𝐻
𝑢
0
,

(31)

where (𝑈,𝑊)
𝐻
= ∑

𝐾∈𝑇
𝐻

(𝑈,𝑊)
𝐻,𝐾

.

In the rest of this section, we will give out a prior estimate
for problem (31) and the error estimate of 𝑉𝑖 − 𝛽(𝑢(𝑡

𝑖
)) and

𝑈
𝑖
− 𝑢(𝑡

𝑖
).

Theorem 8. Under the assumptions (H1) to (H5), there exist a
positive constant 𝐶 independent of𝐻, 𝛿, 𝜖 such that

max
1≤𝑖≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑖󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)

+ 𝛿max
1≤𝑖≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑉
𝑖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

+

𝑁

∑

𝑖=1

𝜏
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑖󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
(Ω)

≤ 𝐶,

𝑁

∑

𝑖=1

𝛿 (
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑖
− 𝑉

𝑖−1󵄩󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑖
− 𝑈

𝑖−1󵄩󵄩󵄩󵄩󵄩

2

0
) ≤ 𝐶.

(32)

Proof. Let𝑊 = 𝑉
𝑖 in (31) and sum it over 𝑖 from 1 to𝑁.

𝑁

∑

𝑖=1

(𝑈
𝑖
− 𝑈

𝑖−1
, 𝑉

𝑖
)
𝐻
+

𝑁

∑

𝑖=1

𝜏(𝑎
∗
∇𝑉

𝑖
, ∇𝑉

𝑖
)
𝐻

+

𝑁

∑

𝑖=1

𝜏(𝐼
𝐻
𝑔
∗
(𝑈

𝑖
) , ∇𝑉

𝑖
)
𝐻
= 0.

(33)

We will estimate each term separately. Following the idea
in [6], we have

𝑁

∑

𝑖=1

(𝑈
𝑖
− 𝑈

𝑖−1
, 𝑉

𝑖
)
𝐻

=

𝑁

∑

𝑖=1

(𝐼
𝐻
𝛽
−1

𝛿
(𝑉

𝑖
) − 𝐼

𝐻
𝛽
−1

𝛿
(𝑉

𝑖−1
) , 𝑉

𝑖
)
𝐻

≥ 𝛿
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑁󵄩󵄩󵄩󵄩󵄩

2

0
− 𝐶.

(34)

Using (H4), (H5) and Poincaré inequality, we have
𝑁

∑

𝑖=1

𝜏(𝑎
∗
∇𝑉

𝑖
, ∇𝑉

𝑖
)
𝐻
≥ 𝐶

𝑁

∑

𝑖=1

𝜏
󵄩󵄩󵄩󵄩󵄩
∇𝑉

𝑖󵄩󵄩󵄩󵄩󵄩

2

0
≥ 𝐶

𝑁

∑

𝑖=1

𝜏
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑖󵄩󵄩󵄩󵄩󵄩

2

1
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑖=1

𝜏(𝐼
𝐻
𝑔
∗
(𝑈

𝑖
) , ∇𝑉

𝑖
)
𝐻

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑁

∑

𝑖=1

𝜏
󵄩󵄩󵄩󵄩󵄩
𝐼
𝐻
𝑔
∗
(𝑈

𝑖
)
󵄩󵄩󵄩󵄩󵄩0

󵄩󵄩󵄩󵄩󵄩
∇𝑉

𝑖󵄩󵄩󵄩󵄩󵄩0

≤ 𝐶 + 𝜂

𝑁

∑

𝑖=1

𝜏
󵄩󵄩󵄩󵄩󵄩
∇𝑉

𝑖󵄩󵄩󵄩󵄩󵄩

2

0
.

(35)

Since 𝑈
𝑖
= 𝐼

𝐻
𝛽
−1

𝛿
(𝑉

𝑖
), we have max

1≤𝑖≤𝑁
‖𝑈

𝑖
‖
𝐿
∞
(Ω)

≤

𝐶. Combining all the terms and choosing 𝜂 properly, we
complete the first part.

Again, we let 𝑊 = (𝑉
𝑖
− 𝑉

𝑖−1
) in (31) and sum it over 𝑖

from 1 to𝑁.
𝑁

∑

𝑖=1

(𝑈
𝑖
− 𝑈

𝑖−1
, 𝑉

𝑖
− 𝑉

𝑖−1
)
𝐻
+

𝑁

∑

𝑖=1

𝜏(𝑎
∗
∇𝑉

𝑖
, ∇ (𝑉

𝑖
− 𝑉

𝑖−1
))
𝐻

+

𝑁

∑

𝑖=1

𝜏(𝐼
𝐻
𝑔
∗
(𝑈

𝑖
) , ∇ (𝑉

𝑖
− 𝑉

𝑖−1
))
𝐻
= 0.

(36)

Considering that 𝑉𝑖 = 𝐼
𝐻
𝛽
−1

𝛿
(𝑈

𝑖
), we have

𝑁

∑

𝑖=1

(𝑈
𝑖
− 𝑈

𝑖−1
, 𝑉

𝑖
− 𝑉

𝑖−1
)
𝐻

≥ 𝐶

𝑁

∑

𝑖=1

𝛿 (
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑖
− 𝑈

𝑖−1󵄩󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑖
− 𝑉

𝑖−1󵄩󵄩󵄩󵄩󵄩

2

0
) .

(37)

By (H4), (H5) and (32), it is easy to get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑖=1

𝜏(𝑎
∗
∇𝑉

𝑖
, ∇ (𝑉

𝑖
− 𝑉

𝑖−1
))
𝐻

+

𝑁

∑

𝑖=1

𝜏(𝐼
𝐻
𝑔
∗
(𝑈

𝑖
) , ∇ (𝑉

𝑖
− 𝑉

𝑖−1
))
𝐻

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶.

(38)

So, we finish the second part of the theorem.

Define a regular G-operator 𝐻−1
→ 𝐻

1

0
and 𝐺

𝐻
-

operator𝐻−1
→ 𝑋

0

𝐻
as in [6], for all 𝜑 ∈ 𝐻−1,

(𝑎
∗
∇𝐺𝜑, ∇𝜓) = (𝜑, 𝜓) , ∀𝜓 ∈ 𝐻

1

0
,

(𝑎
∗
∇𝐺𝜑, ∇𝜒) = (𝑎

∗
∇𝐺

𝐻
𝜑, ∇𝜒) , ∀𝜒 ∈ 𝑋

0

𝐻
,

(39)

and there is
󵄩󵄩󵄩󵄩(𝐺 − 𝐺𝐻) 𝜑

󵄩󵄩󵄩󵄩𝐻𝑠 ≤ 𝐶𝐻
2−𝑟−𝑠󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻−𝑟 , 0 ≤ 𝑟, 𝑠 ≤ 1. (40)
Firstly, we have

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩−1 = sup

𝜓∈𝐻
1

0

󵄨󵄨󵄨󵄨(𝜑, 𝜓)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩∇𝜓
󵄩󵄩󵄩󵄩

, (41)

𝐶
𝑎

󵄩󵄩󵄩󵄩∇𝐺𝜑
󵄩󵄩󵄩󵄩

2
≤ (𝑎

∗
∇𝐺𝜑, ∇𝐺𝜑) = (𝜑, 𝐺𝜑) ≤

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩−1

󵄩󵄩󵄩󵄩∇𝐺𝜑
󵄩󵄩󵄩󵄩 .

(42)
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On the other hand,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩−1 = sup

𝜓∈𝐻
1

0

󵄨󵄨󵄨󵄨(𝜑, 𝜓)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩∇𝜓
󵄩󵄩󵄩󵄩

= sup
𝜓∈𝐻
1

0

󵄨󵄨󵄨󵄨(𝑎
∗
∇𝐺𝜑, ∇𝜓)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩

≤ 𝐶
𝑎

󵄩󵄩󵄩󵄩∇𝐺𝜑
󵄩󵄩󵄩󵄩 ,

(43)

so we have ‖𝜑‖
−1

equivalent to ‖∇𝐺𝜑‖. We also introduce the
following two identities:

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑎

𝑖−1
, 𝑏
𝑖
) = 𝑎

𝑛
𝑏
𝑛
− 𝑎

0
𝑏
0
−

𝑛

∑

𝑖=1

𝑎
𝑖−1
(𝑏
𝑖
− 𝑏

𝑖−1
) , (44)

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑎

𝑖−1
, 𝑎
𝑖
) = (𝑎

𝑛
)
2
− (𝑎

0
)
2
+

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑎

𝑖−1
)
2
. (45)

Theorem 9. 𝑢𝑖 and 𝑈𝑖 are the solutions of problems (26) and
(31) at time 𝑡

𝑖
, respectively. Denote that 𝑢𝑖 = (1

𝜏
) ∫

𝐼
𝑖

𝑢 𝑑𝑡, 𝑒𝑖
𝑢
=

𝑈
𝑖
− 𝑢

𝑖, and 𝑒𝑖V = 𝑉
𝑖
− (1/𝜏) ∫

𝐼
𝑖

𝛽(𝑢)𝑑𝑡. Under the assumptions
(H1) to (H5), there exists a positive constant 𝐶 independent of
𝐻, 𝛿, 𝜖, 𝜏 such that

max
1≤𝑖≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖

𝑢

󵄩󵄩󵄩󵄩󵄩

2

−1
+

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑖

𝑢
− 𝑒

𝑖−1

𝑢

󵄩󵄩󵄩󵄩󵄩

2

−1

+

𝑁

∑

𝑖=1

∫
𝐼
𝑖

(𝑉
𝑖
− 𝛽 (𝑢) , 𝛽

−1
(𝑉

𝑖
) − 𝑢 (𝑡))

Ω
𝑑𝑡

≤ 𝐶(𝐻 +𝐻
2
+ 𝛿

2𝜇
+ 𝛿

𝜇
+ 𝜏 +

𝐻

𝛿
+
𝐻
4

𝜏𝛿2
+
𝐻
2

𝛿2
+
𝐻
2

√𝜏𝛿
) .

(46)

Remark 10. The proof method of Theorem 9 can be found
in [6, 12]. However, there is a little difference between our
result and the result in [6, 12] because we consider the two
degenerate points case.

4. Main Result

In this section, the main task is to give out the error between
𝑉
𝑖 and V𝑖,𝐻. Here, 𝑉𝑖 and V𝑖,𝐻 are the solutions of problems

(31) and (22), respectively. Before the proof of ourmain result,
the following useful lemma will be introduced [15, 16].

Lemma 11. 𝑎∗, 𝑔∗ are defined in (27) and (28) and 𝑎, 𝑔 are
defined in (23) and (24), respectively. Then, for all 𝑠 ∈ 𝑅,

󵄨󵄨󵄨󵄨𝑎
∗
(𝑠) − 𝑎 (𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐶
𝜖

𝑙
,

󵄨󵄨󵄨󵄨𝑔
∗
(𝑠) − 𝑔 (𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐶
𝜖

𝑙
. (47)

Then, we have the main result of the paper.

Theorem 12. 𝑢𝑖,𝐻, V𝑖,𝐻 and𝑈𝑖,𝑉𝑖 are the solutions of problems
(22) and (31) at time 𝑡

𝑖
, respectively. Denote 𝑒𝐻V,𝑖 = V𝑖,𝐻 − 𝑉𝑖 ∈

𝑋
0

𝐻
and 𝑒𝐻

𝑢,𝑖
= 𝑢

𝑖,𝐻
−𝑈

𝑖
∈ 𝑋

𝐻
. Then, under assumptions (H1)–

(H5), there exists a positive constant 𝐶 independent of𝐻, 𝛿, 𝜖,
𝜏 such that

max
1≤𝑖≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1
+

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1

󵄩󵄩󵄩󵄩󵄩

2

−1

+ 𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))
Ω

≤ 𝐶(𝐻 +
𝐻

𝛿
+
𝐻
2

𝛿2
+ 𝛿

𝜇
+ 𝛿

2𝜇
+
𝜖
2

𝑙2
) .

(48)

Proof. Subtract (31) from (22) and notice the notation
∑
𝐾
(⋅, ⋅)

𝐻,𝐾
= (⋅, ⋅)

𝐻
; we have

(𝑢
𝑖,𝐻
− 𝑢

𝑖−1,𝐻
− 𝑈

𝑖
+ 𝑈

𝑖−1
, 𝜒)

𝐻

+ 𝜏 (𝐴
𝐻
(V𝜖,𝐻, 𝜒) − (𝑎∗∇𝑉𝑖, ∇𝜒)

𝐻
)

+ 𝜏 (𝐺
𝐻
(𝑢

𝜖,𝐻
, 𝜒) − (𝑔

∗
(𝑈

𝑖
) , ∇𝜒)

𝐻
) = 0;

(49)

that is,

(𝑢
𝑖,𝐻
− 𝑢

𝑖−1,𝐻
− 𝑈

𝑖
+ 𝑈

𝑖−1
, 𝜒)

𝐻

+ 𝜏 ((𝑎∇V𝑖,𝐻, ∇𝜒)
𝐻
− (𝑎

∗
∇𝑉

𝑖
, ∇𝜒)

𝐻
)

+ 𝜏 ((𝑔 (𝑢
𝑖,𝐻
) , ∇𝜒)

𝐻
− (𝑔

∗
(𝑈

𝑖
) , ∇𝜒)

𝐻
) = 0.

(50)

Let 𝜒 = 𝐺
𝐻
𝑒
𝐻

𝑢,𝑖
∈ 𝑋

0

𝐻
and sum 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁; then we have

𝑁

∑

𝑖=1

(𝑢
𝑖,𝐻
− 𝑢

𝑖−1,𝐻
− 𝑈

𝑖
+ 𝑈

𝑖−1
, 𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

+ 𝜏

𝑁

∑

𝑖=1

((𝑎∇V𝑖,𝐻 − 𝑎∗∇𝑉𝑖, ∇𝐺
𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻
)

+ 𝜏

𝑁

∑

𝑖=1

((𝑔 (𝑢
𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻
) = 0.

(51)

Denote the above equality by 𝑇
1
+ 𝑇

2
+ 𝑇

3
= 0.

For the term 𝑇
1
, noticing that 𝑎∗ is also positive and

bounded, we use (15), (45), and the definition of 𝐺
𝐻
to get

𝑇
1
=

𝑁

∑

𝑖=1

(𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1
, 𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

=

𝑁

∑

𝑖=1

(𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1
, 𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)

+

𝑁

∑

𝑖=1

∑

𝐾

𝐸 (𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1
, 𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
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≥

𝑁

∑

𝑖=1

(𝑎
∗
∇𝐺

𝐻
(𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)

− 𝐶𝐻

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1

󵄩󵄩󵄩󵄩󵄩0

󵄩󵄩󵄩󵄩󵄩
𝐺
𝐻
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩1

≥ (𝑎
∗
∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑁
, ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑁
)

+

𝑁

∑

𝑖=1

(𝑎
∗
∇𝐺

𝐻
(𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1
) , ∇𝐺

𝐻
(𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1
))

− (𝑎
∗
∇𝐺

𝐻
𝑒
𝐻

𝑢,0
, ∇𝐺

𝐻
𝑒
𝐻

𝑢,0
) − 𝜂

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1

󵄩󵄩󵄩󵄩󵄩

2

−1

− 𝐶 (𝜂)𝐻
2

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1

≥ 𝐶
𝑎

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑁

󵄩󵄩󵄩󵄩󵄩

2

−1
− 𝐶

𝑎

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,0

󵄩󵄩󵄩󵄩󵄩

2

−1

+ (𝐶
𝑎
− 𝜂)

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1

󵄩󵄩󵄩󵄩󵄩

2

−1
− 𝐶 (𝜂)𝐻

2

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1
.

(52)

Rewrite the term 𝑇
2
as

𝑇
2
= 𝜏

𝑁

∑

𝑖=1

(𝑎
∗
∇𝑒

𝐻

V,𝑖, ∇𝐺𝐻𝑒
𝐻

𝑢,𝑖
)

+ 𝜏

𝑁

∑

𝑖=1

∑

𝐾

𝐸 (𝑎
∗
∇𝑒

𝐻

V,𝑖, ∇𝐺𝐻𝑒
𝐻

𝑢,𝑖
)

+ 𝜏

𝑁

∑

𝑖=1

((𝑎 − 𝑎
∗
) ∇V𝑖,𝐻, ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

= 𝜏

𝑁

∑

𝑖=1

(𝑒
𝐻

V,𝑖, 𝑒
𝐻

𝑢,𝑖
) + 𝜏

𝑁

∑

𝑖=1

∑

𝐾

𝐸 (𝑎
∗
∇𝑒

𝐻

V,𝑖, ∇𝐺𝐻𝑒
𝐻

𝑢,𝑖
)

+ 𝜏

𝑁

∑

𝑖=1

((𝑎 − 𝑎
∗
) ∇V𝑖,𝐻, ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

≐ 𝑇
21
+ 𝑇

22
+ 𝑇

23
.

(53)

Applying (20), (12), and (32), we get

𝑇
21
= 𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))

+ 𝜏

𝑁

∑

𝑖=1

(𝑒
𝐻

V,𝑖, 𝐼𝐻𝛽
−1

𝛿
(V𝑖,𝐻) − 𝛽−1 (V𝑖,𝐻)

+𝐼
𝐻
𝛽
−1

𝛿
(𝑉

𝑖
) − 𝛽

−1
(𝑉

𝑖
))

≥ 𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))

− 𝐶𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

V,𝑖
󵄩󵄩󵄩󵄩󵄩0
(𝐻

󵄩󵄩󵄩󵄩󵄩
∇𝛽

−1

𝛿
(V𝑖,𝐻)

󵄩󵄩󵄩󵄩󵄩

+𝐻
󵄩󵄩󵄩󵄩󵄩
∇𝛽

−1

𝛿
(𝑉

𝑖
)
󵄩󵄩󵄩󵄩󵄩
+ 𝛿

𝜇
)

≥ 𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))

− 𝐶𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

V,𝑖
󵄩󵄩󵄩󵄩󵄩0
(
𝐻

𝛿

󵄩󵄩󵄩󵄩󵄩
∇V𝑖,𝐻

󵄩󵄩󵄩󵄩󵄩
+
𝐻

𝛿

󵄩󵄩󵄩󵄩󵄩
∇𝑉

𝑖󵄩󵄩󵄩󵄩󵄩
+ 𝛿

𝜇
)

≥ 𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖)) − 𝐶(
𝐻

𝛿
+ 𝛿

𝜇
) ,

󵄨󵄨󵄨󵄨𝑇22
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐻𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑎
∗󵄩󵄩󵄩󵄩1,∞

󵄩󵄩󵄩󵄩󵄩
∇𝑒

𝐻

V,𝑖
󵄩󵄩󵄩󵄩󵄩0

󵄩󵄩󵄩󵄩󵄩
∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩0

≤ 𝐶

𝑁

∑

𝑖=1

𝜏 (𝐻
2󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

V,𝑖
󵄩󵄩󵄩󵄩󵄩

2

1
+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

1
)

≤ 𝐶(𝐻
2
+

𝑁

∑

𝑖=1

𝜏
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

1
) ,

󵄨󵄨󵄨󵄨𝑇23
󵄨󵄨󵄨󵄨 ≤ 𝐶

𝜖

𝑙
𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
∇V𝑖,𝐻

󵄩󵄩󵄩󵄩󵄩0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩−1
≤ 𝐶(

𝜖

𝑙
)

2

+ 𝐶𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1
.

(54)

For the terms 𝑇
22
, 𝑇

23
, we have used (19), (18), and Lemma 11.

Similar to 𝑇
2
, the term 𝑇

3
can be estimated as the

following:

𝑇
3
= 𝜏

𝑁

∑

𝑖=1

(𝑔 (𝑢
𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

= 𝜏

𝑁

∑

𝑖=1

(𝑔 (𝑢
𝑖,𝐻
) − 𝑔

∗
(𝑢

𝑖,𝐻
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

+ 𝜏

𝑁

∑

𝑖=1

(𝑔
∗
(𝑢

𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)
𝐻

≐ 𝑇
31
+ 𝑇

32
,

󵄨󵄨󵄨󵄨𝑇31
󵄨󵄨󵄨󵄨 ≤ 𝐶

𝜖

𝑙
𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩−1
≤ 𝐶(

𝜖

𝑙
)

2

+ 𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1
,

𝑇
32
= 𝜏

𝑁

∑

𝑖=1

(𝑔
∗
(𝑢

𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
)

+ 𝜏

𝑁

∑

𝑖=1

𝐸 (𝑔
∗
(𝑢

𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
) , ∇𝐺

𝐻
𝑒
𝐻

𝑢,𝑖
) ,



8 Journal of Applied Mathematics

󵄨󵄨󵄨󵄨𝑇32
󵄨󵄨󵄨󵄨 ≤ 𝜏

𝑁

∑

𝑖=1

(
󵄩󵄩󵄩󵄩󵄩
𝑔
∗
(𝑢

𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
)
󵄩󵄩󵄩󵄩󵄩0

+ 𝐶𝐻(
󵄩󵄩󵄩󵄩󵄩
∇𝑔

∗
(𝑢

𝑖,𝐻
)
󵄩󵄩󵄩󵄩󵄩0
+
󵄩󵄩󵄩󵄩󵄩
∇𝑔

∗
(𝑈

𝑖
)
󵄩󵄩󵄩󵄩󵄩0
))

×
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩−1
.

(55)

Noticing 𝑢𝑖,𝐻 = 𝐼
𝐻
𝛽
−1

𝛿
(V𝑖,𝐻) (also𝑈𝑖) and (H5), it follows that

󵄩󵄩󵄩󵄩󵄩
𝑔
∗
(𝑢

𝑖,𝐻
) − 𝑔

∗
(𝑈

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

0

≤
󵄩󵄩󵄩󵄩󵄩
𝑔
∗
(𝛽

−1
(V𝑖,𝐻)) − 𝑔∗ (𝛽−1 (𝑉𝑖))

󵄩󵄩󵄩󵄩󵄩

2

0

+
󵄩󵄩󵄩󵄩󵄩
𝑔
∗
(𝑢

𝑖,𝐻
) − 𝑔

∗
(𝛽

−1
(V𝑖,𝐻))

󵄩󵄩󵄩󵄩󵄩

2

0

+
󵄩󵄩󵄩󵄩󵄩
𝑔
∗
(𝛽

−1
(𝑉

𝑖
)) − 𝑔

∗
(𝑈

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

0

≤ (V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))
Ω

+ 𝐶
𝐻
2

𝛿2
(
󵄩󵄩󵄩󵄩󵄩
∇V𝑖,𝐻

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
∇𝑉

𝑖󵄩󵄩󵄩󵄩󵄩

2

) + 𝐶𝛿
2𝜇

≤ (V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))
Ω

+ 𝐶(
𝐻
2

𝛿2
+ 𝛿

2𝜇
) ,

󵄩󵄩󵄩󵄩󵄩
∇𝑔

∗
(𝑢

𝑖,𝐻
)
󵄩󵄩󵄩󵄩󵄩0
=
󵄩󵄩󵄩󵄩󵄩
∇𝑔

∗
(𝐼
𝐻
𝛽
−1

𝛿
(V𝑖,𝐻))

󵄩󵄩󵄩󵄩󵄩0
≤ 𝐶

1

𝛿

󵄩󵄩󵄩󵄩󵄩
∇V𝑖,𝐻

󵄩󵄩󵄩󵄩󵄩0
.

(56)

So, we have

󵄨󵄨󵄨󵄨𝑇32
󵄨󵄨󵄨󵄨 ≤ 𝜂𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))
Ω

+ 𝐶(
𝐻
2

𝛿2
+ 𝛿

2𝜇
) + 𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1
.

(57)

Combining all the terms and choosing the parameter 𝜂
properly, we have

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑁

󵄩󵄩󵄩󵄩󵄩

2

−1
+

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖
− 𝑒

𝐻

𝑢,𝑖−1

󵄩󵄩󵄩󵄩󵄩

2

−1

+ 𝜏

𝑁

∑

𝑖=1

(V𝑖,𝐻 − 𝑉𝑖, 𝛽−1 (V𝑖,𝐻) − 𝛽−1 (𝑉𝑖))
Ω

≤ 𝐶(𝐻
2
+
𝐻

𝛿
+
𝐻
2

𝛿2
+ 𝛿

𝜇
+ 𝛿

2𝜇
+
𝜖
2

𝑙2
)

+ 𝜏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐻

𝑢,𝑖

󵄩󵄩󵄩󵄩󵄩

2

−1
.

(58)

At last, we use the Gronwall inequality to the above formula-
tion to finish the proof completely.

5. Numerical Example

In this subsection, we consider the Richards equation under
the van Genuchten-Mualem model [2]. Consider

𝜕
𝑡
𝜃 − ∇ ⋅ (𝐷 (𝑥, 𝜃) ∇𝜃 + 𝐾 (𝑥, 𝜃) ⋅

→

𝑒
𝑥
3

) = 0

in [0, 1]2 × (0, 𝑇) ,

𝜃 = 𝜃
𝑠

on Γ
𝑡
= {𝑥

1
∈ (0, 1) , 𝑥3 = 1} ,

𝜃 = 𝜃
𝑟

on Γ
𝑏
= {𝑥

1
∈ (0, 1) , 𝑥

3
= 0} ,

(𝐷 (𝑥, 𝜃) ∇𝜃 + 𝑘 (𝑥, 𝜃)
→

𝑒
𝑥
3

) ⋅
→

𝑛 = 0

on Γ
𝑙𝑟
= {𝑥

1
= 0, 1; 𝑥

3
∈ (0, 1)} ,

𝜃 (𝑥, 0) = 𝜃
𝑟

in [0, 1]2,
(59)

and, here, the constitutive relations are

𝜃 (𝑢) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) (1 + 𝛼𝑠|𝑢|
𝑛
)
−𝑚
,

𝐾 (𝑥, 𝜃) = 𝐾
𝑠
(𝑥
1
, 𝑥
3
) 𝜂

1/2
(1 − (1 − 𝜂

1/𝑚
)
𝑚

)
2

,

𝐷 (𝑥, 𝜃) =
(1 − 𝑚)𝐾𝑠 (𝑥1, 𝑥3)

𝛼
𝑠
𝑚(𝜃

𝑠
− 𝜃

𝑟
)

𝜂
(1/2)−𝑚

× ((1 − 𝜂
1/𝑚
)
−𝑚

+ (1 − 𝜂
1/𝑚
)
𝑚

− 2) ,

(60)

whereΘ = (𝜃−𝜃
𝑟
)/(𝜃

𝑠
−𝜃

𝑟
) and𝐾

𝑠
, 𝛼
𝑠
,𝑚, and 𝑛 are themedia

parameters. Throughout this subsection, we set𝑚 = 0.5, 𝑛 =
2, 𝜃

𝑟
= 0.05, and 𝜃

𝑠
= 0.489. The heterogeneity comes from

absolute permeability𝐾
𝑠
(𝑥) and 𝛼(𝑥).

Notice that the Richards equation under the van
Genuchten-Mualem model (59) is degenerated at 𝜃 = 𝜃

𝑟

(𝐷 = 0) and 𝜃 = 𝜃
𝑠
(𝐷 = +∞) and sharp interface would be

developed between saturated and unsaturated regions. Our
HMM-FEM scheme can be also used to treat this kind of
problems.

In our computation, in order to avoid the difficulty
of degeneration, the coefficient 𝐷(𝑥, 𝜃) is replaced by a
regularized one as

𝐷 (𝑥, 𝜃) =

{{

{{

{

𝐷(𝑥, 𝜃 (Θ)) Θ ∈ [0.001, 0.999] ,

𝐷 (𝑥, 𝜃 (0.001)) Θ ∈ [0, 0.001) ,

𝐷 (𝑥, 𝜃 (0.999)) Θ ∈ (0.999, 1] ,

(61)

where 𝜃(Θ) = (𝜃
𝑠
− 𝜃

𝑟
)Θ + 𝜃

𝑟
.

5.1. van Genuchten-Mualem Model with Periodic Coefficients.
For periodic case, we set

𝐾
𝑠
(𝑥
1
, 𝑥
3
) =

1/ [2 + 1.8 sin (2𝜋 (2𝑥
3
− 𝑥

1
) /𝜖)]

117.4
,

𝛼
𝑠
(𝑥
1
, 𝑥
3
) =

1/ [2 + 1.5 sin (2𝜋 (2𝑥
3
− 𝑥

1
) /𝜖)]

7.6
.

(62)

In our simulation, 𝜖 is chosen to be 1/256.
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Figure 2:The HMM-FEM solution (star) compared with fine-scale solution (solid line) along the cross-section 𝑥
1
= 0.5 for periodic case (a)

and random case (isotropic) (b), respectively.

The numerical solution of HMM-FEM is obtained on a
macroscale grid 32 × 32. For each local sample cell 𝐼

𝑙
, we

choose 𝑙 = 4𝜖 and solve the microproblems (25) on a grid
with size of 𝜖/16. We compare the HMM-FEM solution with
the fine-scale solutionwhich is obtained on a grid 4096×4096
by FVM. The time step is also chosen to be 𝜏 = 1/1000 in
this subsection. We compare the HMM-FEM solution with
the fine-scale solution along the cross-section of 𝑥

1
= 0.5

(Figure 2(a)).

5.2. van Genuchten-MualemModel with RandomCoefficients.
For the random model, we only consider the isotropic
heterogeneities case. We generate the random log-normal
permeability fields𝐾

𝑠
(𝑥) and 𝛼(𝑥) by the samemethods used

in [16]. The corresponding normal distribution of log(𝐾
𝑠
)

is 𝑁(−3, 0.8) and the corresponding normal distribution of
log(𝛼

𝑠
) is 𝑁(−2, 0.8). The correlation lengths of both 𝑘

𝑠
and

𝛼
𝑠
are 𝑙

1
= 𝑙

3
= 0.01 in 𝑥

1
and 𝑥

3
directions. The solution

of HMM-FEM is obtained on a macroscale grid 32 × 32. For
each local sample cell 𝐼

𝑙
, we choose 𝑙 = 1/64 and solve the

microproblems (25) on a grid with size of 𝛿/16. We compare
the HMM-FEM solution with the fine-scale solution which is
obtained by solving (59) on a grid 1024 × 1024 by FVM. We
compare theHMM-FEMsolutionwith the fine-scale solution
along the cross-section 𝑥

1
= 0.5 (Figure 2(b)).
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