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For the marginal longitudinal generalized linear models (GLMs), we develop the empirical Cressie-Read (ECR) test statistic
approach which has been proposed for the independent identically distributed (i.i.d.) case.The ECR test statistic includes empirical
likelihood as a special case. By adopting this ECR test statistic approach and taking into account the within-subject correlation,
the efficiency theory results of estimation and testing based on ECR are established under some regularity conditions. Although a
working correlationmatrix is assumed, there is no need to estimate the nuisance parameters in theworking correlationmatrix based
on the quadratic inference function (QIF).Therefore, the proposed ECR test statistic is asymptotically a standard 𝜒2 limit under the
null hypothesis. It is shown that the proposed method is more efficient even when the working correlation matrix is misspecified.
We also evaluate the finite sample performance of the proposed methods via simulation studies and a real data analysis.

1. Introduction

Longitudinal studies are increasingly common in many sci-
entific research fields, including epidemiology, econometrics,
medicine, and life and social sciences. For example, longitu-
dinal studies are often used in psychology to study develop-
mental trends across the life span, in sociology to study life
events throughout lifetimes or generations, and in medical
area to take different treatments at the start of the study and to
see what kind of effects the assigned patients have with each
treatment by week or by year.

Longitudinal data modeling is a statistical method often
used in the experiments that are designed such that responses
on the same experimental units are observed at each repe-
tition. However, generalized linear models (GLMs [1]) have
become a favored tool for the modelling of clustered and
longitudinal data by allowing for the non-Gaussian data and
nonlinear link functions, such as binomial or Poisson’s type
responses. The intrinsic complexity of longitudinal GLMs
makes them challenging. First, one characteristic of lon-
gitudinal data is the within-subject correlation among the
repeated measurements. Ignoring this within-subject corre-
lation causes a loss of efficiency in general problems, and

the presence of correlation makes it hard to establish the
underlying asymptotic theory. Second, the full likelihood for
longitudinal data is often difficult to specify, particularly for
the correlated non-Gaussian data. Researchers had developed
appropriate methods and criteria for longitudinal GLMs,
where generalized estimating equations (GEE [2, 3]) or
a recently proposed related method based on quadratic
inference functions (QIF; see [4]) is an attractive option for
longitudinal regression, particularly when marginal relation-
ships rather than within-subject correlation are of primary
interest.

In the present paper, we consider the popular marginal
longitudinal GLMs. Suppose that Y

𝑖
= (𝑦
𝑖1
, . . . , 𝑦

𝑖𝑚𝑖
)
𝑇 is the

multivariate response for the 𝑖 subject and X
𝑖
= (x
𝑖1
, . . . ,

x
𝑖𝑚𝑖
)
𝑇 is the𝑚

𝑖
×𝑝matrix of the covariates for the 𝑖th subject

(𝑖 = 1, . . . , 𝑛). Observations from different subjects are inde-
pendent, but those from the same subjects are correlated.
Assume that the marginal mean of 𝑦

𝑖𝑗
is

𝐸 (𝑦
𝑖𝑗
| x
𝑖𝑗
) = ℎ (𝛽

𝑇x
𝑖𝑗
) , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚

𝑖
,

(1)
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where ℎ(⋅) is a known link function, 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
𝑇 is the

unknown parameter vector of interest, and x
𝑖𝑗
= (𝑥
𝑖𝑗1
, . . . ,

𝑥
𝑖𝑗𝑝
)
𝑇 is a 𝑝 × 1 vector for 𝑗 = 1, . . . , 𝑚

𝑖
. In order to simplify

notation, but without loss of generality, we assume 𝑚
𝑖
≡ 𝑚.

Recently, there has been considerable interest of investigating
the GLMs, such as Liang and Zeger [2], Zeger and Liang [3],
Fitzmaurice [5], Qu et al. [4], Pan [6], Balan and Schiopu-
Kratina [7], Qu and Li [8], Wang and Qu [9], Wang [10], and
Li et al. [11].

The empirical likelihood method was introduced by
Owen [12–14] as a nonparametric method of inference based
on a data-driven likelihood ratio function in the i.i.d. case and
had been applied to various statistical models. For example,
Kolaczyk [15] andChen andCui [16]made an extension to the
generalized linear models. As for other studies, see Baggerly
[17], DiCiccio et al. [18], Chen and Qin [19], Qin and Lawless
[20], Zhu and Xue [21], and Li et al. [22] among others. Owen
[23] is one of the best references for this field. Although the
empirical likelihood method had been investigated by many
authors, those researches hadmostly focused on independent
observations. For the analysis of longitudinal data, Xue and
Zhu [24] applied the empirical likelihood approach to the
varying coefficient models with longitudinal data, but they
did not consider the within-subject correlation structure of
the longitudinal data. Li et al. [25] and Li et al. [26] proposed
the generalized empirical likelihood method for longitudinal
data by introducing the known within-subject correlation
structure. Wang et al. [27] proposed two generalized empiri-
cal likelihood methods for the longitudinal linear model by
taking into consideration within-subject correlations. They
showed that, by plugging the estimator of the working
correlation matrix into the empirical log-likelihood ratio
(ELR), the resulting ELR is asymptotically a weighted sum
of independent 𝜒2

1
-variables with unknown weights. Thus,

the empirical likelihood method needs to be adjusted so that
it can be efficiently used to accommodate the correlation
inherent in longitudinal data. However, inmany applications,
how to estimate the working correlation matrix effectively is
a challenging problem.

Instead of the empirical likelihood ratio statistic, Baggerly
[17] used the empirical Cressie-Read (ECR) test statistic and
showed that it is also asymptotically a Chi-squared distribu-
tion in the i.i.d. case. Bravo [28] extended the ECR approach
to inference for 𝛼-mixing processes. The empirical Cressie-
Read test statistic has user-specified parameter 𝜆 ∈ (−∞,∞)

and encompasses several commonly used testing statistics
as special cases, such as the empirical likelihood statistic
(𝜆 = 0), the maximum entropy, minimum information or
theKullback-Leibler statistic (𝜆 = −1), theNeyman-modified
𝜒
2 statistic or the Euclidean likelihood statistic (𝜆 = −2), the

Freeman-Tukey statistic (𝜆 = −1/2), and Pearson’s 𝜒2 statistic
(𝜆 = 1), the first two being defined in a limiting sense. Thus,
we can use these results to construct confidence regions of the
parameter 𝛽 of interest.

In this paper we develop Baggerly’s results on the ECR
test statistic for the longitudinal data by combining the idea
of QIF in Qu et al. [4] and apply the proposed method to
the marginal longitudinal GLMs (1). Specifically, we derive
the asymptotic distributions of the maximum empirical

Cressie-Read likelihood estimator (MECRLE) and the ECR
test statistic. Although the working correlation matrix is
assumed, the proposedmethod needs not to estimate the nui-
sance parameters associatedwith correlations.This is because
the inverse of the commonly used working correlationmatrix
can be exactly represented or approximated by a linear com-
bination of basis matrices such that the dimension of the
unbiased estimating functions is greater than the number
of unknown parameters. Thus, the efficiency results can be
obtained by combining the ECRmethodwith the generalized
method of moments (GMM) proposed by Hansen [29].
Therefore, the proposed method inherits the advantages of
the empirical likelihood, QIF, and GMM methods, and the
proposed method represents a good alternative in this area
as well.

The paper is organized as follows. In Section 2, we
propose themore generalizedmethod of the ECR test statistic
for marginal longitudinal GLMs by combining with the QIF
approach. The technical conditions and some asymptotic
properties are given in Section 3. In Section 4, we present the
results for simulation studies and a real dataset to illustrate the
proposed methods. The technical proofs of the main results
are presented in Section 5.

2. Model and ECR Test Statistic

Suppose that the population (X,Y) comes from the marginal
longitudinal generalized linear model (1). Then the marginal
mean of 𝑦

𝑖𝑗
is

𝜇
𝑖𝑗
= 𝐸 (𝑦

𝑖𝑗
| x
𝑖𝑗
) = ℎ (𝛽

𝑇x
𝑖𝑗
) (2)

and the marginal variance of 𝑦
𝑖𝑗
is

Var (𝑦
𝑖𝑗
| x
𝑖𝑗
) = 𝜙] (𝜇

𝑖𝑗
) , (3)

where ](⋅) is a variance function and 𝜙 is a scale parameter.
With assumptions on the first marginal moments, the

GEE [2] estimator of 𝛽 is defined as the solution of
𝑛

∑

𝑖=1

�̇�
𝑇

𝑖
V−1
𝑖
(Y
𝑖
− 𝜇
𝑖
) = 0, (4)

where 𝜇
𝑖
= (𝜇
𝑖1
, . . . , 𝜇

𝑖𝑚
)
𝑇, �̇�
𝑖
= 𝜕𝜇
𝑖
/𝜕𝛽, is an 𝑚 × 𝑝 matrix

and V
𝑖
= A1/2
𝑖

R(𝛼)A1/2
𝑖

is a working covariance matrix with
A
𝑖
being the 𝑚 × 𝑚 diagonal matrix of marginal variances

Var(Y
𝑖
) and R(𝛼) as the working correlation matrix, where 𝛼

is a vectorwhich fully characterizesR(𝛼).Themain advantage
of the GEEmethod is that it yields a consistent estimator even
if the working correlation matrix is misspecified.

Qu et al. [4] introduced the quadratic inference function
(QIF) by assuming that the inverse of the working correlation
can be approximated by a linear combination of several basis
matrices; that is,

R−1 ≈ 𝑎
1
𝑇
1
+ 𝑎
2
𝑇
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑘
𝑇
𝑘
, (5)

where 𝑇
1
is the identity matrix, 𝑇

2
, . . . , 𝑇

𝑘
are symmetric

basis matrices which are determined by the structure ofR(𝛼),
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and 𝑎
1
, . . . , 𝑎

𝑘
are constant coefficients. The advantage of this

approach is that it does not require estimation of linear
coefficients 𝑎

𝑖
’s which can be viewed as nuisance parameters.

To implement the QIF approach, we need to choose the
basis for the inverse of the correlation matrix R(𝛼). Qu et
al. [4] and Qu and Song [30] found that, if R(𝛼) is the
exchangeable working correlation matrix, R−1 = 𝑎

1
𝑇
1
+ 𝑎
2
𝑇
2
,

where 𝑇
1
is the identity matrix and 𝑇

2
is a matrix with 0 on

the diagonal and 1 off diagonal. If the working correlation
matrix is AR(1) with 𝑅

𝑖𝑗
= 𝛼
|𝑖−𝑗|, then R−1 can be written as

a linear combination of three basis matrices, that is, 𝑎
1
𝑇
∗

1
+

𝑎
2
𝑇
∗

2
+ 𝑎
3
𝑇
∗

3
, where 𝑇∗

1
is the identity matrix, 𝑇∗

2
can be 1

on the subdiagonal and 0 elsewhere, and 𝑇
3
can be 1 on the

corners (1, 1) and (𝑚,𝑚) and 0 elsewhere. However, 𝑇∗
3
can

often be dropped out of the model, as removing 𝑇∗
3
does not

affect the efficiency of the estimator too much, and this can
simplify the estimation procedure. More details can be found
in Qu et al. [4], Qu and Song [30], and Qu and Li [8]
among others. In addition, Qu and Lindsay [31] developed
an adaptive estimating equation approach to find a reliable
approximation to the inverse of the variance matrix.

Let

𝑔
𝑖
(𝛽) =(

(

�̇�𝑇
𝑖
A−1/2
𝑖

𝑇
1
A−1/2
𝑖

(Y
𝑖
− 𝜇
𝑖
)

�̇�𝑇
𝑖
A−1/2
𝑖

𝑇
2
A−1/2
𝑖

(Y
𝑖
− 𝜇
𝑖
)

...

�̇�𝑇
𝑖
A−1/2
𝑖

𝑇
𝑘
A−1/2
𝑖

(Y
𝑖
− 𝜇
𝑖
)

)

)

. (6)

It is easy to check that the GEE defined in (4) becomes a
linear combination of the above extended score vector of
∑
𝑛

𝑖=1
𝑔
𝑖
(𝛽). Note that the dimension of 𝑔

𝑖
(𝛽) is 𝑟 = 𝑘𝑝, and it

is greater than the number of unknown parameters; thus the
GEEmethod is unavailable.Therefore, Qu et al. [4] proposed
the quadratic inference function by extending the method of
GMM proposed by Hansen [29] to obtain the estimator of 𝛽.

In this paper, we consider an alternate method using the
following empirical Cressie-Read test statistics [17, 32]:

CR (𝜆) = 2

𝜆 (1 + 𝜆)

𝑛

∑

𝑖=1

{(𝑛𝑝
𝑖
)
−𝜆

− 1} , −∞ < 𝜆 < ∞,

(7)

where 𝜆 is a user-specified parameter. ECR (7) is a general-
ization of the empirical log-likelihood ratio statistic and can
also be defined as

CR (𝜆) =

{{{{{{{{{

{{{{{{{{{

{

2

𝜆 (1 + 𝜆)

𝑛

∑

𝑖=1

{(𝑛𝑝
𝑖
)
−𝜆

− 1} , for 𝜆 ̸= 0, −1,

−2

𝑛

∑

𝑖=1

log (𝑛𝑝
𝑖
) , for 𝜆 = 0,

2𝑛

𝑛

∑

𝑖=1

𝑝
𝑖
log (𝑛𝑝

𝑖
) , for 𝜆 = −1.

(8)

Let𝑝
𝑖
be amultinomial likelihood supported on the observed

data, and suppose that we are interested in testing the null
hypothesis 𝐻

0
: 𝛽 = 𝛽

0
, where 𝛽

0
is the true parameter

vector. The empirical Cressie-Read family of test statistics for

𝐻
0
can be based on the following constrained minimization

problem:

CR
𝜆
(𝛽) = min{CR (𝜆) |

𝑛

∑

𝑖=1

𝑝
𝑖
= 1, 𝑝

𝑖
≥ 0,

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(𝛽) = 0} .

(9)

As noted by Baggerly [17], a unique value for the right-
hand side of (9) exists, provided that zero is inside the
convex hull of the 𝑔

1
(𝛽), . . . , 𝑔

𝑛
(𝛽) for given 𝛽. Applying the

Lagrange multiplier method, we can obtain the solution of 𝛽
by minimizing (9). Let

𝐺 =
2

𝜆 (1 + 𝜆)

𝑛

∑

𝑖=1

{(𝑛𝑝
𝑖
)
−𝜆

− 1} + 𝜅
1
(

𝑛

∑

𝑖=1

𝑝
𝑖
− 1)

+ 𝑛𝜅
𝑇

2

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(𝛽) ,

(10)

where 𝜅
1
and 𝜅
2
= (𝜅
1
, . . . , 𝜅

𝑘𝑝
)
𝑇 are the Lagrangemultipliers.

Let 𝜕𝐺/𝜕𝑝
𝑖
= 0; we have

𝑝
𝑖
=
{

{

{

1

𝑛
{1 + 𝑠 + 𝑡

𝑇
𝑔
𝑖
(𝛽)}
−1/(1+𝜆)

, (𝜆 ̸= − 1) ,

𝑠 exp {𝑡𝑇𝑔
𝑖
(𝛽)} , (𝜆 = −1) ,

(11)

where 𝑠 and the vector 𝑡 = (𝑡
1
, . . . , 𝑡

𝑘𝑝
)
𝑇 are determined by

1

𝑛

𝑛

∑

𝑖=1

{1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)}
−1/(1+𝜆)

= 1,

1

𝑛

𝑛

∑

𝑖=1

{1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)}
−1/(1+𝜆)

𝑔
𝑖
(𝛽) = 0.

(12)

In the present paper, we only are interested in the case of
𝜆 ̸= − 1. When 𝜆 → −1, the estimator of 𝛽 is viewed as the
empirical exponential tilting estimator (see [33, 34]). When
𝜆 ̸= − 1 and substituting (11) into (7), we obtain the following
empirical Cressie-Read test statistic:

CR
𝜆
(𝛽) =

2

𝜆 (1 + 𝜆)

𝑛

∑

𝑖=1

[{1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)}
𝜆/(1+𝜆)

− 1] .

(13)

Baggerly [17] had applied the empirical Cressie-Read test
statistic to the general parameter case and shown that all
members of the empirical Cressie-Read family have a Chi-
squared calibration and enjoy the advantages of the empirical
likelihoodmethod. From the proof ofTheorem 1 in this paper,
we can obtain that

CR
𝜆
(𝛽) = 𝑛𝑔

𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽) + 𝑜

𝑃
(1) ,

𝑠 =
1

2
𝜆 (1 + 𝜆) 𝑔

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽) + 𝑂

𝑃
(𝑛
−1/2

𝜁
𝑛
) ,

𝑡 (𝛽) = (1 + 𝜆) Σ̂
−1
𝑔
𝑛
(𝛽) + 𝜁

𝑛
, 𝜁
𝑛
= 𝑜
𝑃
(𝑛
−1/2

) ,

(14)

where 𝑔
𝑛
(𝛽)=(1/𝑛)∑

𝑛

𝑖=1
𝑔
𝑖
(𝛽) and Σ̂=(1/𝑛)∑𝑛

𝑖=1
𝑔
𝑖
(𝛽)𝑔𝑇
𝑖
(𝛽).

If �̂� satisfies CR
𝜆
(�̂�) = inf𝛽∈BCR

𝜆
(𝛽), the estimator �̂� is

called the maximum empirical Cressie-Read likelihood estima-
tor (MECRLE) of the parameter 𝛽.
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3. Asymptotic Properties

To establish the asymptotic properties, we need the following
regularity conditions.

(C1) The matrix Σ̂ = (1/𝑛)∑
𝑛

𝑖=1
𝑔
𝑖
(𝛽)𝑔𝑇
𝑖
(𝛽) converges a.s.

to an invertible positive definite matrix Σ(𝛽). This
condition holds based on the weak law of large num-
ber when 𝑛 tends to infinity and the cluster size is
fixed.

(C2) The domainB is a compact subset ofR𝑝 and the true
parameter value 𝛽

0
is in its interior. There exists a

unique 𝛽
0
∈ B satisfying mean zero model assump-

tion 𝐸{𝑔
1
(𝛽
0
)} = 0.

(C3) Let 𝜇
𝑖
= (𝜇
𝑖1
, . . . , 𝜇

𝑖𝑚
)
𝑇 where 𝜇

𝑖𝑗
= 𝐸(𝑦

𝑖𝑗
| x
𝑖𝑗
); then

𝜇
𝑖
is a.s. continuously differentiable in 𝛽. Denote this

𝑚×𝑝 derivative matrix by �̇�
𝑖
; then �̇�

𝑖
has full column

rank 𝑝 a.s.

(C4) Assume that 𝜕𝑔
𝑖
(𝛽)/𝜕𝛽 is continuous in a neighbor-

hood of the true value 𝛽
0
and the rank of 𝐸(𝜕𝑔

1
(𝛽
0
)/

𝜕𝛽) is 𝑝. In addition, (𝜕𝑔
𝑛
/𝜕𝛽)(�̂�) converges in prob-

ability to 𝐸[(𝜕𝑔
1
/𝜕𝛽)(𝛽

0
)] when �̂� converges in prob-

ability to 𝛽
0
.

Conditions (C1)–(C4) are actually quite mild and can be
easily satisfied, and these conditions are also found in Qin
and Lawless [20] and Qu et al. [4]. Conditions (C1) and (C4)
ensure that the asymptotic variance exists for the proposed
estimator. Condition (C2) ensures that there exists a √𝑛-
consistent solution in the compact subset B. (C3) is a com-
mon condition used in GLMs with longitudinal data.

Theorem 1. Assume that conditions (C1–C4) hold. Then, as
𝑛 → ∞, with probability tending to 1, CR

𝜆
(𝛽) attains its mini-

mum value at some point �̂� in the interior of the ball ‖𝛽−𝛽
0
‖ ≤

𝑛
−1/3 and �̂�, 𝑠, and �̂� = 𝑡(�̂�) satisfy

𝑄
1𝑛
(�̂�, 𝑠, �̂�) = 0, 𝑄

2𝑛
(�̂�, 𝑠, �̂�) = 1, 𝑄

3𝑛
(�̂�, 𝑠, �̂�) = 0,

(15)

where

𝑄
1𝑛
(𝛽, 𝑠, 𝑡) =

1

𝑛

𝑛

∑

𝑖=1

{1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)}
−1/(1+𝜆)

𝑔
𝑖
(𝛽) ,

𝑄
2𝑛
(𝛽, 𝑠, 𝑡) =

1

𝑛

𝑛

∑

𝑖=1

{1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)}
−1/(1+𝜆)

,

𝑄
3𝑛
(𝛽, 𝑠, 𝑡) =

1

𝑛

1

(1 + 𝜆)
2

×

𝑛

∑

𝑖=1

{1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)}
−1/(1+𝜆)

× (
𝜕𝑔
𝑖
(𝛽)

𝜕𝛽
)

𝑇

𝑡.

(16)

Theorem 2. Suppose that the conditions of Theorem 1 hold,
and further assume that 𝜕2𝑔(𝛽)/𝜕𝛽𝜕𝛽𝑇 is continuous about 𝛽
in a neighborhood of the true value 𝛽

0
. Then, as 𝑛 → ∞, one

has

√𝑛 (�̂� − 𝛽
0
)
𝐿

→ 𝑁(0,Ω) , (17)

where “ 𝐿→” denotes the convergence in distribution and

Ω = [𝐸(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

Σ
−1
(𝛽
0
)𝐸 (

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)]

−1

. (18)

Remark 3. When 𝜆 → 0, the empirical log-likelihood ratio
statistic is the special case of the empirical Cressie-Read test
statistic CR

𝜆
(𝛽).

Remark 4. The proposed method provides a way to find effi-
cient estimates for marginal longitudinal GLMs when the
within-subject correlation is considered. It is known that we
can construct the confidence regions of 𝛽

0
using Theorem 2.

The asymptotic varianceΩ of√𝑛(�̂�−𝛽
0
) does not depend on

any 𝜆 and can be consistently estimated by

[

[

{

𝑛

∑

𝑖=1

𝑝
𝑖

𝜕𝑔
𝑖
(�̂�)

𝜕𝛽
}

𝑇

{

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(�̂�) 𝑔

𝑇

𝑖
(�̂�)}

−1

×{

𝑛

∑

𝑖=1

𝑝
𝑖

𝜕𝑔
𝑖
(�̂�)

𝜕𝛽
}]

]

−1
(19)

or by the same expression with the 𝑝
𝑖
’s, replaced by 1/𝑛.

Theorem 5. Suppose that the conditions of Theorem 2 hold;
then, under the hypothesis 𝐻

0
: 𝛽 = 𝛽

0
, CR
𝜆
(𝛽
0
) is asymp-

totically a Chi-squared distribution with 𝑟 degrees of freedom
as 𝑛 → ∞.

Theorem 5 allows us to use the empirical Cressie-Read
test statistic for testing or obtaining the confidence regions for
the parameter 𝛽

0
. For any 0 < 𝛼 < 1, the confidence region

of 𝛽
0
with asymptotic coverage 1 − 𝛼 can be determined by

𝑃 (CR
𝜆
(𝛽
0
) ≤ 𝜒
2

𝑟
) = 1 − 𝛼. (20)

We can construct a goodness-of-fit statistic to test the
model assumption:

𝐻
0
: 𝐸 {𝑔

𝑖
(𝛽)} = 0. (21)

We call CR
𝜆
(𝛽
0
) − CR

𝜆
(�̂�) the empirical Cressie-Read likeli-

hood ratio statistic and call CR
𝜆
(�̂�) the model test statistic.

Theorem 6. Suppose that the conditions of Theorem 2 hold
and 𝑔

𝑖
(𝛽) has dimension 𝑟 = 𝑘𝑝 and 𝛽 has dimension 𝑝 with

𝑝 < 𝑟. Then, under the model assumption (21), CR
𝜆
(�̂�) is

asymptotically a Chi-squared distribution with 𝑟 − 𝑝 degrees
of freedom as 𝑛 → ∞; under the null hypothesis𝐻

0
: 𝛽 = 𝛽

0
,

CR
𝜆
(𝛽
0
)−CR

𝜆
(�̂�) is asymptotically a Chi-squared distribution

with 𝑝 degrees of freedom as 𝑛 → ∞.
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Table 1: The average coverage probabilities (ACP) and the average lengths (ALEN) of the confidence intervals for 𝛽
1
, 𝛽
2
, and 𝛽

3
when the

nominal level is 0.95 and the true correlation structure is AR(1) structure.

𝑛 𝛽
EL ET GEE QIF

ACP ALEN ACP ALEN ACP ALEN ACP ALEN

CS

60
𝛽
1

0.9120 0.4647 0.9060 0.4741 0.9000 0.4658 0.9120 0.4879
𝛽
2

0.9140 0.6375 0.8820 0.6539 0.8400 0.5561 0.8700 0.6642
𝛽
3

0.9280 0.4520 0.9150 0.4600 0.9100 0.4565 0.8960 0.4378

100
𝛽
1

0.9160 0.4646 0.9120 0.4713 0.9100 0.4625 0.9120 0.4742
𝛽
2

0.9180 0.6396 0.9080 0.6512 0.8940 0.6152 0.8740 0.6569
𝛽
3

0.9240 0.4518 0.9180 0.4577 0.9100 0.4432 0.9040 0.4432

AR(1)

60
𝛽
1

0.9220 0.3608 0.9180 0.3650 0.9200 0.3663 0.9480 0.3848
𝛽
2

0.9240 0.4959 0.9120 0.5033 0.8760 0.4288 0.9020 0.5149
𝛽
3

0.9320 0.3513 0.9280 0.3550 0.9240 0.3599 0.9280 0.3585

100
𝛽
1

0.9300 0.3613 0.9200 0.3641 0.9220 0.3541 0.9460 0.3716
𝛽
2

0.9360 0.4964 0.9320 0.5016 0.9160 0.4857 0.9140 0.5128
𝛽
3

0.9420 0.3514 0.9380 0.3541 0.9240 0.3597 0.9340 0.3537

4. Numerical Studies

4.1. Simulation Studies. In this subsection, we report the sim-
ulation study to illustrate the finite sample properties of the
proposed ECR test statistic. For simplicity, we only compute
the empirical likelihood (EL, 𝜆 = 0) and the empirical
exponential tilting (ET, 𝜆 → −1) and compare the proposed
methods with the GEE and QIF methods. Throughout the
simulation study, each dataset comprised 𝑛 = 60 and 100
subjects and 𝑚 = 5 observations per subject over time. For
each case, we repeat the experiment 500 times.

Consider the following logistic regression model. The
response variable 𝑦

𝑖𝑗
is binary and its marginal expectation

given x
𝑖𝑗
is

logit (𝜇
𝑖𝑗
) =

3

∑

𝑘=1

𝑥
𝑖𝑗,𝑘
𝛽
0𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 5, (22)

where 𝛽
0
= [1, 2, −0.8]

𝑇 and the covariate x
𝑖𝑗
= (𝑥
𝑖𝑗,1
, . . . ,

𝑥
𝑖𝑗,3
)
𝑇 has amultivariate normal distribution withmean zero,

marginal variance 1, and an AR(1) correlation matrix with
autocorrelation coefficient 0.7. The binary response vector
for each cluster has mean specified by (22) and an AR(1)
correlation structure with an autocorrelation coefficient 𝛼 =

0.7. Table 1 reports the simulation results for the average cov-
erage probabilities and the average lengths of the confidence
intervals for 𝛽

1
, 𝛽
2
, and 𝛽

3
when the nominal level is 0.95 and

the true correlation structure is AR(1) structure.
From Table 1, it is easy to see that the empirical likeli-

hood method performs much better in terms of coverage
accuracies of the confidence intervals even when the working
correlation structure is misspecified. And when the working
correlation structure is correctly specified, the performances
of all the methods are usually slightly better. Table 1 also
shows that the average coverage probabilities obtained by
all methods tend to the nominal level 0.95 and the average
lengths decrease as 𝑛 increases.

When sample size is 60 and the true correlation structure
is AR(1), the histograms and the QQ plots of the 500 max-
imum empirical likelihood estimators 𝛽

1
, 𝛽
2
, and 𝛽

3
based

on the empirical likelihood method are plotted in Figure 1
and the histograms and the QQ plots of the 500 maximum
empirical exponential tilting estimators 𝛽

1
, 𝛽
2
, and 𝛽

3
based

on the empirical exponential tilting method are plotted
in Figure 2 under the misspecified and correct correlation
structures, respectively. Figures 1 and 2 show that empirically
these estimators are asymptotically normal even when the
working correlation structure is misspecified.

4.2. Application to RealData. To examine the performance of
the proposedmethod, we analyze real data [35, 36] from a six-
week frequent magnetic resonance imaging (MRI) substudy
of the Betaseron clinical trial conducted at the University
of British Columbia in relapsing-remitting multiple sclerosis
involving 52 patients. The real data concerns a longitudinal
clinical trial to assess the effects of neutralizing antibodies
on interferon beta-1b (IFNB) in relapsing-remitting multiple
sclerosis (MS), which is a disease that destroys the myelin
sheath that surrounds the nerves. All patients were random-
ized into three treatment groups with allocation of 17 patients
being treated by placebo, 17 by low dose, and 16 by high dose.
This dataset has been studied by Song [37] and Li et al. [11].
There exist themissing values in this dataset; for convenience,
we only analyze the balanced longitudinal data which contain
39 patients.

For the analysis of this data, the binary response variable
is exacerbation, which refers to whether an exacerbation
began since the previous MRI scan, and is 1 for yes and 0
for no. Several baseline covariates are included in the model.
They are treatment (trt), time (𝑇) inweeks, squared time (𝑇2),
and duration of disease (dur) in years. Here trt is treated as an
ordinal covariatewith scale 0, 1, 2 representing zero (placebo),
low, and high dosage of the drug treatment. We consider the
following marginal logistic model for the data:

logit (𝜇
𝑖𝑗
) = 𝛽
0
+ 𝛽
1
trt
𝑖
+ 𝛽
2
𝑇
𝑗
+ 𝛽
3
𝑇
2

𝑗
+ 𝛽
4
dur
𝑖
, (23)

where𝜇
𝑖𝑗
is the probability of exacerbation at visit 𝑗 for subject

𝑖. Two correlation structures (exchangeable (CS) and AR(1))
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Figure 1: The histograms and the QQ plots for the maximum empirical likelihood estimators based on the empirical likelihood method for
𝑛 = 60. When the true correlation structure is AR(1), the left plots are obtained by using the misspecified CS working correlation structure
and the right plots are obtained by using the true AR(1) working correlation structure.
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Figure 2: The histograms and the QQ plots for the maximum empirical exponential tilting estimators based on the empirical exponential
tilting method for 𝑛 = 60. When the true correlation structure is AR(1), the left plots are obtained by using the misspecified CS working
correlation structure and the right plots are obtained by using the true AR(1) working correlation structure.
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Table 2: The parameter estimators (the corresponding standard errors) for CS and AR(1) correlation structures.

EL ET GEE QIF

CS

𝛽
0

−0.3834 (0.3820) −0.3051 (0.3872) −0.4030 (0.4096) −0.5039 (0.4005)
𝛽
1

−0.0321 (0.1239) −0.0454 (0.1259) −0.0809 (0.1510) −0.0667 (0.1206)
𝛽
2

−0.0344 (0.0141) −0.0349 (0.0143) −0.0301 (0.0146) −0.0296 (0.0146)
𝛽
3

0.00031 (0.00013) 0.00031 (0.00013) 0.00027 (0.00013) 0.00027 (0.00010)
𝛽
4

−0.0574 (0.0189) −0.0700 (0.0200) −0.0617 (0.0227) −0.0530 (0.0255)

AR(1)

𝛽
0

−0.4212 (0.4016) −0.4382 (0.4041) −0.4009 (0.3682) −0.5043 (0.4145)
𝛽
1

−0.0590 (0.1236) −0.0599 (0.1242) −0.0767 (0.1195) −0.0711 (0.1506)
𝛽
2

−0.0295 (0.0146) −0.0278 (0.0147) −0.0309 (0.0138) −0.0290 (0.0089)
𝛽
3

0.00026 (0.00013) 0.00025 (0.00013) 0.00028 (0.00012) 0.00027 (0.00008)
𝛽
4

−0.0620 (0.0206) −0.0645 (0.0208) −0.0606 (0.0179) −0.0558 (0.0249)

Table 3: 95% confidence intervals (CI) and the lengths (LEN) of the confidence intervals for CS and AR(1) correlation structures.

EL ET GEE QIF

CS

𝛽
0

CI [−1.1321, 0.3654] [−1.0640, 0.4539] [−1.2058, 0.3998] [−1.1504, 0.3596]

LEN 1.4975 1.5179 1.6056 1.5100

𝛽
1

CI [−0.2749, 0.2107] [−0.2922, 0.2014] [−0.3768, 0.2150] [−0.3680, 0.2065]

LEN 0.4856 0.4936 0.5918 0.5745

𝛽
2

CI [−0.0620, −0.0068] [−0.0629, −0.0069] [−0.0587, −0.0016] [−0.0604, −0.0039]

LEN 0.0552 0.0560 0.0571 0.0565

𝛽
3

CI [0.0001, 0.0006] [0.0001, 0.0006] [0.00002, 0.00052] [0.00008, 0.00056]

LEN 0.0005 0.0005 0.0005 0.00048

𝛽
4

CI [−0.0945, −0.0203] [−0.1092, −0.0308] [−0.1061, −0.0172] [−0.1030, −0.0030]

LEN 0.742 0.0784 0.0889 0.09995

AR(1)

𝛽
0

CI [−1.2084, 0.3659] [−1.2302, 0.3537] [−1.1226, 0.3208] [−1.2268, 0.2760]

LEN 1.5743 1.5839 1.4434 1.5028

𝛽
1

CI [−0.3012, 0.1832] [−0.3033, 0.1834] [−0.3109, 0.1576] [−0.3663, 0.2240]

LEN 0.4844 0.4867 0.4685 0.5903

𝛽
2

CI [−0.0580, −0.0009] [−0.0566, 0.0010] [−0.0580, −0.0037] [−0.0465, −0.0115]

LEN 0.0571 0.0576 0.0543 0.0350

𝛽
3

CI [0, 0.0005] [0, 0.0005] [0.00004, 0.00052] [0.00011, 0.00052]

LEN 0.0005 0.0005 0.00048 0.00041

𝛽
4

CI [−0.1023, −0.0217] [−0.1053, −0.0238] [−0.0957, −0.0255] [−0.1047, −0.0070]

LEN 0.0806 0.0815 0.0702 0.0977

are considered in this analysis. Table 2 reports the coefficient
estimators and the corresponding standard errors for CS and
AR(1) correlation structures, respectively. Table 3 reports the
95% confidence intervals and the lengths of the confidence
intervals for CS and AR(1) correlation structures.

From Tables 2 and 3, we can see that the parameter
estimators are very similar for all four methods under the CS
and AR(1) working correlation structures. For the CS work-
ing correlation structure, the empirical likelihood and the
empirical exponential tilting methods have smaller standard
errors and smaller interval lengths than the GEE and QIF
methods. However, theGEEmethod has the smaller standard
errors and the smaller interval lengths under the AR(1)
working correlation structure. Similar to the results in Song
[37], we also find that the baseline disease severity measured
as the duration of disease before the trial is an important
explanatory variable associated with the risk of exacerbation,

and we also do not find strong evidence that the drug
treatment is effective in reducing the risk of exacerbation.
Therefore, all the methods have comparable performance,
and these findings are close to the existing analysis in Song
[37].

5. Proofs of the Theorems

In this section,we present rigorous proofs of our results stated
in Section 3.

Proof of Theorem 1. Assume that 𝜆 ̸= − 1; 𝐺 defined by (10)
takes derivatives with respect to 𝑝

𝑖
; we have

𝜕𝐺

𝜕𝑝
𝑖

= −
2

(1 + 𝜆) 𝑛𝜆
𝑝
−(1+𝜆)

𝑖
+ 𝜅
1
+ 𝑛𝜅
𝑇

2
𝑔
𝑖
(𝛽) = 0, (24)
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which implies that

𝑝
−(1+𝜆)

𝑖
=
(1 + 𝜆) 𝑛

𝜆
(𝜅
1
+ 𝑛𝜅
𝑇

2
𝑔
𝑖
(𝛽))

2
. (25)

Multiplying𝑝
𝑖
at both sides of (25) and taking sumandnoting

that ∑𝑛
𝑖=1

𝑝
𝑖
= 1 and ∑𝑛

𝑖=1
𝑝
𝑖
𝑔
𝑖
(𝛽) = 0, we can derive that

𝑛

∑

𝑖=1

𝑝
−𝜆

𝑖
=
(1 + 𝜆) 𝑛

𝜆
𝜅
1

2
. (26)

Substituting (26) into (25), we have

𝑝
−(1+𝜆)

𝑖
=

𝑛

∑

𝑖=1

𝑝
−𝜆

𝑖
+
(1 + 𝜆) 𝑛

1+𝜆
𝜅
𝑇

2
𝑔
𝑖
(𝛽)

2
. (27)

By Theorem 1 in Baggerly [17], there exists a constant 𝑐 > 0

such that

2

𝜆 (1 + 𝜆)

𝑛

∑

𝑖=1

[(𝑛𝑝
𝑖
)
−𝜆

− 1] ≤ 𝑐, (28)

which implies that ∑𝑛
𝑖=1

𝑝
−𝜆

𝑖
= 𝑛
𝜆+1

+ 𝜂, where 𝜂 = 𝑂
𝑃
(𝑛
𝜆
).

Substituting this expression into (27), we have

𝑝
−(1+𝜆)

𝑖
= 𝑛
1+𝜆

+ 𝜂 +
(1 + 𝜆) 𝑛

1+𝜆
𝜅
𝑇

2
𝑔
𝑖
(𝛽)

2
. (29)

Therefore, we can obtain that

𝑝
𝑖
=
1

𝑛
[1 + 𝑠 + 𝑡

𝑇
𝑔
𝑖
(𝛽)]
−1/(1+𝜆)

, (30)

where 𝑠 = 𝜂/𝑛
1+𝜆

= 𝑂
𝑃
(𝑛
−1
) and 𝑡 = ((1 + 𝜆)/2)𝜅

2
. The next

step is to bound the convergence rate of 𝑡. Let 𝑡 = 𝜌𝑡
0
, where

‖𝑡
0
‖ = 1. Invoking Lemma 3.2 in Künsch [38] and 𝐸(𝑔

𝑖
(𝛽)) =

0, it is easy to show that 𝑡𝑇
0
𝑔
𝑖
(𝛽) = 𝑂

𝑃
(𝑛
1/2
). Applying the

Taylor expansion to ∑𝑛
𝑖=1

𝑝
𝑖
𝑔
𝑖
(𝛽) = 0, we have

1

𝑛

𝑛

∑

𝑖=1

[𝑔
𝑖
(𝛽) −

1

1 + 𝜆
(𝑠𝑔
𝑖
(𝛽) + 𝜌𝑔

𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽) 𝑡
0
) + 𝜁
𝑛
]

= 0,

(31)

where 𝜁
𝑛
= 𝜁
𝑛
(𝑔
𝑖
(𝛽), 𝑠, 𝜌). Assume that 𝜌 = 𝑂

𝑃
(𝑛
−]
), ] >

0. By the central limit theorem, we have (1/𝑛)∑𝑛
𝑖=1

𝑔
𝑖
(𝛽) =

𝑂
𝑃
(𝑛
−1/2

) and (1/𝑛)∑
𝑛

𝑖=1
𝑠𝑔
𝑖
(𝛽) = 𝑂

𝑃
(𝑛
−3/2

). Let Σ(𝛽) =

Var{𝑔
𝑖
(𝛽)}; it is easy to show that

Σ̂
Δ

=
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽) → Σ (𝛽) , a.s. (32)

If ] > 1/2 (or ] < 1/2), then the dominant term in the right-
hand side of (31) is (1/𝑛)∑𝑛

𝑖=1
𝑔
𝑖
(𝛽) = 𝑂

𝑃
(𝑛
−1/2

), while𝜌Σ̂𝑡
0
=

𝑂
𝑃
(𝑛
−]
), which implies that the sum cannot be zero unless

] = 1/2. Therefore, we obtain that 𝜌 = 𝑂
𝑃
(𝑛
−1/2

). By (31), we
have

𝜌𝑡
0
= (1 + 𝜆) Σ̂

−1
(
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽)) + 𝜁

𝑛
, 𝜁
𝑛
= 𝑜
𝑃
(𝑛
−1/2

) .

(33)

For convenience, let 𝑔
𝑛
(𝛽)
Δ

= (1/𝑛)∑
𝑛

𝑖=1
𝑔
𝑖
(𝛽). We now

find an approximation for 𝑠 in terms of 𝜌𝑡𝑇
0
𝑔
𝑖
(𝛽) = 𝑂

𝑃
(1). By

∑
𝑛

𝑖=1
𝑝
𝑖
= 1 and applying the Taylor expansion, we have

1

𝑛

𝑛

∑

𝑖=1

[1 −
𝑑
𝑛

1 + 𝜆
+
(2 + 𝜆) 𝑑

2

𝑛

2(1 + 𝜆)
2
+ 𝑂
𝑃
(𝑛
−1/2

𝜁
𝑛
)] = 1, (34)

where 𝑑
𝑛
= 𝑠+𝜌𝑡

𝑇

0
𝑔
𝑖
(𝛽) and 𝜁

𝑛
is defined by (33). Rearranging

(34) and ignoring terms of order 𝑂
𝑃
(𝑠
2
), we have

𝑠 + 𝜌𝑡
𝑇

0
𝑔
𝑛
(𝛽)

=
2 + 𝜆

2 (1 + 𝜆)
[2𝑠𝜌𝑡

𝑇

0
𝑔
𝑛
(𝛽)

+
1

𝑛
𝜌
2
𝑡
𝑇

0

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽) 𝑡
0
]

+ 𝑂
𝑃
(𝑛
−1/2

𝜁
𝑛
) .

(35)

That is,

𝑠 =
2 + 𝜆

2 (1 + 𝜆)
𝜌
2
𝑡
𝑇

0
Σ̂𝑡
0
− 𝜌𝑡
𝑇

0
𝑔
𝑛
(𝛽) + 𝑂

𝑃
(𝑛
−1/2

𝜁
𝑛
) . (36)

From (33) and (36), we have

𝑠 =
𝜆

2
𝜌𝑡
𝑇

0
𝑔
𝑛
(𝛽) + 𝑂

𝑃
(𝑛
−1/2

𝜁
𝑛
) . (37)

By (33) and (37) and applying the Taylor expansion for
CR
𝜆
(𝛽), it is easy to show that

CR
𝜆
(𝛽) =

2

𝜆 (1 + 𝜆)

𝑛

∑

𝑖=1

[(1 + 𝑠 + 𝜌𝑡
𝑇

0
𝑔
𝑖
(𝛽))
𝜆/(1+𝜆)

− 1]

=
2

(1 + 𝜆)
2

𝑛

∑

𝑖=1

[𝑠 + 𝜌𝑡
𝑇

0
𝑔
𝑖
(𝛽) −

1

2 (1 + 𝜆)

×𝜌
2
𝑡
𝑇

0
𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽) 𝑡
0
+ 𝑜
𝑃
(𝑛
−1
) ]

=
𝑛

(1 + 𝜆)
2
[2𝑠 + 2𝜌𝑡

𝑇

0
𝑔
𝑛
(𝛽) −

1

1 + 𝜆
𝜌
2
𝑡
𝑇

0
Σ̂𝑡
0

+𝑜
𝑃
(𝑛
−1
) ]

=
𝑛

(1 + 𝜆)
2
[𝜆𝜌𝑡
𝑇

0
𝑔
𝑛
(𝛽)

+ 2 (1 + 𝜆) 𝑔
𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽)

+ 2𝑂
𝑃
(𝑛
−1/2

) 𝜁
𝑛

− (1 + 𝜆) 𝑔
𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽)

− 2𝑔
𝑇

𝑛
(𝛽) Σ̂
−1
𝜁
𝑛
− 𝜁
𝑇

𝑛
Σ̂
−1
𝜁
𝑛

+𝑜
𝑃
(𝑛
−1
)]
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=
𝑛

(1 + 𝜆)
2
[𝜆 (1 + 𝜆) 𝑔

𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽)

+ 2 (1 + 𝜆) 𝑔
𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽)

− (1 + 𝜆) 𝑔
𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽)] + 𝑜

𝑃
(1)

= 𝑛𝑔
𝑇

𝑛
(𝛽) Σ̂
−1
𝑔
𝑛
(𝛽) + 𝑜

𝑃
(1) .

(38)

Similar to the proof of Lemma 1 in Qin and Lawless [20],
let 𝛽 = 𝛽

0
+ 𝑢𝑛
−1/3, for 𝛽 ∈ {𝛽 | ‖𝛽 − 𝛽

0
‖ = 𝑛

−1/3
}, where

‖𝑢‖ = 1.We first give a lower bound forCR
𝜆
(𝛽) on the surface

of the ball. When 𝐸‖𝑔
𝑖
(𝛽)‖3 < ∞ and ‖𝛽 − 𝛽

0
‖ ≤ 𝑛

−1/3, we
can obtain that

𝑡 (𝛽) = (1 + 𝜆) [
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽)]

−1

× [
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽)] + 𝑜 (𝑛

−1/3
)

= 𝑂 (𝑛
−1/3

) , a.s.

(39)

holds uniformly for 𝛽 ∈ {𝛽 | ‖𝛽 − 𝛽
0
‖ = 𝑛

−1/3
}. From (32),

(38), and (39), we have

CR
𝜆
(𝛽) = 𝑛[

1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽)]

𝑇

[
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽)]

−1

× [
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽)] + 𝑜 (𝑛

−1/3
)

= 𝑛[
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽
0
) +

1

𝑛

𝑛

∑

𝑖=1

𝜕𝑔
𝑖
(𝛽
0
)

𝜕𝛽
𝑢𝑛
−1/3

]

𝑇

× [
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽)]

−1

× [
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽
0
) +

1

𝑛

𝑛

∑

𝑖=1

𝜕𝑔
𝑖
(𝛽
0
)

𝜕𝛽
𝑢𝑛
−1/3

]

+ 𝑜 (𝑛
−1/3

)

= 𝑛 [𝑂(𝑛
−1/2

(log log 𝑛)1/2)

+𝐸(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)𝑢𝑛
−1/3

]

𝑇

Σ
−1
(𝛽
0
)

× [𝑂(𝑛
−1/2

(log log 𝑛)1/2)

+𝐸(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)𝑢𝑛
−1/3

] + 𝑜 (𝑛
−1/3

)

≥ (𝜙 − 𝜖) 𝑛
1/3
, a.s.,

(40)

where 𝜙 − 𝜖 > 0 and 𝜙 is the smallest eigenvalue of

𝐸(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

Σ
−1
(𝛽
0
) 𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
) . (41)

Similarly,

CR
𝜆
(𝛽
0
) = 𝑛[

1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽
0
)]

𝑇

[
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽
0
) 𝑔
𝑇

𝑖
(𝛽
0
)]

−1

× [
1

𝑛

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽
0
)] + 𝑜 (1)

= 𝑂 (log log 𝑛) , a.s.

(42)

It is known that, when 𝛽 ∈ {𝛽 | ‖𝛽 − 𝛽
0
‖ ≤ 𝑛
−1/3

}, CR
𝜆
(𝛽) is

a continuous function about 𝛽 and has a minimum value in
the interior of this ball. In addition, �̂� satisfies

𝜕CR
𝜆
(𝛽)

𝜕𝛽

𝛽=�̂�

=
2

(1 + 𝜆)
2

𝑛

∑

𝑖=1

[1 + 𝑠 + 𝑡
𝑇
𝑔
𝑖
(𝛽)]
−1/(1+𝜆)

×(
𝜕𝑔
𝑖
(𝛽)

𝜕𝛽
)

𝑇

𝑡

𝛽=�̂�

= 0.

(43)

Proof of Theorem 2. We take derivatives for𝑄
1𝑛
,𝑄
2𝑛
, and𝑄

3𝑛

with respect to 𝛽, 𝑠, and 𝑡𝑇; we have

𝜕𝑄
1𝑛
(𝛽, 0, 0)

𝜕𝛽
=
1

𝑛

𝑛

∑

𝑖=1

𝜕𝑔
𝑖
(𝛽)

𝜕𝛽
,

𝜕𝑄
1𝑛
(𝛽, 0, 0)

𝜕𝑠
= −

1

𝑛 (1 + 𝜆)

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) ,

𝜕𝑄
1𝑛
(𝛽, 0, 0)

𝜕𝑡𝑇
= −

1

𝑛 (1 + 𝜆)

𝑛

∑

𝑖=1

𝑔
𝑖
(𝛽) 𝑔
𝑇

𝑖
(𝛽) ;

𝜕𝑄
2𝑛
(𝛽, 0, 0)

𝜕𝛽
= 0,

𝜕𝑄
2𝑛
(𝛽, 0, 0)

𝜕𝑠
= −

1

1 + 𝜆
,

𝜕𝑄
2𝑛
(𝛽, 0, 0)

𝜕𝑡𝑇
= −

1

𝑛 (1 + 𝜆)

𝑛

∑

𝑖=1

𝑔
𝑇

𝑖
(𝛽) ;

𝜕𝑄
3𝑛
(𝛽, 0, 0)

𝜕𝛽
= 0,

𝜕𝑄
3𝑛
(𝛽, 0, 0)

𝜕𝑠
= 0,

𝜕𝑄
3𝑛
(𝛽, 0, 0)

𝜕𝑡𝑇
=

1

𝑛(1 + 𝜆)
2

𝑛

∑

𝑖=1

(
𝜕𝑔
𝑖
(𝛽)

𝜕𝛽
)

𝑇

.

(44)
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By the conditions andTheorem 1 and the Taylor expanding of
𝑄
1𝑛
(�̂�, 𝑠, �̂�), 𝑄

2𝑛
(�̂�, 𝑠, �̂�), and 𝑄

3𝑛
(�̂�, 𝑠, �̂�) at (𝛽

0
, 0, 0), we have

0 = 𝑄
1𝑛
(�̂�, 𝑠, �̂�)

= 𝑄
1𝑛
(𝛽
0
, 0, 0) +

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝛽
(�̂� − 𝛽

0
)

+
𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝑠
(𝑠 − 0)

+
𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇
(�̂� − 0) + 𝑜

𝑃
(𝛿
𝑛
) ,

1 = 𝑄
2𝑛
(�̂�, 𝑠, �̂�)

= 𝑄
2𝑛
(𝛽
0
, 0, 0) +

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝛽
(�̂� − 𝛽

0
)

+
𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝑠
(𝑠 − 0)

+
𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇
(�̂� − 0) + 𝑜

𝑃
(𝛿
𝑛
) ,

0 = 𝑄
3𝑛
(�̂�, 𝑠, �̂�)

= 𝑄
3𝑛
(𝛽
0
, 0, 0) +

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝛽
(�̂� − 𝛽

0
)

+
𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝑠
(𝑠 − 0)

+
𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇
(�̂� − 0) + 𝑜

𝑃
(𝛿
𝑛
) ,

(45)

where 𝛿
𝑛
= ‖�̂� − 𝛽

0
‖ + ‖𝑠‖ + ‖�̂�‖. We further have

(

−𝑄
1𝑛
(𝛽
0
, 0, 0) + 𝑜

𝑃
(𝛿
𝑛
)

1 − 𝑄
2𝑛
(𝛽
0
, 0, 0) + 𝑜

𝑃
(𝛿
𝑛
)

−𝑄
3𝑛
(𝛽
0
, 0, 0) + 𝑜

𝑃
(𝛿
𝑛
)

)

=
(
(

(

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝑠

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝛽

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝑠

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝛽

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝑠

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝛽

)
)

)

×(

�̂�

𝑠

�̂� − 𝛽
0

) .

(46)
By the above expression, we can obtain that

(

�̂�

𝑠

�̂� − 𝛽
0

) = 𝑆
−1

𝑛
(

−𝑄
1𝑛
(𝛽
0
, 0, 0) + 𝑜

𝑃
(𝛿
𝑛
)

𝑜
𝑃
(𝛿
𝑛
)

𝑜
𝑃
(𝛿
𝑛
)

) , (47)

where

𝑆
𝑛

Δ

=
(
(

(

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝑠

𝜕𝑄
1𝑛
(𝛽
0
, 0, 0)

𝜕𝛽

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝑠

𝜕𝑄
2𝑛
(𝛽
0
, 0, 0)

𝜕𝛽

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝑡𝑇

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝑠

𝜕𝑄
3𝑛
(𝛽
0
, 0, 0)

𝜕𝛽

)
)

)

→ 𝑆, a.s.,

𝑆 = (

𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 0

𝑆31 0 0

)

=

(
(
(
(

(

−
1

1 + 𝜆
Σ (𝛽
0
) −

1

1 + 𝜆
𝐸 (𝑔1 (𝛽0)) 𝐸(

𝜕𝑔1 (𝛽0)

𝜕𝛽
)

−
1

1 + 𝜆
𝐸(𝑔
𝑇

1
(𝛽
0
)) −

1

1 + 𝜆
0

1

(1 + 𝜆)
2
𝐸(
𝜕𝑔1 (𝛽0)

𝜕𝛽
)

𝑇

0 0

)
)
)
)

)

.

(48)

By the above expression and 𝑄
1𝑛
(𝛽
0
, 0, 0) = (1/𝑛)∑

𝑛

𝑖=1
𝑔
𝑖
(𝛽
0
)

= 𝑂
𝑃
(𝑛
−1/2

), we can derive that 𝛿
𝑛
= 𝑂
𝑃
(𝑛
−1/2

). Note that
𝐸(𝑔
𝑖
(𝛽
0
)) = 0, and Σ(𝛽

0
) is the positive definite matrix; it is

easy to show that

𝑆
−1
= (

𝑆
−1

11
+ 𝑆
−1

11
[𝑆
13
𝑆
−1

33.1
𝑆
31
] 𝑆
−1

11
0 −𝑆

−1

11
𝑆
13
𝑆
−1

33.1

0 𝑆
−1

22
0

−𝑆
−1

33.1
𝑆
31
𝑆
−1

11
0 𝑆

−1

33.1

),

(49)

where 𝑆
33.1

= −𝑆
31
𝑆
−1

11
𝑆
13
. Substituting (49) into (47), we have

√𝑛 (�̂� − 𝛽
0
) = 𝑆
−1

33.1
𝑆
31
𝑆
−1

11
√𝑛𝑄
1𝑛
(𝛽
0
, 0, 0) + 𝑜

𝑃
(1) ,

√𝑛 (�̂� − 0) = − {𝑆
−1

11
+ 𝑆
−1

11
[𝑆
13
𝑆
−1

33.1
𝑆
31
] 𝑆
−1

11
}

× √𝑛𝑄
1𝑛
(𝛽
0
, 0, 0) + 𝑜

𝑃
(1) .

(50)

Note that√𝑛𝑄
1𝑛
(𝛽
0
, 0, 0)

𝐿

→ 𝑁(0, Σ(𝛽
0
)); we can derive that

√𝑛 (�̂� − 𝛽
0
)
𝐿

→ 𝑁(0,Ω) , √𝑛 (�̂� − 0)
𝐿

→ 𝑁(0,Φ) ,

(51)

where

Ω = [𝐸(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

Σ
−1
(𝛽
0
) 𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)]

−1

,

Φ = (1 + 𝜆) Σ
−1
(𝛽
0
)

× {𝐼 − 𝐸(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)Ω𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

Σ
−1
(𝛽
0
)} .

(52)
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Proof of Theorem 5. Since √𝑛𝑔
𝑛
(𝛽
0
)
𝐿

→ 𝑁(0, Σ(𝛽
0
)) and

Σ̂(𝛽
0
)
Δ

= (1/𝑛)∑
𝑛

𝑖=1
𝑔
𝑖
(𝛽
0
)𝑔
𝑇

𝑖
(𝛽
0
) → Σ(𝛽

0
), a.s., by (38), it

is easy to show that

CR
𝜆
(𝛽
0
) = [√𝑛𝑔

𝑛
(𝛽
0
)]
𝑇

Σ̂
−1
(𝛽
0
)

× [√𝑛𝑔
𝑛
(𝛽
0
)] + 𝑜

𝑃
(1)
𝐿

→ 𝜒
2

𝑟
.

(53)

Proof of Theorem 6. From (33), (38), and (50) and by the
Taylor expansion and some simple calculations, we have

CR
𝜆
(�̂�) = 𝑛𝑔

𝑇

𝑛
(�̂�) Σ̂

−1
(�̂�) 𝑔

𝑛
(�̂�) + 𝑜

𝑃
(1)

=
𝑛

1 + 𝜆
𝑔
𝑇

𝑛
(�̂�) �̂� + 𝑜

𝑃
(1)

=
𝑛

1 + 𝜆
[𝑔
𝑛
(𝛽
0
) +

𝜕𝑔
𝑛
(𝛽
0
)

𝜕𝛽
(�̂� − 𝛽

0
)

+𝑜
𝑃
(𝑛
−1/2

) ]

𝑇

�̂� + 𝑜
𝑃
(1)

=
𝑛

1 + 𝜆
[𝑄
1𝑛
(𝛽
0
, 0, 0)

+ 𝑆
13
𝑆
−1

33.1
𝑆
31
𝑆
−1

11
𝑄
1𝑛
(𝛽
0
, 0, 0)

+𝑜
𝑃
(𝑛
−1/2

)]
𝑇

× [− {𝑆
−1

11
+ 𝑆
−1

11
[𝑆
13
𝑆
−1

33.1
𝑆
31
] 𝑆
−1

11
}𝑄
1𝑛

× (𝛽
0
, 0, 0) + 𝑜

𝑃
(𝑛
−1/2

)] + 𝑜
𝑃
(1)

= [√𝑛Σ
−1/2

(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)]

𝑇

× 𝐺
1
[√𝑛Σ

−1/2
(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)] + 𝑜

𝑃
(1) ,

(54)

since 𝐺2
1
= 𝐺
1
, where 𝐺

1

Δ

= [𝐼 − Σ
−1/2

(𝛽
0
)𝐸(𝜕𝑔

1
(𝛽
0
)/𝜕𝛽)

Ω𝐸(𝜕𝑔
1
(𝛽
0
)/𝜕𝛽)𝑇Σ−1/2(𝛽

0
)]. From √𝑛Σ

−1/2
(𝛽
0
)𝑄
1𝑛
(𝛽
0
, 0, 0)

𝐿

→ 𝑁(0, 𝐼) and

tr (𝐺
1
) = tr{𝐼 − Σ−1/2 (𝛽

0
) 𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)Ω𝐸

×(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

Σ
−1/2

(𝛽
0
)}

= 𝑟 − tr{Σ−1/2 (𝛽
0
) 𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)Ω𝐸

×(
𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

Σ
−1/2

(𝛽
0
)}

= 𝑟 − 𝑝,

(55)

it is easy to show that CR
𝜆
(�̂�)
𝐿

→ 𝜒
2

𝑟−𝑝
.

On the other hand, invoking the same argument, we have

CR
𝜆
(𝛽
0
) − CR

𝜆
(�̂�)

= 𝑛𝑔
𝑇

𝑛
(𝛽
0
) Σ̂
−1
(𝛽
0
) 𝑔
𝑛
(𝛽
0
)

− 𝑛𝑔
𝑇

𝑛
(�̂�) Σ̂

−1
(�̂�) 𝑔

𝑛
(�̂�) + 𝑜

𝑃
(1)

= 𝑛𝑄
𝑇

1𝑛
(𝛽
0
, 0, 0) Σ

−1
(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)

− [√𝑛Σ
−1/2

(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)]

𝑇

× 𝐺
1
[√𝑛Σ

−1/2
(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)] + 𝑜

𝑃
(1)

= [√𝑛Σ
−1/2

(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)]

𝑇

× 𝐺
2
[√𝑛Σ

−1/2
(𝛽
0
) 𝑄
1𝑛
(𝛽
0
, 0, 0)] + 𝑜

𝑃
(1) ,

(56)

since 𝐺2
2
= 𝐺
2
, where 𝐺

2

Δ

= Σ
−1/2

(𝛽
0
)𝐸(𝜕𝑔

1
(𝛽
0
)/𝜕𝛽)Ω𝐸

(𝜕𝑔
1
(𝛽
0
)/𝜕𝛽)𝑇Σ−1/2(𝛽

0
). Further,

tr{Σ−1/2 (𝛽
0
) 𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)Ω𝐸(

𝜕𝑔
1
(𝛽
0
)

𝜕𝛽
)

𝑇

×Σ
−1/2

(𝛽
0
) } = 𝑝.

(57)

Thus, we can obtain that CR
𝜆
(𝛽
0
) − CR

𝜆
(�̂�)
𝐿

→ 𝜒
2

𝑝
.
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