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Themagnetohydrodynamic (MHD) boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and
solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shootingmethod.
The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the
localNusselt number decreaseswith increasing the stretching/shrinking parameter.The range of the stretching/shrinking parameter
for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet,
the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet,
it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the
thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local
Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.

1. Introduction

The boundary layer flow over a stretching sheet is sig-
nificant in applications such as extrusion, wire drawing,
metal spinning, and hot rolling [1]. Wang [2, 3], Mandal
and Mukhopadhyay [4], P. S. Gupta and A. S. Gupta [5],
Andersson [6], Ishak et al. [7], and Makinde and Aziz [8] are
among various names whose papers on stretching sheet were
published. However, to complement the study of flow over
a stretching sheet, Miklavčič and Wang [9] then began the
study of flow over a shrinking sheet in which they observed
that the vorticity is not confined within a boundary layer and
a steady flow cannot exist without exerting adequate suction
at the boundary. As the studies of shrinking sheet garnered
considerable attention, these findings prove to be crucial to
these researches. In response to Miklavčič and Wang [9],
numerous studies on these problems have been conducted by

researchers, namely, Wang [10], Fang et al. [11], Bachok et al.
[12], Bhattacharyya et al. [13], Zaimi et al. [14], and Roşca and
Pop [15], among others.

However, most studies were done in the absence of mag-
netic field. Ishak et al. [16] studied themagnetohydrodynamic
(MHD) stagnation point flow towards a stretching sheet
while Merkin and Kumaran [17] studied the unsteady MHD
boundary layer flow on a shrinking sheet.

Motivated by the above-mentioned studies, this paper
aims at studying theMHDboundary layer flow of a nanofluid
over a stretching/shrinking sheet with slip conditions and
suction effect at the boundary.The inclusion of nanoparticles
enhances thermal conductivity as reported by Masuda et al.
[18]. This study will use the model developed by Buongiorno
[19] where we pay more attention to the Brownian motion
and thermophoresis effects as previously done by Nield and
Kuznetsov [20–22]. In addition, we employ the velocity
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and thermal and solutal slip conditions because the recent
findings that rarefied gas flows with slip boundary conditions
are often encountered in the microscale devices and low-
pressure situations (Kumaran andPop [23]).The effects of slip
conditions are very important in technological applications
such as in the polishing of artificial heart valves and the
internal cavities. For the shrinking case, the solution does
not exist since vorticity could not be confined within the
boundary layer. However, with an added suction effect to
confine the vorticity, the solution may exist. The dependency
of the local skin friction coefficient, Nusselt number, and
Sherwood number on seven parameters, namely, the stretch-
ing/shrinking, velocity slip, thermal slip, concentration slip,
magnetic, Brownian motion, and thermophoresis parame-
ters, is the main focus of the present investigation. Numerical
solutions are presented graphically and in tabular forms to
show the effects of these parameters on the local Nusselt
number and the local Sherwood number.

2. Mathematical Formulation

Consider a steady, two-dimensional boundary layer flow of
a nanofluid over a permeable stretching/shrinking sheet. It
is assumed that the stretching/shrinking velocity is in the
form 𝑈

𝑤
= 𝑎𝑥, where 𝑎 is a positive constant and 𝑥 is the

coordinate measured along the stretching/shrinking surface.
It is also assumed that the constant mass flux velocity is V

0

with V
0
< 0 for suction and V

0
> 0 for injection or withdrawal

of the fluid. The nanofluid is confined to 𝑦 > 0, where 𝑦 is
the coordinate measured normal to the stretching/shrinking
surface.The flow is subjected to the transverse magnetic field
of strength 𝐵

0
, which is assumed to be applied in the positive

𝑦-direction. The induced magnetic field is also assumed to
be small compared to the applied magnetic field; hence, it is
neglected.

The governing equations for the steady conservation of
mass, momentum, thermal energy, and nanoparticle volume
fraction equations in the presence of magnetic field can be
written as [19, 20, 22, 24]
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(5)

where 𝑢 and V are the velocity components along the 𝑥-
and 𝑦-axes respectively, 𝑝 is the fluid pressure, 𝑇 is the
fluid temperature, 𝛼 is the thermal diffusivity, 𝜔 is the
kinematic viscosity, 𝜆 is the electrical conductivity, 𝐵

0
is

the magnetic field, 𝐷
𝐵
is the Brownian diffusion coefficient,

𝐷
𝑇
is the thermophoresis diffusion coefficient, and 𝜑 is the

nanoparticle volume fraction. Furthermore, 𝜏 = (𝜌𝑐)
𝑝
/(𝜌𝑐)
𝑓

is the ratio between the effective heat capacity of the fluidwith
𝜌
𝑓
and 𝜌
𝑝
being the density of the fluid and the density of the

particles, respectively, and 𝑐
𝑓
and 𝑐
𝑝
denote the specific heat

of the fluid and the particle at constant pressure, respectively.
The subscript ∞ represents the values at large values of 𝑦
(outside the boundary layer). Details of the derivation of (4)
and (5) are given in the papers by Buongiorno [19] and Nield
and Kuznetsov [21].

Equations (1)–(5) are subjected to the following boundary
conditions [24]:

V = V
0
, 𝑢 = 𝜎𝑈

𝑤
+ 𝐿
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(6)

𝑢 󳨀→ 0, V 󳨀→ 0, 𝑇 󳨀→ 𝑇
∞
, 𝜑 󳨀→ 𝜑

∞
as 𝑦 󳨀→ ∞,

(7)

where 𝜎 is a constant with 𝜎 > 0 for stretching and 𝜎 < 0
for shrinking. The subscript 𝑤 denotes the values at the solid
surface. Furthermore, 𝐿,𝐾

1
, and𝐾

2
are the velocity, thermal,

and solutal slip factors, respectively and when 𝐿 = 𝐾
1
= 𝐾
2
=

0, the no-slip condition is recovered.The governing equations
(1)–(5) subjected to the boundary conditions (6) and (7) can
be expressed in a simpler form by introducing the following
transformation:
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(8)

where 𝜂 is the similarity variable and𝜓 is the stream function
defined as 𝑢 = 𝜕𝜓/𝜕𝑦 and V = −𝜕𝜓/𝜕𝑥, which identically
satisfy (1). By employing the boundary layer approximations
and the similarity variables (8), (2)–(5) reduce to the follow-
ing nonlinear ordinary differential equations:
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and the boundary conditions (6) and (7) become

𝑓 (0) = 𝑆, 𝑓
󸀠

(0) = 𝜎 + 𝐴𝑓
󸀠󸀠

(0) ,
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(0) ,

(12)

𝑓
󸀠

= 0, 𝜃 = 0, 𝛽 = 0 as 𝜂 󳨀→ ∞, (13)

where primes denote differentiation with respect to 𝜂. Fur-
ther, Pr is the Prandtl number, Nb is the Brownian motion
parameter, Nt is the thermophoresis parameter, Le is the
Lewis number, 𝑆 is the mass flux parameter with 𝑆 > 0
for suction and 𝑆 < 0 for injection, 𝑀 is the magnetic
parameter, and 𝐴, 𝐵, and 𝐶 are velocity, thermal, and solutal
slip parameters respectively, which are defined as
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(14)

when Nb = Nt = 0, the present problem reduces to a regular
viscous fluid, and the nanoparticle volume fraction equation
(11) becomes ill-posed and is of no physical significance.

The physical quantities of interest are the skin friction
coefficient 𝐶

𝑓
, the local Nusselt number Nu

𝑥
, and the local

Sherwood number Sh
𝑥
which are defined as [6]

𝐶
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where 𝜏
𝑤
, 𝑞
𝑤
, and 𝑞

𝑚
are the surface shear stress, the heat and

mass fluxes, respectively, which are given by [25]
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Using the similarity variables (8), we obtain

𝐶
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where Re
𝑥
= 𝑈
𝑤
𝑥/𝜔 is the local Reynolds number.

3. Results and Discussions

The set of ordinary differential equations (9)–(11) subjected
to boundary conditions (12) and (13) were solved numerically
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Figure 1: Variation of the skin friction coefficientwith𝜎 for different
values of 𝐴 when 𝑆 = 3 and𝑀 = 1.
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values of 𝐵 when 𝑆 = 3,𝑀 = 1, Pr = 6.8, 𝐴 = 𝐶 = 0.1, Nt = Nb =
0.5, and Le = 2.

using a shooting method. In this method, the dual solutions
are obtained by setting different initial guesses for the values
of 𝑓󸀠󸀠(0), −𝜃󸀠(0) and −𝛽󸀠(0). The asymptotic boundary
conditions (13) at 𝜂 = ∞ are replaced by 𝜂 = 15 which is
sufficient for all the velocity, temperature, and concentration
profiles to vanish asymptotically.

Figures 1–3 show the variations of the local skin friction
coefficient 𝐶

𝑓
Re1/2
𝑥

, the local Nusselt number Nu
𝑥
Re−1/2
𝑥

(representing the heat transfer rate at the surface), and the
local Sherwood number Sh

𝑥
Re−1/2
𝑥

(representing the mass
transfer rate at the surface) with 𝜎 for different values of
the velocity slip parameter 𝐴, thermal slip parameter 𝐵, and
solutal slip parameter 𝐶, respectively. As can be seen, there
are more than one solution obtained for a fixed value of 𝜎.
When 𝜎 is equal to a certain value 𝜎 = 𝜎

𝑐
where 𝜎

𝑐
(< 0) is

the critical value of 𝜎, there is only one solution, and when
𝜎 < 𝜎

𝑐
, there is no solution. Here, the computations have
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Table 1: Values of 𝜎
𝑐
for several values of S and A.

𝑆 𝐴 𝜎
𝑐

3 0.1 −1.4400
4 −2.6128
5 −3.3948
3 0.0 −1.2500

0.2 −1.6368

been performed until the point where the solution does not
converge. Based on our computations, the critical values 𝜎

𝑐

are presented in Table 1.The range of 𝜎 for which the solution
exists increases as 𝐴 and 𝑆 increase. For an increasing slip
parameter at the boundary, the generation of vorticity for
shrinking velocity is slightly reduced [13]. Therefore, with
the imposed suction, that vorticity remains confined in the
boundary layer region for larger shrinking velocity (i.e., 𝜎 <
0). Hence, the steady solution is possible for some large values
of 𝜎. Although only the first solution is stable and physically
realizable [15, 26, 27], the second solution is of mathematical
interest as the differential equations are concerned.

From Figures 1–3, the skin friction coefficient, the local
Nusselt number, and the local Sherwood number change
accordingly with the change of shrinking/stretching param-
eter 𝜎, velocity slip 𝐴, thermal slip 𝐵, and solutal slip 𝐶.
As 𝜎 increases, the skin friction coefficient and the local
Sherwood number increase. On the other hand, the local
Nusselt number decreases as 𝜎 increases. Furthermore, the
change occurring in the local Nusselt number is very small
as compared to the skin friction coefficient and the local
Sherwood number.

Figure 1 portrays the skin friction coefficient for different
values of 𝐴, the velocity slip parameter. The graph shows
that the differences are uniform for all values of 𝐴 and 𝜎.
It is interesting to see the different characteristics possessed
by the shrinking and stretching sheets. We can see that for

Table 2: Variations of the skin friction coefficient −𝑓󸀠󸀠(0), local
Nusselt number −𝜃󸀠(0), and local Sherwood number −𝛽󸀠(0) for (a)
stretching and (b) shrinking sheets at 𝐴 = 0.1 for different values of
𝑆 and𝑀.

(a)

𝑆 𝑀 −𝑓
󸀠󸀠

(0)

3 0.1 1.180642
4 1.444545
5 1.676866
3 0.0 1.189619

1.0 1.087972
1.5 1.022694

(b)

𝑆 𝑀 −𝑓
󸀠󸀠

(0)

3 0.1 −2.105103
4 −2.743993
5 −3.261509
3 0.0 −2.131948

1.0 −1.771988
1.5 −0.956086

shrinking sheet (𝜎 < 0), the skin friction coefficient increases
with 𝐴. Yet, the opposite is true for the stretching sheet
(𝜎 > 0) where the skin friction coefficient decreases as
𝐴 increases. This trait is again seen in Table 2 where we
computed values of the skin friction coefficient with different
values of 𝑆 and 𝑀. For stretching sheet, the skin friction
increases as 𝑆 increases while the increment in𝑀 lowers the
skin friction coefficient. On the other hand, for the shrinking
sheet, the skin friction coefficient decreases as 𝑆 increases
and increases with increasing𝑀.The changes occurring for a
shrinking sheet ismore pronounced than those of a stretching
sheet. For example, this observation can be seen when𝑀 is
increased, where the difference in the skin friction coefficient
is approximately 10% for a stretching sheet and 35% for a
shrinking sheet.

Figure 2 shows the variations of the local Nusselt number
for different values of 𝐵. The surface heat transfer rate is
consistently lower for higher thermal slip parameter 𝐵. This
phenomenon agrees with the findings of Aman et al. [28].The
diminishing rate may be caused by the increase in thermal
boundary layer thickness. Although the change in the local
Nusselt number is uniform as 𝐵 is increased, it is more
pronounced than the change occurring in the skin friction
coefficient and the local Sherwood number (Figure 3).

Through Figure 3, we can see the effect of the solutal slip
parameter 𝐶 on the local Sherwood number. As 𝐶 increases,
the local Sherwood number decreases consistently. It is worth
to note that as we apply the solutal slip condition to a
previously no-slip condition (𝐶 = 0), the values reduce
abruptly where the change is approximately 50%. However
as 𝐶 increases from 0.1 to 0.2, the difference between the
resulting surface mass transfer rates is lower where the
difference is about 40%.
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Table 3: Variations of the local Nusselt number −𝜃󸀠(0) and local
Sherwood number −𝛽󸀠(0) at Le = 2,𝑀 = 1, 𝑆 = 3,𝐴 = 𝐵 = 𝐶 = 0.1,
Pr = 6.8, and 𝜎 = −1 for different values of Nt and Nb.

Nt = Nb Le −𝜃
󸀠

(0) −𝛽
󸀠

(0)

0.1 2 6.236334 −0.328127
0.3 5.139931 0.355463
0.5 3.885173 1.139644
0.1 3 6.156869 1.350187

5 6.099435 3.461077
7 6.093712 4.736331

1 2 3 4 5 6 7
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Figure 4: The velocity profiles for different values of 𝐴 when 𝑆 = 3,
𝑀 = 1, and 𝜎 = −1.

Table 3 presents the variations of the local Nusselt and
Sherwood numbers as we manipulate both thermophoresis
and Brownian motion parameters (Nt = Nb) and Lewis
number Le. As Nt and Nb increase, the local Nusselt number
decreases while the local Sherwood number increases. The
negative values of the local Sherwood number imply that
the surface is losing mass. The local Nusselt number also
reacts negatively when Le is increased. However, the mass
transfer rate at the surface increases with Le. Although not
shown, the thermal boundary layer thickness increases while
the concentration boundary layer thickness decreases as Le is
increased which causes this effect.

The samples of velocity, temperature, and concentration
profiles for shrinking sheet are included in Figures 4–8.
These profiles satisfy the far field boundary condition (13)
asymptotically, which support the numerical results obtained
besides supporting the existence of dual solutions shown in
Figures 1–3. Figures 4 and 5 show the velocity profiles for
different values of 𝐴 and𝑀, respectively. As 𝐴 is increased,
the velocity also increases. However, as 𝑀 increases, the
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Figure 5:The velocity profiles for different values of𝑀 when 𝑆 = 3,
𝐴 = 0.1, and 𝜎 = −1.

𝜃
(𝜂
)

0

B = 0.0, 1.0, 0.2

𝜂

0

0.8

0.8

0.2

0.2

0.4

0.4

0.6

0.6

1

1

Figure 6: The temperature profiles for different values of 𝐵 when
𝑆 = 3,𝑀 = 1, Pr = 6.8, 𝐴 = 𝐶 = 0.1, Nt = Nb = 0.5, Le = 2, and
𝜎 = −1.

velocity decreases due to the retarding effect resulted from
the presence of transverse magnetic field [24]. Hence, as𝑀
increases, the retarding force increases and thus the velocity
decreases.

Through Figures 6 and 7, we can see the effect of 𝐵 and
Nt = Nb on the temperature profiles.The temperature lowers
as 𝐵 is increased. However, it increases as both Nt and Nb
increase due to the fact that Nt is directly proportional to the
heat transfer coefficient associatedwith the fluid [24]. It is also
observed that the boundary layer thickness decreases with
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increasing𝐵. On the other hand, the boundary layer thickness
increases as both Nt and Nb are increased. This may be the
probable cause of the diminishing the local Nusselt number
in Figure 2 and Table 3.

The concentration profiles for different values of Nt (=
Nb) are shown in Figure 8. Due to the dependency of the
concentration on the temperature field, we expect that a
higher thermophoresis would allow a deeper penetration of
the concentration [29]. As a result, we can see from Figure 8
that the concentration increases as we increase both Nt and
Nb. In addition, we can also note that at the surface and

its surrounding area, the concentration decreases with the
increasing Nt and Nb.

4. Conclusions

TheMHD boundary layer flow of a nanofluid past a stretch-
ing/shrinking sheet with hydrodynamic, thermal, and solutal
slip boundary conditions was studied. Numerical solutions
to the governing equations were obtained using a shooting
method. A few observations have been made in this paper as
follows.

(1) The range of the stretching/shrinking parameter for
which the solution exists increases as velocity slip
parameter 𝐴 increases.

(2) For a shrinking sheet, the skin friction coefficient
increases with the velocity slip parameter 𝐴 and
magnetic parameter 𝑀. For a stretching sheet, it
decreases when the velocity slip parameter and mag-
netic parameter are increased.The changes occurring
in shrinking sheet aremore pronounced than those in
the stretching sheet. As𝑀 increases, the difference in
the skin friction coefficient is approximately 10% for a
stretching sheet and 35% for a shrinking sheet.

(3) The local Nusselt number diminishes as thermal
slip parameter 𝐵 increases while the local Sherwood
number decreaseswith increasing values of the solutal
slip parameter 𝐶.

(4) Increasing the Lewis number and both thermophore-
sis parameter and Brownian motion parameter is
to decrease the local Nusselt number and the local
Sherwood number.
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