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We study the strong law of large numbers for the frequencies of occurrence of states and ordered couples of states for countable
Markov chains indexed by an infinite tree with uniformly bounded degree, which extends the corresponding results of countable
Markov chains indexed by a Cayley tree and generalizes the relative results of finite Markov chains indexed by a uniformly bounded

tree.

1. Introduction

A tree T is a graph which is connected and contains no

circuits. Given any two vertices a# 8 € T. Let aff be the
unique path connecting « and 8. Define the distance d(«, f3)
to be the number of edges contained in the path a8

Select a vertex as the root (denoted by o). For any two
vertices 0 and ¢t of tree T, we write ¢ < t if o is on the
unique path from the root o to t. We denote by o A t the
vertex farthest from o satisfyingo At < tand o At < 0. For
any vertex t of tree T, we denote by [f| the distance between
o and t. The set of all vertices with distance #n from the root
o is called the nth level of T. For any vertex t of tree T, we
denote the predecessor of t by 1,, the predecessor of 1, by 2,,
and the predecessor of (n — 1), by n,. We also call n, the nth
predecessor of t. Similarly, we denote the one of the successor
of t by 1%, the one of the successors of 1° by 2‘, and one of
the successors of (n— 1)" by n'. We denote by T™ the subtree
comprised of level 0 (the root o) through level n, and by L, the
set of all vertices on level #. In this paper, we mainly consider
an infinite tree which has uniformly bounded degrees. That
is, the numbers of neighbors of any vertices in this tree are

uniformly bounded; we call it the uniformly bounded tree.
If the root of a tree has M neighboring vertices and other
vertices have M + 1 neighboring vertices, we call this type
of tree a Cayley tree and denote it by T . It is easy to see
that this type of tree is the special case of uniformly bounded
tree. Let S be the subgraph of T, X® = {X,,t € S}, and x° the
realization of X°. We denote by |S| the number of vertices of
S.

Definition I (see [1]). Let T be a local finite and infinite tree;
that is, the tree has infinite vertices and the degrees of any
vertices in this tree are finite. Let G = {0,1,2,...} be a
countable state space and {X,,t € T} a collection of G-valued
random variables defined on the probability space (Q), &, P).
Let

p=(px),x€G) 1)
be a distribution on G, and let

P=(P(ylx), xyeG (2)
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be a stochastic matrix on G*. Let 1 be any positive integer. If
for any vertices t,t,,t,,... t, € T,t; At < 1,1 <i<mn,

P(Xt=y|X1t =xand X, =x,,X, =x.,...

2

Xy, = xtn)

:P(Xt:)’|X1t :x):P(ny), Vx,y €G,
©)
P(X,=x)=p(x), VxeG, (4)
{X,,t € T} will be called G-valued Markov chains indexed by
this tree T' with the initial distribution (1) and the transition

matrix (2) or called T-indexed Markov chains with state space
G.

Definition 2 (see [2, page 157]). Let P be a stochastic matrix
defined on the countable state space G. If there exists a
distribution 7 = (71(0), (1), .. .) satisfying

sl}pZ'p<n)(j|i)—n(j)|—>o, asn— 00, (5
b

where P™(j | i) is the n-step transition probability deter-
mined by P, then P is said to be strongly ergodic with
distribution 7. Obviously, if (5) holds, then we have 7P = 7,
and 7 is said to be the stationary distribution determined by
P.

Let {X,,n > 0} be a sequence of random variables
taking values in state space S = {1,2,..., N} with the joint
distribution

p(xgs--sx,) =P (Xy=%0,..., X, = X,),
(6)

x; €5, 0<i<n, nz0.

Let
fo(@) = —%lnp(XO,...,Xn); 7)

f.(w) is called the entropy density of {X;,0 < i < n}.

The convergence of f,(w) to a constant in a sense (L,
convergence, convergence in probability, and a.e. conver-
gence) is called Shannon-McMillan-Breiman theorem or
asymptotic equipartition property (AEP) in information
theory. Shannon [3] first proved AEP in convergence in
probability for finite stationary ergodic sequence of random
variables. McMillan [4] and Breiman [5, 6] proved AEP in
L, and a.e. convergence, respectively, for finite stationary
ergodic sequence of random variables. Chung [7] generalized
Breiman’s result to countable case.

The subject of tree-indexed processes is rather young.
Benjamini and Peres [1] have given the notion of the tree-
indexed Markov chains and studied the recurrence and ray-
recurrence for them. Guyon [8] has given the definition of
bifurcating Markov chains indexed by binary tree and studied
their limit theorems. Berger and Ye [9] have studied the
existence of entropy rate for some stationary random fields on
ahomogeneous tree. Ye and Berger [10, 11] by using Pemantle’s
result [12] and a combinatorial approach have studied the
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FIGURE 1: Uniformly bounded tree T

asymptotic equipartition property (AEP) in the sense of
convergence in probability for a PPG-invariant and ergodic
random field on a homogeneous tree. Yang [13] has studied
the strong law of large numbers and the asymptotic equipar-
tition property (AEP) for finite Markov chains indexed by
a homogeneous tree. Yang and Ye [14] have studied the
strong law of large numbers and the asymptotic equipartition
property (AEP) for finite level-nonhomogeneous Markov
chains indexed by a homogeneous tree. Huang and Yang
[15] have studied the strong law of large numbers and the
asymptotic equipartition property (AEP) for finite Markov
chains indexed by an infinite tree with uniformly bounded
degree. Recently, Wang et al. [16] have studied the strong law
of large numbers for countable Markov chains indexed by a
Cayley tree.

In some previous articles, only the tree-indexed Markov
chains with the finite state space are considered; meanwhile
the countable case has very important theoretical signifi-
cance, so Chung [7] generalized Breiman’s result [5, 6] to the
countable case. Wang et al. [16] have studied the strong law of
large numbers countable Markov chains indexed by a Cayley
tree.

The technique used to study the strong law of large
numbers for countable Markov chains indexed by trees is
different from that for finite case. The processing method
of finite state space cannot apply to countable state space,
because the sum and limit cannot be exchanged. For studying
the strong law of large numbers for countable Markov chains
indexed by trees, we first establish a strong limit theorem
then use this strong limit theorem and smoothing property
of conditional expectation repeatedly to establish our strong
law of large numbers. In this paper, we use the same approach
used in [16] to study the strong law of large numbers for
Markov chains indexed by a uniformly bounded tree. Our
results generalize the results of Huang and Yang [15] for
finite Markov chains indexed by a uniformly bounded tree
(Figure 1) and the results of Wang et al. [16] for countable
Markov chains indexed by a Cayley tree.

2. Some Lemmas

Before proving the main results, we begin with some lemmas.
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Lemma 3. Let T be an infinite tree with uniformly bounded
degree, {X,,t € T} a T-indexed Markov chain with countable
state space G defined as before, and {g,(x, y),t € T} uniformly
bounded functions defined on G*. Let

G, (w) = Z E [Elt (Xl,’Xt) | Xlt]’
teT™\{o}

(8)
H, ()= Y g(X,X,).
teT™\{o}
Then for all N > 0, we have
. Hn ((0) - Gn ((U)
AT e S0 e ©)

Proof. Huang and Yang (see [15, Theorem 1]) have obtained
a similar result for finite Markov chains indexed by a
uniformly bounded tree. By checking carefully the proof of
that theorem, one can find it also holds for countable Markov
chains indexed by a uniformly bounded tree, so the proof of
this lemma is omitted. 0

Lemmad4. LetT and {X,,t € T} bedefined as Lemma 3, F, =
G(XTW), ast € L,,n>1,VYk € G, Yh > 1, and we have

P(Xy=k|F,)=P(X,;=kI|X,). (10)

Proof. We only need to prove the situation of h = 2. By the
Markov property (3), we have

P(Xy=k|F,)

=YP(Xy =k Xy =m|%F,)

=YP(Xy =k| Xy =mF,)P(X; =m|F,)
m

1)
=YP(Xy =k| Xy =mX,)P (X =m|X,)
=YP(Xy =k X;=m|X,)=P(Xy =k|X,).

By induction, (10) holds for h > 2. ]

3. Strong Law of Large Numbers

In the following, let N > 0, k € G, d°(t) = 1, let N, be the
Nth predecessor of 7 defined as before, and

d¥(t)=|reT:N, =1, Se (A) =Y L (X,)a¥ @),

teA
(12)
Silk (A) = ZIZ (X1,) I (X,)d" (), (13)
teA
where
L i=k

Theorem 5. Let T be an infinite tree with uniformly bounded
degree, P a strongly ergodic stochastic matrix, and 7 the unique
stationary distribution of P. Let {X,,t € T} be a T-indexed
Markov chain taking values in countable state space G with the
stochastic matrix P. Then, for any integer N > 0, we have

lim SkN (T("))

HHMW a.e., k e G. (15)

= (k)

Proof. Let g,(x,y) = dN(t)Ik(y) forallt € T in Lemma 3;
then by (8) and (12), we have

H, ()= Y d 5L (X,) =8 (T")-a" )L (X,),

teT™\{o}

G,(w= Y E[dV®L(X)]X,]
teT™\{o}
= Y d®P(X,=k|X,)
teT™\{o}
= Y dMOP(X,=k|X,).
teT™-1)

(16)

Since T is a uniformly bounded tree, so {g,(x,y) =
AN 1 «(y),t € T} are uniformly bounded functions defined
on G?; then, from Lemma 3, we have

ST?) = Sieqon AN O P (X = k| X))
m
e [T (17)

=0 a.e.

Let g,(x, y) = dN"'()P(X = k | X, = y) in Lemma 3; by
Definition 1 and Lemma 4, we have

E[g, (X1, X,) 1 X, ]
=E[d"" )P (X =k | X,) | X, ]
=d"" () E[E (I (X)) | X,) | X, ] (18)
=d"" O E[E(L (Xy) | Fpy) | F ]
= d¥ () E (I (X0) | F o]

=d" ()P (X, =k|X,).



Since {g,(x, y) = dN+1(t)P(X1t =k| X, =y),t € T}arealso
uniformly bounded functions defined on G, from Lemma 3
and (18), for any N > 0, we have

lim << Y AP (X, =k|X,)
teT™D\{o}

-y dNH(t)P(Xlt:lelt)) (19)

teT"=V\{o}

X ('T(”+N_1)|)_l> =0 ae.

Hence,

n15n30<< Y a @) P (X, =k|X,)
te

T("-1)

-y atw (t)P(th:kIXt)> (20)

teT=2)

X (|T("+N)|)_1> =0 ae.

By (17) and (20), we have

lim ((sﬁ (T™)- % dN+2(t)P(X2t:k|Xt)>

teT®2)
X (IT("+N)|)1> =0 ae.
(21

By induction, for fixed N > 0 and all 4 > 1, we have

SY(T®) = Tyeqon dN" (6) P (X = k | X,)
|| (22)

By (12), we have

Y d P (X, =k|X,)

teTrh

= Y YA L(X,)P(Xy =k| X, =)

teTrh) [€G

=Y Y a5 (x,)P" (k1)

I€G teT(n-h)
= YT PP (k| 1).
leG
Ash<mn,

ZZ:SZI\Hh (T(n—h)) - 'T(N+n)| _ |T(N+h—1)| , (24)
€G

(23)
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we haveash <n

Y iertnm aNth )P (Xht =k| Xt)
|T(n+N)|

—n(k)‘

Yiea S (TP)[PY (e | 1) = 7 (k)]
|T(n+N)|

S ‘

(25)
|T(N+h—1)|

+ |T(n+N)|

'T(N”"l)'

< sup [P? (k[ 1) -7 (k)| +

1eG |T(n+N)| :

Since P is strongly ergodic, the first term of right-hand side
of (25) is arbitrary small for large h, and the limit of second
term is zero asn — ©0; (15) can be obtained from (22) and
(25). O

Theorem 6. Under the conditions of Theorem 5, let S,Ij((A) be
defined by (13); then

SN (1™
i S (TN (o)) 2()P (k|

n— oo |T(n+N)| ae., kleG. (26)

Proof. Let g,(x,y) = dN(t)Il(x)Ik(y) forallt € T in
Lemma 3; it is easy to see that {g,(x, y),t € T} are uniformly
functions defined in G*, and, by (8) and Lemma 3, we have

H,(@)= Y dv)5(X,)L(X,) =Sy (T"\{o}),
teT™\{o}

G,(w= Y E[d"®OL(X,)L(X)]X,]

teT™\{o}

Y n(x,)d¥ P (X, =kl X, =1

teT™\ {0}

Y a0 LX) Pkl

teT=1

= (1" )Pk | D),

(27)
S (T \ fo}) = SN (T D) P (ke | D)
=0 ae
n— 00 |T(”+N)|
(28)
Equation (26) follows from (28) and Theorem 5. O

Let N = 0 in Theorems 5 and 6; we can obtain the strong
law of large numbers for the frequencies of occurrence of
states and ordered couples of states for countable Markov
chains indexed by the uniformly bounded tree.
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Corollary 7. Under the conditions of Theorem 5, let
S (T) =8 (1) = [{te T : X, = k}|,
S (T \ {o}) = 81, (T \ {o})

=|{t e T\ {0} : (X, X,) = LR}|5

(29)
then
S (T
lim M =n(k) ae., keG,
n— 00 |T(ﬂ)|
() (30)
S (T
nllrgo% —x()Pk|]) ae, kleG.

Proof. Letting N = 0 in Theorems 5 and 6, this corollary
follows. O

From Theorems 5 and 6, we can obtain easily the strong
law of large numbers for countable Markov chains indexed
by a Cayley tree [16] and the strong law of large numbers for
finite Markov chains indexed by a uniformly bounded tree
(15].
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