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Correspondence should be addressed to Nibaldo Rodŕıguez; nibaldo.rodriguez@ucv.cl
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This paper presents a 𝑝-step-ahead forecasting strategy based on two stages to improve pelagic fish-catch time-series modeling by
considering annual and interannual fluctuations for northern Chile (18∘S–24∘S). In the first stage, the stationary wavelet transform
is used to separate the raw time series into an annual component and an interannual component, whereas the periodicities of each
component are obtained using theMorlet wavelet power spectrum. In the second stage, a linear autoregressivemodel is constructed
to predict each component and the unknown 𝑝-next values are forecasted by the addition of the two predicted components. We
demonstrate the utility of the proposed forecasting model on monthly anchovy-catches time series for periods from January 1963
to December 2007. Empirical results obtained for 10-month-ahead forecasting showed the effectiveness of the proposed wavelet
autoregressive strategy.

1. Introduction

During the last decades, both the direct method and the
iterative method have been generally used in literature
to implement 𝑝-step-ahead forecasting model [1–6]. The
iterative method iterates 𝑝 times the same one-step-ahead
forecasting model to obtain the 𝑝 predicted values whereas
the direct method estimates a set of 𝑝 forecasting models,
each returning a forecast for the 𝜏th value; 𝜏 ∈ {1, 2, . . . , 𝑝}. In
otherwords,𝑝models are calibrated from the time series (one
for each horizon). On the other hand, multi-step-ahead fore-
casting models play an important role in the management of
marine resources. However, the multi-step-ahead forecasting
task is difficult due to factors such as accumulation of errors,
reduced accuracy, increased uncertainty, and nonstationarity
[1–6].

In recent years, linear regression model [7–9] and artifi-
cial neuronal networks (ANN) [10, 11] have been proposed for
pelagic fishes forecasting model. The disadvantage of models
based on linear regressions is the supposition of stationarity
and linearity of the time series of pelagic species catches.
Although ANN allow modelling the nonlinear behaviour of
time series, they also have some disadvantages such as the

stagnancy of local minima due to the steepest descent learn-
ing method. A multilayer perceptron neural network model
for forecasting the anchovy and sardines catches of northern
Chile was proposed by [10, 11], which reported a coefficient of
determination between 82% and 87%. Noteworthy is that the
anchovy and sardine are important pelagic fisheries resources
for economic development of northern Chile.

In this paper, a 𝑝-step-ahead forecasting strategy based
on wavelet analysis and linear autoregressive (AR) model
is proposed to improve prediction accuracy of monthly
anchovy catches in the coastal zone of northern Chile. The
advantage of wavelet analysis is its ability to separate low
frequency components and high frequency components from
a nonstationary time series. Besides, each component is more
regular than the raw time series, which can help improve
the forecasting performance [12, 13]. On the other hand, the
wavelet analysis was also selected due to its successful use
in electricity market [12, 13], smoothing methods [14–17],
financial market [18–20], and ecological time series modeling
[21, 22]. Moreover, variability analysis at different time scales
based on the wavelet power spectrumhas shown that climatic
oscillations such as the El Niño-Southern Oscillation signifi-
cantly affect the abundance of marine species [23, 24].
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Finally, the proposed 𝑝-step-ahead forecasting strategy
is based on two stages. In the first stage, the raw time
series is decomposed using the 3-level stationary wavelet
transform (SWT) to separate both the annual component
(AC) and the interannual component (IAC). The periodicity
of each component at different time scales is detected and
quantified using the global Morlet wavelet power spectrum.
In the second stage, both the AC and IAC are forecasted
using a linear AR model and the unknown 𝑝-next values are
forecasted by the algebraic sum of the two predicted values.

The rest of this paper is organized as follows. Section 2
briefly describes the wavelet analysis. The 𝑝-step-ahead fore-
casting strategy is presented in Section 3. The experimental
results and performance evaluation are presented in Section 4
followed by the conclusions in Section 5.

2. Wavelet Analysis

In this section we briefly present the continuous wavelet
transform and the discrete stationary wavelet transform.

2.1. Continuous Wavelet Transform. The continuous wavelet
transform (CWT) decomposes a continuous time signal 𝑥(𝑡)
into a family of “daughter-wavelet” functions 𝜓

𝑠,𝑏
(𝑡), which

are generated by the dilatation and the translation of amother
wavelet function. The CWT coefficients of a real signal 𝑥(𝑡)
are obtained for the different scales and translations as follows
[25, 26]:

𝑊(𝑠, 𝑏) = ∫

∞

∞

𝑥 (𝑡) 𝜓
∗

𝑠,𝑏

(𝑡) 𝑑𝑡, (1)

where the ∗ denotes the complex conjugate, 𝑠 is a dilatation
(scale) factor that controls the width of the wavelet function,
and 𝑏 is a translation factor controlling its location.The scaled
and translated daughter-wavelet function is obtained as

𝜓
𝑠,𝑏
(𝑡) =

1

√𝑠
𝜓(
𝑡 − 𝑏

𝑠
) , 𝑠 ∈ R

+

, 𝑏 ∈ R, (2)

where 𝜓(𝑡) is the mother wavelet function and the choice
of the wavelet function is not arbitrary. There are several
considerations whenmaking the choice of a wavelet function,
for example, real versus complex wavelets, continuous versus
discrete wavelets, and orthogonal versus redundant wavelets.
However, all the wavelets share a general feature. That is, fast
oscillations have good time resolution but lower frequency
resolution, whereas low oscillations have good frequency
but poor time resolution. In this paper the CWT has been
implemented using the Morlet mother wavelet function
defined as

𝜓 (𝑡) = 𝜋
−1/4 exp (𝑖𝜔

0
) exp(−𝑡

2

2
) , (3)

where 𝜔
0
defines the frequency center of the wavelet and

here is set equal to 𝜔
0
= 6, as it yields the function to

have zero mean and be localized in both time and frequency
space, as well as providing a good balance between time and
frequency. Moreover, for the Morlet wavelet, the scale 𝑠 is

inversely related to the Fourier frequency; that is, 𝑓 = 1/𝑠,
which simplifies the interpretation of the wavelet analysis and
onemay replace the scale 𝑠 by the Fourier period 1/𝑓 [25, 26].

For discrete time series 𝑥
𝑛
= {𝑥(𝑛), 𝑛 = 0, 1, . . . , 𝑁 − 1}

with uniform time step 𝛿𝑡, its CWT is obtained as a 𝐽 × 𝑁
matrix, whose (𝑗, 𝑘) elements are given by [27, 28]

𝑊(𝑗, 𝑘) = √
𝛿𝑡

𝑠

𝑁−1

∑

𝑛=0

𝑥 (𝑛) 𝜓
∗

(
(𝑛 − 𝑘) 𝛿𝑡

𝑠
𝑗

) ,

𝑗 = 0, 1, . . . , 𝐽 − 1,

(4)

where 𝑠
𝑗
represents a set of scales, 𝑘 = 0, 1, . . . , 𝑁 − 1 denotes

the shifting index, 𝐽 determines the largest scale, and𝑁 is the
number of data points in the time series.

The global wavelet power spectrum GWPS of a discrete
time series 𝑥

𝑛
is calculated as [27, 28]

GWPS (𝑠
𝑗
) =
1

𝑁

𝑁−1

∑

𝑛=0

𝑊 (𝑗, 𝑘)

2

, 𝑗 = 0, 1, . . . , 𝐽 − 1, (5)

where GWPS represents the cumulate variance contributed
by each time scale and |𝑊(𝑗, 𝑘)|2 denotes the local variance
distribution of the time series in the time-scale plane.

2.2. Stationary Wavelet Transform. The SWT was indepen-
dently proposed by several researchers and it is known in
literature under a variety of names, such as the nondecimated
wavelet transform, invariant wavelet transform, and redun-
dant wavelet transform.The key feature is that it gives a better
approximation than the discrete wavelet transform (DWT)
since it is redundant, linear, and shift invariant [14–17]. The
SWT is similar to the DWT [25, 26] in that the high-pass and
low-pass filters are applied to the input signal at each level,
but the output signal is never decimated. Instead, the filters
are upsampled at each level of decomposition [14].

Now, we consider the following discrete time series 𝑎
0
=

𝑥
𝑛
with 𝑁 = 2𝐽 for some integer 𝐽. At the first level of SWT,

the input signal 𝑎
0
is convolved with a low-pass filter ℎ

0
of

length 𝑟 to obtain the approximation coefficient 𝑎
1
and with

a high-pass filter 𝑔
0
of length 𝑟 to obtain the detail coefficient

𝑑
1
. That is,

𝑎
1
(𝑛) = ∑

𝑘

ℎ
0
(𝑛 − 𝑘) 𝑎

0
(𝑘) , (6a)

𝑑
1
(𝑛) = ∑

𝑘

𝑔
0
(𝑛 − 𝑘) 𝑎

0
(𝑘) , (6b)

because no subsampling is performed, and 𝑎
1
and 𝑑

1
are of

length𝑁 instead of𝑁/2 as in the DWT case. At the next level
of the SWT, the approximation coefficient 𝑎

1
is split into two

parts using the same previous scheme, but with a new pair of
filter ℎ

1
and 𝑔

1
, which are obtained by inserting a zero value

between the elements of the filters used in the previous step
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Input:A time series 𝑥 = 𝑥(𝑛), 𝑛 = 0, 1, . . . , 𝑁 − 1 of𝑁 samples
Output: Annual and inter-annual component

(1) 𝐽 ← 3
(2)𝑊𝑛 ← 𝑑𝑏2
(3) [𝑎 𝑑] ← swt(𝑥, 𝐽,𝑊𝑛)
(4) Aux← zeros(𝐽,𝑁)
(5) 𝑥
𝑎

← 𝑖swt(Aux, 𝑑,𝑊𝑛)
(6) 𝑥ia ← 𝑖swt(𝑎,Aux,𝑊𝑛)
(7) return 𝑥

𝑎

, 𝑥ia

Algorithm 1: Component separation.

(i.e., ℎ
0
and 𝑔

0
). The general process of the SWT is continued

iteratively for 𝑗 = 1, . . . , 𝐽 − 1 and is given as

𝑎
𝑗+1
(𝑛) = ∑

𝑘

ℎ
𝑗
(𝑛 − 𝑘) 𝑎

𝑗
(𝑘) , (7a)

𝑑
𝑗+1
(𝑛) = ∑

𝑘

𝑔
𝑗
(𝑛 − 𝑘) 𝑎

𝑗
(𝑘) , (7b)

where ℎ
𝑗
and𝑔
𝑗
are obtained by the upsampling operator.The

upsample operator inserts 2𝑗−1 zeros between the elements of
the filters ℎ

0
and 𝑔

0
, respectively.The SWT is fully defined by

the choice of a pair of filters (i.e., ℎ
0
and 𝑔

0
) and the number

of decomposition step 𝐽.

3. Multi-Step-Ahead Forecasting Strategy

3.1. Wavelet Preprocessing. At this stage, the SWT is used
to extract both the AC and IAC by using the Daubechies
low-pass/high-pass filter with four coefficients (Db2) and
three levels of decomposition. The periodic behavior of each
component was obtained by using the GWPS with a 95%
confidence level [27, 28], which can be seen in Figures 2,
3, and 4. Algorithm 1 explains the component separation
process considering the Db2 wavelet filter and 𝐽-levels of
decomposition. In this algorithm, line (3) performs the
separation of components by using 3-level SWT with Db2
wavelet filter, whereas line (5) and line (6) implement the
reconstruction of the AC and the IAC using the inverse 3-
level SWT.

3.2.Wavelet Autoregressive Forecasting. Theproposed𝑝-step-
ahead forecasting strategy is based on direct method. The
directmethod is to learn𝑝 single outputmodels, each return-
ing a direct prediction of the future value 𝑥(𝑛+𝑝). In order to
predict the future value𝑥(𝑛+𝑝)firstlywe separate the original
time series into two components by using Algorithm 1. The
first component 𝑥

𝑎
presents the annual variabilities and is

characterized by fast dynamic, while the second component
𝑥ia indicates interannual fluctuation and is characterized by
slow dynamics. Therefore the proposed forecasting model
will be the coaddition of two predicted values given by

𝑥 (𝑛 + 𝜏) = 𝑥
𝑎
(𝑛 + 𝜏) + 𝑥ia (𝑛 + 𝜏) + 𝑒 (𝑛) , (8)

where 𝜏 represents the forecasting horizon and 𝑒(𝑛) denotes
the 𝑛th value of the residual component.

The 𝑥
𝑎
(𝑛+𝜏) and 𝑥ia(𝑛+𝜏) are estimated by using a linear

autoregressive function with exogenous inputs given by the
following two equations, respectively:

𝑥
𝑎
(𝑛 + 𝜏) = 𝐹

𝑎,𝜏
[𝑥
𝑎
(𝑛) , 𝑥ia (𝑛)]

=

𝑚−1

∑

𝑖=0

𝛼
𝑖
𝑥
𝑎
(𝑛 − 𝑖) +

𝑚−1

∑

𝑖=0

𝛼
𝑚+𝑖
𝑥ia (𝑛 − 𝑖) ,

(9)

where [𝑥
𝑎
(𝑛− 𝑖)] represents the endogenous regressor vector,

whereas [𝑥ia(𝑛 − 𝑖)] plays the role of exogenous regressor
vector and𝑚 is the size of a time window,

𝑥ia (𝑛 + 𝜏) = 𝐹ia,𝜏 [𝑥ia (𝑛) , 𝑥𝑎 (𝑛)]

=

𝑚−1

∑

𝑖=0

𝛽
𝑖
𝑥ia (𝑛 − 𝑖) +

𝑚−1

∑

𝑖=0

𝛽
𝑚+𝑖
𝑥
𝑎
(𝑛 − 𝑖) ,

(10)

where [𝑥ia(𝑛 − 𝑖)] represents the endogenous regressor vector
and the exogenous regressor vector is denoted by [𝑥

𝑖
(𝑛 − 𝑖)].

In order to estimate the parameters {𝛼
𝑖
} and {𝛽

𝑖
} the linear

least square method is used. Now suppose a set of 𝑇 training
input-output samples; then we can perform 𝑇 equations of
the following forms:

𝑋
𝑎
= 𝑍𝛼, (11a)

𝑋ia = 𝑍𝛽, (11b)

where 𝑍 is the regressor matrix of 𝑇 rows and 2𝑚 columns
and 𝛼 and 𝛽 are vectors of 2𝑚 rows and one column. Finally,
the 𝛼 and 𝛽 values are calculated by using the following
equations:

𝛼 = 𝑍
†

𝑋
𝑎
, (12a)

𝛽 = 𝑍
†

𝑋ia, (12b)

where (⋅)† denotes the Moore-Penrose pseudoinverse [29].

4. Measures of Accuracy Applied in
the Models Performance

In this paper, three criteria of accuracy are used to evaluate
the estimation capabilities during the test phase of the evalu-
ated models. They are root mean square error (RMSE), mean
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Figure 1: Observed monthly anchovy catches data.

absolute percentage error (MAPE), and relative percentage
error (RPE), which are calculated as

RMSE = √ 1
𝑀

𝑀

∑

𝑛=1

(𝑥 (𝑛) − 𝑥 (𝑛))
2

,

MAPE = 1
𝑀

𝑀

∑

𝑛=1



𝑥 (𝑛) − 𝑥 (𝑛)

𝑥 (𝑛)


× 100,

RPE = 𝑥 (𝑛) − 𝑥 (𝑛)
𝑥 (𝑛)

× 100,

(13)

where𝑥(𝑛) is the actual value atmonth 𝑛,𝑥(𝑛) is the predicted
value at month 𝑛, and 𝑀 is the corresponding number of
testing (validation) values.

5. Results

The time series data analyzed in this paper corresponds to
the monthly fish catch of anchovy for periods from January
1963 to December 2007 (http://www.sernapesca.cl/). Besides,
the original time series data is smoothed using the following
operation: 𝑥 = √𝑥. The new smoothed original time series is
shown in Figure 1.Thefirst stepwas to implement the compo-
nent separation process presented in Algorithm 1 using three
different wavelet filters with three levels of decomposition
to select the most suitable wavelet filter. The performance
of Algorithm 1 was evaluated using the Daubechies filter,
Symlets filter, and Coiflets filter. The first two filters are
implemented using four and six coefficients denoted as Db2,
Sym2, Db3, and Sym3, respectively, whereas the third filter
is evaluated using six and twelve coefficients denoted as
Coif1 and Coif2. The following step was to detect the most
significant periodic fluctuations of each component based on
the GWPS. The main goal of the detection phase was to find
the significant peak power that explained the periodicities of
the time series.

The GWPS for the AC and the IAC is presented in
Figures 2, 3, and 4, respectively. In these figures, the peak
power indicates the catches high activity. The black thick line
designates the 95% confidence level against red noise and the
values of the peak power obtained on the black thick line are
significant [27, 28].

Figures 2(a) and 2(b) show the AC time series and the
GWPS, respectively. From Figure 2(b) it can be observed
that there are two peaks of significant power. The first peak
has periodicities of 6 months, whereas the second peak has
a period of 12 months. Therefore the AC time series has
a seasonal pattern. On the other hand, the AC time series
obtained by using 4-level SWT with Db2 wavelet filter is
presented in Figure 3(a), whereas Figure 3(b) shows that AC
time series has a cycle of 20months and another of 30months,
which leads to the conclusion that this new AC time series
does not meet seasonal behavior, because it has interannual
periods. Therefore, only 3-level SWT is used to evaluate the
performance of the wavelet autoregressive (WAR) forecasting
model proposed.

The AIC time series and GWPS are presented in Figures
4(a) and 4(b), respectively. From Figure 4(b) it can be
observed that there are three peaks of significant power.
The first peak has a period of 84 months and the second
peak has a periodicity of 31 months, while the last peak has
a periodic behavior of 152 months. Therefore, these three
peaks represent significant interannual fluctuations and can
be associated with the El Niño Southern Oscillation effect
[30, 31].

Once both the AC and IAC were reconstructed by using
the 3-level SWT with Db2 wavelet filter, each component
was divided into two parts: a training data set (𝑇 = 360
observations, 2/3) and a test data set (𝑀 = 180 observations,
1/3). The training data set was firstly used to estimate the
parameters of the WAR forecasting models, and the testing
data set was used for computing the performancemeasures of
themodels and for validation purposes.TheWAR forecasting
model was calibrated with 2𝑚 = 2 × 30 previous months as
input data due to the interannual variability of the original
time series. In the calibration process overall parameters were
estimated using the linear least squares method.

Theperformancemeasures of theWAR forecastingmodel
as a function of the forecasting horizon using different
wavelet filters with 3-level SWT are shown in Figure 5. From
Figure 5 it is observed that the Coif2, Db3, and Sym3 gave
a poor performance in comparison to Coif1, Sym3, and
Db2. On the contrary, Db2 and Sym2 achieved the better
performance. Therefore, the Db2 wavelet filter was used in
all further analysis. From Figure 5 it can be seen that the
performance measures significantly increase their values for
a time horizon of more than 10-month-ahead forecasting.

Once both the AC and IAC have been separately pre-
dicted, their values must be added in order to obtain the
𝑝-step-ahead anchovy-catches forecasting model. In the fol-
lowing we present only 10-month-ahead forecasting results
during the testing phase, whose results are illustrated in
Figures 6, 7, and 8.

The performance evaluation of the 𝐹
𝑎,10
[⋅] and 𝐹

𝑎𝑖,10
[⋅]

models is presented in Figures 6 and 7. As seen in Figures
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Figure 2: (a) Annual component (𝑥
𝑎

) from 3-level SWT and (b) GWPS.
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Figure 3: (a) Annual component (𝑥
𝑎

) from 4-level SWT and (b) GWPS.
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Figure 4: (a) Interannual (𝑥ia) component from 3-level SWT and (b) GWPS.
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Figure 6: 10-month-ahead WAR forecasting for annual component (𝑥
𝑎

).
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Figure 7: 10-month-ahead WAR forecasting for interannual component (𝑥ia).
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Figure 8: 10-month-ahead WAR forecasting for observed anchovy catches versus estimated anchovy catches.

6(a) and 7(a) the actual value and predicted value are very
close for the testing data with low performance measures.
The model 𝐹

𝑎,10
[⋅] achieves a RMSE of 0.0093 and MAPE of

36%, whereas the 𝐹ia,10[⋅] model obtained a RMSE of 0,0062
and MAPE 1.38%. On the other hand, from Figure 6(b) it
is leveraged that over 80% of the predicted AC catches are
acceptable with residual ranging from −20% to 20% and

Figure 7(b) illustrates that 96% of the predicted IAC catches
values are within the range of 4%.

Figure 8(a) provides the observed monthly anchovy-
catches data set versus forecasted anchovy catches, whose
forecasting behavior is very accurate for testing data with
a RMSE and MAPE of 0.0093 and 2.66%, respectively. On
the other hand, from Figure 8(b) it can be observed that an
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important fraction (over 95%) of the predicted values are
acceptable with residuals ranging from −10% to 10%.

6. Conclusions

This paper presented a 𝑝-month-ahead forecasting strategy
based on two stages to improve pelagic fish-catch time-
series modeling. It is based on wavelet analysis and linear
AR modeling. In the first stages, the two time series are
constructed after 3-level stationary wavelet decomposition
containing information about the original time series at
annual and interannual time scale, whereas in the second
stage each time series is modeled by using a linear AR
model. As time series are not independent, each AR model
included information of the other time series to improve the
forecasting accuracy.The 10-month-ahead forecasting results
show that the thirty previous months of each time series
contain valuable information to explain the highest variance
level of the monthly anchovy catches of northern Chile for
periods from January 1963 to December 2007. Finally, the
wavelet autoregressive forecasting strategy can be suitable as
a very promising methodology for any other marine species
of the fishing industry.

Conflict of Interests

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported in part by Grant CONICYT/
FONDECYT/Regular 1131105 and by the DI project of the
Pontificia Universidad Católica de Valparaı́so.
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Pulido-Calvo, “Monthly catch forecasting of anchovy Engraulis
ringens in the north area of Chile: non-linear univariate
approach,” Fisheries Research, vol. 86, no. 2-3, pp. 188–200, 2007.
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