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An unfitted discontinuous Galerkin method is proposed for the elliptic interface problems. Based on a variant of the local
discontinuous Galerkin method, we obtain the optimal convergence for the exact solution u in the energy norm and its flux p
in the L2 norm. These results are the same as those in the case of elliptic problems without interface. Finally, some numerical
experiments are presented to verify our theoretical results.

1. Introduction

Elliptic interface problems are often encountered in many
multiphysics and multiphase applications in science com-
puting and engineering. For example, second order elliptic
equations with discontinuous coefficients are often used to
model problems in material sciences and fluid dynamics
when two or more distinct materials or fluids with different
conductivities, densities, or permeability are involved. It is
well known that, when the interface is smooth enough, the
solution of elliptic interface problems has higher regularity in
individual material or fluid region than in the entire physical
domain.

To numerically solve such interface problems, first we
need to generate a mesh. One approach is to use a body
fitted mesh. However, for those problems where the interface
moves with time, repeated remeshing of the domain to obtain
a fitted mesh is very costly. Another one is to use an unfitted
grid independent of the location of the interface. This tech-
nique is particularly preferred to simulate time-dependent
problems with moving interfaces. The major advantage for
using an unfitted mesh is that it avoids repeatedly remeshing
the domain for fitting the moving interfaces.

As for fitted mesh method for elliptic problems with
interface, Chen and Zou in [1] considered the finite element
method for solving elliptic and parabolic interface problems,
and almost-optimal error estimates in the 𝐿

2 norm and

energy norm were obtained. In [2], the authors studied a
class of discontinuous Galerkin method for elliptic interface
problems, which was shown to be optimally convergent in 𝐿

2

norm. Recently, a high-order HDGmethod was presented to
solve elliptic interface problems by Huynh et al. in [3], which
was extended to solve Stokes interface flow in [4].

Various unfitted grid methods for interface problems
have been proposed in the literature. Finite difference meth-
ods are very popular unfitted grid methods due to their
simplicity, for example, the immersed interfacemethod [5, 6],
the immersed boundary method [7], the boundary condition
capturing method [8], and many others. And there exist
many works for finite element methods on unfitted grid as
well. Babuška in [9] studied the elliptic interface problem on
unfitted mesh and derived suboptimal convergence behavior.
Li et al. proposed an immersed interface finite element
method in [10], which modified the basis functions near
interface to satisfy the homogeneous jump conditions. Later,
this method was applied to elliptic and elasticity interface
problems with nonhomogeneous jump conditions in [11, 12].
Recently, an unfitted finite elementmethodbased onNitsche’s
method was presented by A. Hansbo and P. Hansbo in
[13] and optimal order of convergence was proved without
restrictions on the location of the interface relative to the
mesh, which was used to solve incompressible elasticity with
discontinuous modulus in [14]. More recently, Massjung
in [15] considered an ℎ𝑝 unfitted discontinuous Galerkin
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method which was viewed as a generalization of Hansbo’s
method in [13]. An optimal convergence rate with respect
to ℎ and a suboptimal convergence rate with respect to 𝑝 in
energy normwere proved. Later, Wu and Xiao also presented
an unfitted ℎ𝑝 interface penalty finite elementmethod, which
was extended to the three dimensional case in [16].

The local discontinuous Galerkin (LDG) method was
proposed by Cockburn and Shu in [17] to solve general time-
dependent convection-diffusion problems. Later, the method
was carried to elliptic problems for mixed discontinuous
Galerkin formulation by Castillo et al. in [18].The purpose of
this paper is to extend the LDG method to a class of elliptic
problems with a smooth interface. However, employing an
unfitted mesh method, the interface can divide regular grid
cells into degenerated subcells. If this situation happens, the
standard inverse estimates can no longer be valid. In this
paper, we use the weighted average instead of the arithmetic
average in the classic LDG method to retrieve the inverse
estimates (see Lemmas 8 and 10). Thus, we propose an
unfitted discontinuous Galerkin method, based on a variant
of LDG method. We prove the optimal convergence rate of
the method for the exact solution 𝑢 in the energy norm and
its flux p in the 𝐿

2 norm, respectively.
The rest of this paper is organized as follows. In Section 2

we propose our DG method and present some necessary
preliminaries. We prove optimal order error estimates for
our DG method in Section 3. In Section 4, some numerical
experiments are presented to justify our theoretical results.
Finally, conclusions are given in Section 5.

Let us now end this section with some notation to be used
in this paper. We will use the standard notations for Sobolev
spaces and norms in this paper (see [19, 20]). In particular, for
a bounded open set Ω in R2, if Ω = ⋃

𝑚

𝑖=1
Ω
𝑖
and Ω

𝑖
∩ Ω
𝑗
=

0 (𝑖 ̸= 𝑗), we denote by 𝐻
𝑘
(⋃
𝑚

𝑖=1
Ω
𝑖
) the Sobolev space of

functions 𝑢 such that 𝑢|
Ω𝑖

∈ 𝐻
𝑘
(Ω
𝑖
), where 𝐻

𝑘
(Ω
𝑖
) denotes

the standard Sobolev space with norm ‖ ⋅ ‖
𝑘,Ω𝑖

. As usual
we define the broken norm: ‖ ⋅ ‖

𝑘,Ω
= (∑

𝑚

𝑖=1
‖ ⋅ ‖
2

𝑘,Ω𝑖
)
1/2.

Throughout the paper, the generic constant 𝐶 is always
independent of the mesh parameter ℎ.

2. Discontinuous Galerkin
Method and Preliminaries

Let Ω be a bounded domain in R2 with convex polyg-
onal boundary 𝜕Ω and Ω

+
⊂ Ω an open domain with 𝐶

2

boundary Γ = 𝜕Ω
+

⊂ Ω. Let Ω− = Ω \ Ω
+ (see Figure 1).

We consider the following elliptic interface problem:

−∇ ⋅ (𝛽∇𝑢) = 𝑓 in Ω
+
∪ Ω
−
,

𝑢 = 0 on 𝜕Ω,

[𝑢] = 0 on Γ,

[𝛽
𝜕𝑢

𝜕n
] = 𝑔 on Γ,

(1)

where n is the outward pointing unit normal to Ω
+ and

[𝑢] := 𝑢
+
|
Γ
− 𝑢
−
|
Γ
is the jump of 𝑢 across the interface Γ,

where 𝑢
± is the restrictions of 𝑢 on Ω

±. For the sake of

Ω
−

Ω
+

Γ

n

Figure 1: Domain Ω, its subdomains Ω
+, Ω
−, and interface Γ.

simplicity, we assume that the coefficient 𝛽 is a positive and
piecewise constant; that is, 𝛽|

Ω
± = 𝛽
±
> 0.

Regarding the regularity for the solution of the interface
problem (1), we state without proof the following theorem.

Theorem 1 (cf. [1]). Assume that𝑓 ∈ 𝐿
2
(Ω) and 𝑔 ∈ 𝐻

1/2
(Γ).

Then problem (1) has a unique solution 𝑢 ∈ 𝐻
2
(Ω
+
∪Ω
−
), and

the following a priori estimate holds:

‖𝑢‖2,Ω+∪Ω− ≤ 𝐶 (
𝑓

0,Ω
+
𝑔

1/2,Γ
) . (2)

By introducing the flux p = 𝛽∇𝑢, the interface problem
(1) can be rewritten into a first order system as

1

𝛽
p = ∇𝑢 in Ω

+
∪ Ω
−
,

−∇ ⋅ p = 𝑓 in Ω
+
∪ Ω
−
,

[𝑢] = 0 on Γ,

[p ⋅ n] = 𝑔 on Γ,

𝑢 = 0 on 𝜕Ω.

(3)

Let T
ℎ
be a shape regular and locally quasi-uniform

simplicial triangulation ofΩ, generated independently of the
location of the interface Γ. For the definition of shape regular
and locally quasi-uniform,we refer to [20, 21]. SupposeT

ℎ
to

be made of straight triangles𝑇with diameter ℎ
𝑇
. As usual, let

ℎ := max
𝑇∈Tℎ

ℎ
𝑇
. The set of edges of the triangulation T

ℎ
is

denoted by E
ℎ
, and E𝑜

ℎ
is the set of interior edges ofT

ℎ
. For

any element 𝑇 ∈ T
ℎ
, denote the part of 𝑇 in Ω

± by 𝑇
±; that

is, 𝑇± = 𝑇∩Ω
±. For any edge 𝑒 ∈ E

ℎ
, let 𝑒± = 𝑒 ∩Ω

±. We call
the elements whose interiors are cut through by Γ “interface
elements”, and denote the set of the interface elements byT𝑜

ℎ
.

For an interface element 𝑇 ∈ T𝑜
ℎ
, assume that Γ

𝑇
is the part

of interface Γ intersecting 𝑇. For the geometrical features of
the interface Γ, we give the following plausible assumptions
(cf. [13, 15]).

Assumption 2. We assume that Γ intersects the boundary 𝜕𝑇

of an element 𝑇 ∈ T𝑜
ℎ
exactly twice and each (open) edge at

most once.

Assumption 3. Let Γ
𝑇,ℎ

be the straight line segment connect-
ing the points of intersection between Γ and 𝜕𝑇. We assume
that Γ
𝑇
is a function of length on Γ

𝑇,ℎ
, in local coordinates:

Γ
𝑇, ℎ

= {(𝜉, 𝜂) : 0 < 𝜉 <
Γ𝑇, ℎ

 , 𝜂 = 0} ,

Γ
𝑇
= {(𝜉, 𝜂) : 0 < 𝜉 <

Γ𝑇, ℎ
 , 𝜂 = 𝛿 (𝜉)} .

(4)
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Assumption 4. Suppose that 𝑒 = 𝑇
1
∩ 𝑇
2
with 𝑇

1
, 𝑇
2
∈ T
ℎ
;

then there exist triangles 𝑆
±

1
⊂ 𝑇
±

1
and 𝑆

±

2
⊂ 𝑇
±

2
such that

𝑒
±
= 𝑆
±

1
∩ 𝑆
±

2
and

𝑆
±

1

 +
𝑆
±

2

 ≥ 𝐶
𝑒
±

2

. (5)

To formulate our numerical scheme, first we define two
usual discontinuous finite element spaces as

�̃�
ℎ
= {V
ℎ
∈ 𝐿
2
(Ω) : V

ℎ
|
𝑇
∈ 𝑃
𝑘
(𝑇) , ∀𝑇 ∈ T

ℎ
} ,

W̃
ℎ
= {q
ℎ
∈ (𝐿
2
(Ω))
2

: q
ℎ
|
𝑇
∈ 𝑃
𝑘
(𝑇)
2
, ∀𝑇 ∈ T

ℎ
} ,

(6)

where 𝑃
𝑘
(𝑇) denotes the space of polynomials of degree less

than or equal to 𝑘 (𝑘 ≥ 1) on each element 𝑇.
We define our discontinuous finite element spaces as

𝑉
ℎ
= {V
ℎ
: V
ℎ
|
Ω
± = V±
ℎ
, where V±

ℎ
∈ �̃�
ℎ
} ,

W
ℎ
= {q
ℎ
: q
ℎ
|
Ω
± = q±
ℎ
, where q±

ℎ
∈ W̃
ℎ
} .

(7)

Following the notation of [22], let 𝑒 be an interior edge
shared by two triangles 𝑇

1
and 𝑇

2
in T
ℎ
. For a scalar valued

function V, piecewise smooth onT
ℎ
with V

𝑗
= V|
𝑇𝑗
, we define

the jump and the weighted average of V as

⟦V±⟧ = V±
1
n
1
+ V±
2
n
2
, {{V±}}

𝑤
= 𝜇
±

1
V±
1
+ 𝜇
±

2
V±
2
,

{{V±}}𝑤 = 𝜇
±

2
V±
1
+ 𝜇
±

1
V±
2

on 𝑒 ⊂ E
𝑜

ℎ
.

(8)

Similarly, for a vector valued function w, piecewise smooth
onT
ℎ
with w

𝑗
= w|
𝑇𝑗
, we set

⟦w±⟧ = w±
1
⋅ n
1
+ w±
2
⋅ n
2
, {{w±}}

𝑤
= 𝜇
±

1
w±
1
+ 𝜇
±

2
w±
2
,

{{w±}}𝑤 = 𝜇
±

2
w±
1
+ 𝜇
±

1
w±
2

on 𝑒 ⊂ E
𝑜

ℎ
,

(9)

where n
𝑗
is the unit normal of 𝑒 pointing towards the outside

of 𝑇
𝑗
and 𝜇

±

𝑗
= |𝑆
±

𝑗
|/(|𝑆
±

1
| + |𝑆
±

2
|), 𝑗 = 1, 2. If 𝑒 is an edge on

the boundary ofΩ, we define on 𝑒

⟦V⟧ = Vn, {{w}}
𝑤
= w, (10)

where n denotes the unit outer normal of 𝑒 pointing towards
the outside ofΩ.

For theweight average across interface Γ of any piecewise
smooth function V discontinuous on Γ, we set

{V}
𝑤
= 𝜆
+V+ + 𝜆

−V−, {V}𝑤 = 𝜆
−V+ + 𝜆

+V−, (11)

where 𝜆+ + 𝜆
−
= 1 whose specific definitions will be given in

Lemma 10.
For simplicity, for𝑇± = 𝑇∩Ω

± and 𝑒
±
= 𝑒∩Ω

±, we define

⟨V, 𝑤⟩𝑇 := (V+, 𝑤+)
𝑇
+ + (V−, 𝑤−)

𝑇
− ,

⟨V, 𝑤⟩
𝑒
:= (V+, 𝑤+)

𝑒
+ + (V−, 𝑤−)

𝑒
− .

(12)

Following [18], testing the problem (3) by q
ℎ
∈ W
ℎ
and

V
ℎ
∈ 𝑉
ℎ
, respectively, using integration by parts and noting

the identities ⟦qV⟧ = ⟦V⟧{{q}}
𝑤

+ {{V}}𝑤⟦q⟧ and [V𝑤] =

{𝑤}
𝑤
[V] + {V}𝑤[𝑤], we obtain our DGmethod: find (q

ℎ
, 𝑢
ℎ
) ∈

W
ℎ
× 𝑉
ℎ
, such that

∑

𝑇∈Tℎ

⟨
1

𝛽
p
ℎ
, q
ℎ
⟩

𝑇

+ ∑

𝑇∈Tℎ

⟨𝑢
ℎ
, ∇ ⋅ q

ℎ
⟩
𝑇

− ∑

𝑒∈E𝑜
ℎ

⟨{{𝑢
ℎ
}}
𝑤

, ⟦q
ℎ
⟧⟩
𝑒
− ∑

𝑇∈T𝑜
ℎ

({𝑢
ℎ
}
𝑤

, [qh ⋅ n])
Γ𝑇

= 0,

∑

𝑇∈Tℎ

⟨p
ℎ
, ∇V
ℎ
⟩
𝑇
− ∑

𝑒∈Eℎ

⟨{{p
ℎ
}}
𝑤
, ⟦V
ℎ
⟧⟩
𝑒

− ∑

𝑇∈T𝑜
ℎ

({p
ℎ
⋅ n}
𝑤
, [V
ℎ
])
Γ𝑇

+ ∑

𝑒∈Eℎ

⟨
𝛾

|𝑒
±
|
⟦𝑢
ℎ
⟧ , ⟦V
ℎ
⟧⟩

𝑒

+ ∑

𝑇∈T𝑜
ℎ

𝛾

ℎ
𝑇

([𝑢
ℎ
] , [V
ℎ
])
Γ𝑇

= ∑

𝑇∈Tℎ

⟨𝑓, V
ℎ
⟩
𝑇
+ ∑

𝑇∈T𝑜
ℎ

(𝑔, {V
ℎ
}
𝑤

)
Γ𝑇

,

(13)

for all (q
ℎ
, V
ℎ
) ∈ W

ℎ
× 𝑉
ℎ
, where 𝛾 > 0 is the stabilization

parameter.
We define the bilinear and linear forms

𝑎 (p
ℎ
, q
ℎ
) = ∑

𝑇∈Tℎ

⟨
1

𝛽
p
ℎ
, q
ℎ
⟩

𝑇

,

𝑏 (V
ℎ
, p
ℎ
) = ∑

𝑇∈Tℎ

⟨p
ℎ
, ∇V
ℎ
⟩
𝑇
− ∑

𝑒∈Eℎ

⟨{{p
ℎ
}}
𝑤
, ⟦V
ℎ
⟧⟩
𝑒

− ∑

𝑇∈T𝑜
ℎ

({p
ℎ
⋅ n}
𝑤
, [V
ℎ
])
Γ𝑇
,

𝑐 (𝑢
ℎ
, V
ℎ
) = ∑

𝑒∈Eℎ

⟨
𝛾

|𝑒
±
|
⟦𝑢
ℎ
⟧ , ⟦V
ℎ
⟧⟩

𝑒

+ ∑

𝑇∈T𝑜
ℎ

𝛾

ℎ
𝑇

([𝑢
ℎ
] , [V
ℎ
])
Γ𝑇
,

𝐹 (V
ℎ
) = ∑

𝑇∈Tℎ

⟨𝑓, V
ℎ
⟩
𝑇
+ ∑

𝑇∈T𝑜
ℎ

(𝑔, {V
ℎ
}
𝑤
)
Γ𝑇
.

(14)

And integral by parts yields that

𝑏 (𝑢
ℎ
, q
ℎ
) = − ∑

𝑇∈Tℎ

⟨𝑢
ℎ
, ∇ ⋅ q

ℎ
⟩
𝑇
+ ∑

𝑒∈E𝑜
ℎ

⟨{{𝑢
ℎ
}}
𝑤

, ⟦q
ℎ
⟧⟩
𝑒

+ ∑

𝑇∈T𝑜
ℎ

({𝑢
ℎ
}
𝑤

, [q
ℎ
⋅ n])
Γ𝑇

.

(15)

Hence, our DG approximation can be written as the
followingmixed variational problem: find (q

ℎ
, 𝑢
ℎ
) ∈ W

ℎ
×𝑉
ℎ
,

such that
𝑎 (p
ℎ
, q
ℎ
) − 𝑏 (𝑢

ℎ
, q
ℎ
) = 0 ∀q

ℎ
∈ W
ℎ
,

𝑏 (p
ℎ
, V
ℎ
) + 𝑐 (𝑢

ℎ
, V
ℎ
) = 𝐹 (V

ℎ
) ∀𝑢

ℎ
∈ 𝑉
ℎ
.

(16)

For the exact 𝑢 of the interface problem (1) and p = 𝛽∇𝑢,
using Theorem 1, we have ⟦𝑢⟧ = 0, ⟦p⟧ = 0 on 𝑒 ∈ E𝑜

ℎ
,

and [𝑢] = 0, [p ⋅ n] = 𝑔 across Γ. Then the following
consistency property holds:

𝑎 (p, q
ℎ
) − 𝑏 (𝑢, q

ℎ
) = 0,

𝑏 (p, V
ℎ
) + 𝑐 (𝑢, V

ℎ
) = 𝐹 (V

ℎ
) .

(17)
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Let the mesh-dependent norm |‖ ⋅ ‖|
ℎ

be defined by



Vℎ




2

ℎ
= ∑

𝑇∈Tℎ

∇Vℎ


2

0,𝑇
± + ∑

𝑒∈Eℎ

1

|𝑒
±
|

⟦Vℎ⟧


2

0,𝑒
±

+ ∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

[Vℎ]


2

0,Γ𝑇
.

(18)

Theorem 5. Suppose that the stabilization parameter 𝛾 is pos-
itive; then the DG method (16) defines a unique approximate
solution (p

ℎ
, 𝑢
ℎ
) ∈ W

ℎ
× 𝑉
ℎ
.

Proof. Since (16) is a square system, it is enough to show
uniqueness. Let 𝑓 = 0, 𝑔 = 0. Setting q

ℎ
= p
ℎ
and V

ℎ
= 𝑢
ℎ
,

adding the two equations of (16), we have

𝑎 (p
ℎ
, p
ℎ
) + 𝑐 (𝑢

ℎ
, 𝑢
ℎ
) = 0, (19)

which deduces p
ℎ
≡ 0, ⟦𝑢

ℎ
⟧ = 0 on E

ℎ
and [𝑢

ℎ
] = 0 across

Γ. As a consequence, the first equation of (16) becomes

∑

𝑇∈Tℎ

⟨∇𝑢
ℎ
, q
ℎ
⟩ = 0 ∀q

ℎ
∈ W
ℎ
. (20)

Hence, taking q
ℎ

= ∇𝑢
ℎ
implies ∇𝑢

ℎ
= 0. Since ⟦𝑢

ℎ
⟧ = 0

on E
ℎ
and [𝑢

ℎ
] = 0 across Γ, we conclude that 𝑢

ℎ
≡ 0. This

completes the proof.

The following lemma comes from the famous Stein’s
extension theorem.

Lemma 6 (cf. [19]). There exist two extension operators 𝐸± :

𝐻
𝑘
(Ω
±
) → 𝐻

𝑘
(Ω) for all nonnegative integers 𝑘 such that

(𝐸
±V) |
Ω
± = V, 𝐸

±V𝐻𝑘(Ω) ≤ 𝐶‖V‖
𝐻
𝑘
(Ω
±
)
, (21)

where V ∈ 𝐻
𝑘
(Ω
±
).

Next, we state a standard approximation lemma.

Lemma 7 (cf. [20, 21]). Let 𝑢 ∈ 𝐻
𝑘+1

(𝑇). Then for 𝑚 =

0, 1 there exists a linear continuous operator Π
𝑇
: 𝐻
𝑘+1

(𝑇) →

𝑃
𝑘
(𝑇) such that

𝑢 − Π
𝑇
𝑢
𝑚,𝑇

≤ 𝐶ℎ
𝑘+1−𝑚

𝑇
‖𝑢‖𝑘+1,𝑇, (22)

𝑢 − Π
𝑇
𝑢
𝐿∞(𝑇)

≤ 𝐶ℎ
𝑘

𝑇
‖𝑢‖𝑘+1,𝑇, (23)

𝑢 − Π
𝑇
𝑢
0,𝜕𝑇

≤ 𝐶ℎ
𝑘+1/2

𝑇
‖𝑢‖𝑘+1,𝑇 . (24)

The following two lemmas are variant inverse estimates
involving interface Γ which play important role in our
analysis.

Lemma8 (cf. [15]). For 𝑒 ∈ E
ℎ
let 𝑒 = 𝑇

1
∩𝑇
2
; then for q ∈ W

ℎ

the following inverse inequality holds:

{{q}}𝑤


2

0,𝑒
± ≤ 𝐶|𝑒

±
|
−1
2

∑

𝑖=1

‖q‖2
0,𝑇
±

𝑖

. (25)

Lemma 9 (cf. [15, 16]). The following estimate holds for either
𝑖 = + or 𝑖 = −, for any V ∈ 𝑃

𝑘
(𝑇):

‖V‖
0,Γ𝑇

≤ 𝐶ℎ
−1/2

𝑇
‖V‖0,𝑇𝑖 . (26)

By Lemma 9, we can immediately obtain the following
result.

Lemma 10. Let 𝑇 ∈ T𝑜
ℎ
; then there exists a positive constant

𝐶 such that

𝜆
±
‖V‖0,Γ𝑇 ≤ 𝐶ℎ

−1/2

𝑇
‖V‖0,𝑇± , ∀V ∈ 𝑃

𝑘
(𝑇) , (27)

where

𝜆
±
=

{{{

{{{

{

1

2
if (26) holds for both 𝑇

± and 𝑇
∓
,

1 if (26) holds only for 𝑇
±
,

0 if (26) holds only for 𝑇
∓
.

(28)

Lemma 11. Let 𝑇 ∈ T𝑜
ℎ
and V ∈ 𝐻

1
(𝑇); then we have

‖V‖0,Γ𝑇 ≤ 𝐶 (ℎ
−1/2

𝑇
‖V‖0,𝑇 + ℎ

1/2

𝑇
|V|1,𝑇) . (29)

Proof. Under Assumptions 2 and 3, the trace inequality (29)
follows from Lemma 3 in [13] and a scaling argument.

3. Error Estimate of Our DG Method

Now, we define interpolation operator Π by Π|
𝑇

:= Π
𝑇
and

Π := (Π,Π). Let 𝜉±p = p±−Π𝐸±p±, 𝜂±p = Π𝐸
±p±−p±

ℎ
and 𝜉
±

𝑢
=

𝑢
±
− Π𝐸
±
𝑢
±
, 𝜂
±

𝑢
= Π𝐸

±
𝑢
±
− 𝑢
±

ℎ
. To obtain the convergence

result, we need to show the following approximate error
estimates.

Lemma 12. Suppose that 𝑢 ∈ 𝐻
𝑘+1

(Ω
+

∪ Ω
−
) and p ∈

(𝐻
𝑘+1

(Ω
+
∪ Ω
−
))
2

; then the following approximate estimates
hold:

∑

𝑇∈Tℎ

𝜉𝑢


2

0,𝑇
± + ∑

𝑒∈Eℎ

1

|𝑒
±
|

⟦𝜉𝑢⟧


2

0,𝑒
±

+ ∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

[𝜉𝑢]


2

0,Γ𝑇
≤ 𝐶ℎ
2𝑘
‖𝑢‖
2

𝑘+1,Ω
+
∪Ω
− ,

(30)

∑

𝑇∈Tℎ


𝜉p



2

0,𝑇
±
+ ∑

𝑒∈Eℎ

𝑒
±


{{𝜉p}}

𝑤



2

0,𝑒
±

+ ∑

𝑇∈T𝑜
ℎ

ℎ
𝑇


{𝜉p ⋅ n}

𝑤



2

0,Γ𝑇

≤ 𝐶ℎ
2𝑘
‖p‖2
𝑘,Ω
+
∪Ω
− .

(31)

Proof. We only need to show inequality (30); inequality (31)
can be shown similarly. For the first termon the left-hand side
of (30), by the inequality (22) from Lemma 7 we obtain

𝜉𝑢


2

0,𝑇
± =

𝐸
±
𝑢
±
− Π𝐸
±
𝑢
±

2

0,𝑇
±

≤
𝐸
±
𝑢
±
− Π𝐸
±
𝑢
±

2

0,𝑇
≤ 𝐶ℎ
2𝑘+2𝐸

±
𝑢
±

2

𝑘+1,𝑇
.

(32)

Summing over all triangles, it follows by Lemma 6 that

∑

𝑇∈Tℎ

𝜉𝑢


2

0,𝑇
± ≤ 𝐶ℎ

2𝑘+2
‖𝑢‖
2

𝑘+1,Ω
+
∪Ω
− . (33)
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Next, we estimate the second term on the left-hand side of
(30) as follows. Suppose that 𝑒 = 𝑇

1
∩ 𝑇
2
with 𝑇

1
, 𝑇
2
∈ T
ℎ
;

using the inequality (23) from Lemma 7 yields

1

|𝑒
±
|

⟦𝜉𝑢⟧


2

0,𝑒
± =

1

|𝑒
±
|

⟦𝐸
±
𝑢
±
− Π𝐸
±
𝑢
±
⟧


2

0,𝑒
±

≤
⟦𝐸
±
𝑢
±
− Π𝐸
±
𝑢
±
⟧


2

𝐿
∞
(𝑒
±
)

≤ 𝐶ℎ
2𝑘𝐸
±
𝑢
±

2

𝑘+1,𝑇1∪𝑇2
.

(34)

Summing over all edges, using Lemma 6 implies that

∑

𝑒∈Eℎ

1

|𝑒
±
|

⟦𝜉𝑢⟧


2

0,𝑒
± ≤ 𝐶ℎ

2𝑘
‖𝑢‖
2

𝑘+1,Ω
+
∪Ω
− . (35)

Similarly, due to the inequality (24) from Lemma 7 and
Lemmas 6 and 11, we find

∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

[𝜉𝑢]


2

0,Γ𝑇
≤ 𝐶ℎ
2𝑘
‖𝑢‖
2

𝑘+1,Ω
+
∪Ω
− . (36)

Thus the inequality (30) follows combining (33)–(36), which
completes the proof.

Next we present a priori error estimate of the exact
solution 𝑢 in the energy norm |‖ ⋅ ‖|

ℎ
and its flux p in the 𝐿

2-
norm.

Theorem 13. Let (p, 𝑢) be the solution of (3) and (p
ℎ
,

𝑢
ℎ
) the solution of (16), respectively. Then, for (p, 𝑢) ∈

(𝐻
𝑘
(Ω
+
∪ Ω
−
))
2

×𝐻
𝑘+1

(Ω
+
∪Ω
−
), the following error estimate

holds:
p − p

ℎ

0,Ω+∪Ω−
+


𝑢 − 𝑢
ℎ



ℎ

≤ 𝐶ℎ
𝑘
(‖p‖
𝑘,Ω
+
∪Ω
− + ‖𝑢‖𝑘+1,Ω+∪Ω−) .

(37)

Proof. By using the consistency property (17), we have

𝑎 (𝜂p, qℎ) − 𝑏 (𝜂
𝑢
, q
ℎ
) = 𝑎 (𝜉p, qℎ) − 𝑏 (𝜉

𝑢
, q
ℎ
) ,

𝑏 (𝜂p, Vℎ) + 𝑐 (𝜂
𝑢
, V
ℎ
) = 𝑏 (𝜉p, Vℎ) + 𝑐 (𝜉

𝑢
, V
ℎ
) .

(38)

Set q
ℎ
= 𝜂p, Vℎ = 𝜂

𝑢
in (38) to give

𝑎 (𝜂p, 𝜂p) + 𝑐 (𝜂
𝑢
, 𝜂
𝑢
)

= 𝑎 (𝜉p, 𝜂p) − 𝑏 (𝜉
𝑢
, 𝜂p) + 𝑏 (𝜉p, 𝜂𝑢) + 𝑐 (𝜉

𝑢
, 𝜂
𝑢
) .

(39)

Using (31) in Lemma 12 and 𝜀-Cauchy-Schwartz inequality,
we estimate the first term on the right-hand side of (39) as

𝑎 (𝜉p, 𝜂p) = ∑

𝑇∈Tℎ

⟨𝜉p, 𝜂p⟩𝑇 = ∑

𝑇∈Tℎ

(𝜉p, 𝜂p)𝑇±

≤ ( ∑

𝑇∈Tℎ


𝜉p



2

0,𝑇
±
)

1/2

( ∑

𝑇∈Tℎ


𝜂p



2

0,𝑇
±
)

1/2

≤ 𝐶ℎ
2𝑘
‖p‖2
𝑘,Ω
+
∪Ω
− + 𝜀 ∑

𝑇∈Tℎ


𝜂p



2

0,𝑇
±
.

(40)

For the second term on the right-hand side of (39), by using
(30) in Lemma 12 and trace inequalities from Lemmas 8 and
10, we obtain

𝑏 (𝜉
𝑢
, 𝜂p)

= ∑

𝑇∈Tℎ

⟨𝜂p, ∇𝜉𝑢⟩𝑇 − ∑

𝑒∈Eℎ

⟨{{𝜂p}}𝑤, ⟦𝜉𝑢⟧⟩𝑒

− ∑

𝑇∈T𝑜
ℎ

({𝜂p ⋅ n}
𝑤
, [𝜉
𝑢
])
Γ𝑇

= ∑

𝑇∈Tℎ

(𝜂p, ∇𝜉𝑢)𝑇± − ∑

𝑒∈Eℎ

({{𝜂p}}𝑤, ⟦𝜉𝑢⟧)𝑒±

− ∑

𝑇∈T𝑜
ℎ

({𝜂p ⋅ n}
𝑤
, [𝜉
𝑢
])
Γ𝑇

≤ ( ∑

𝑇∈Tℎ


𝜂p



2

0,𝑇
±
)

1/2

( ∑

𝑇∈Tℎ

∇𝜉𝑢


2

0,𝑇
±)

1/2

+ ( ∑

𝑒∈Eℎ

𝑒
±


{{𝜂p}}𝑤



2

0,𝑒
±
)

1/2

× ( ∑

𝑒∈Eℎ

1

|𝑒
±
|

⟦𝜉𝑢⟧


2

0,𝑒
±)

1/2

+ ( ∑

𝑇∈T𝑜
ℎ

ℎ
𝑇


{𝜂p ⋅ n}

𝑤



2

0,Γ𝑇

)

1/2

( ∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

[𝜉𝑢]


2

0,Γ𝑇
)

1/2

≤ 𝐶ℎ
2𝑘
‖𝑢‖
2

𝑘+1,Ω
+
∪Ω
− + 𝜀 ∑

𝑇∈Tℎ


𝜂p



2

0,𝑇
±
.

(41)

Similarly, by using the approximate estimation (31), the third
term on (39) can be estimated as

𝑏 (𝜉p, 𝜂𝑢)

= ∑

𝑇∈Tℎ

⟨𝜉p, ∇𝜂𝑢⟩
𝑇
− ∑

𝑒∈Eℎ

⟨{{𝜉p}}
𝑤
, ⟦𝜂
𝑢
⟧⟩
𝑒

− ∑

𝑇∈T𝑜
ℎ

({𝜉p ⋅ n}
𝑤
, [𝜂
𝑢
])
Γ𝑇

= ∑

𝑇∈Tℎ

(𝜉p, ∇𝜂𝑢)
𝑇
±
− ∑

𝑒∈Eℎ

({{𝜉p}}
𝑤
, ⟦𝜂
𝑢
⟧)
𝑒
±

− ∑

𝑇∈T𝑜
ℎ

({𝜉p ⋅ n}
𝑤
, [𝜂
𝑢
])
Γ𝑇

≤ ( ∑

𝑇∈Tℎ


𝜉p



2

0,𝑇
±
)

1/2

( ∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
±)

1/2

+ ( ∑

𝑒∈Eℎ

𝑒
±


{{𝜉p}}

𝑤



2

0,𝑒
±
)

1/2

× ( ∑

𝑒∈Eℎ

1

|𝑒
±
|

⟦𝜂𝑢⟧


2

0,𝑒
±)

1/2

+ ( ∑

𝑇∈T𝑜
ℎ

ℎ
𝑇


{𝜉p ⋅ n}

𝑤



2

0,Γ𝑇

)

1/2
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× ( ∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

[𝜂𝑢]


2

0,Γ𝑇
)

1/2

≤ 𝐶ℎ
2𝑘
‖p‖2
𝑘,Ω
+
∪Ω
−

+ 𝜀( ∑

𝑒∈Eℎ

1

|𝑒
±
| 0,𝑒±

⟦𝜂𝑢⟧


2

0,𝑒
± + ∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

[𝜂𝑢]


2

0,Γ𝑇

+ ∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
±) .

(42)

Then, by virtue of inequality (30) in Lemma 12, we bound the
fourth term on (39) as

𝑐 (𝜉
𝑢
, 𝜂
𝑢
) = ∑

𝑒∈Eℎ

⟨
𝛾

|𝑒
±
|
⟦𝜉
𝑢
⟧ , ⟦𝜂
𝑢
⟧⟩

𝑒

+ ∑

𝑇∈T𝑜
ℎ

𝛾

ℎ
𝑇

([𝜉
𝑢
] , [𝜂
𝑢
])
Γ𝑇

= ∑

𝑒∈Eℎ

(
𝛾

|𝑒
±
|
⟦𝜉
𝑢
⟧ , ⟦𝜂
𝑢
⟧)

𝑒
±

+ ∑

𝑇∈T𝑜
ℎ

𝛾

ℎ
𝑇

([𝜉
𝑢
] , [𝜂
𝑢
])
Γ𝑇

≤ ( ∑

𝑒∈Eℎ

𝛾

|𝑒
±
| 0,𝑒±

⟦𝜉𝑢⟧


2

0,𝑒
±)

1/2

× ( ∑

𝑒∈Eℎ

𝛾

|𝑒±|

⟦𝜂𝑢⟧


2

0,𝑒
±)

1/2

+ ( ∑

𝑇∈T𝑜
ℎ

𝛾

ℎ
𝑇

[𝜉𝑢]


2

0,Γ𝑇
)

1/2

× ( ∑

𝑇∈T𝑜
ℎ

𝛾

ℎ
𝑇

[𝜂𝑢]


2

0,Γ𝑇
)

1/2

≤ 𝐶ℎ
2𝑘
‖𝑢‖
2

𝑘+1,Ω
+
∪Ω
− + 𝜀𝑐 (𝜂

𝑢
, 𝜂
𝑢
) .

(43)

Thus, combining (39)–(43) yields

𝑎 (𝜂p, 𝜂p) + 𝑐 (𝜂
𝑢
, 𝜂
𝑢
)

≤ 𝐶ℎ
2𝑘

(‖p‖2
𝑘,Ω
+
∪Ω
− + ‖𝑢‖

2

𝑘+1,Ω
+
∪Ω
−)

+ 𝜀 ∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
± .

(44)

By using the triangle inequality, we have
p − p

ℎ



2

0,Ω
+
∪Ω
− + 𝑐 (𝜂

𝑢
, 𝜂
𝑢
)

≤ 𝐶ℎ
2𝑘

(‖p‖2
𝑘,Ω
+
∪Ω
− + ‖𝑢‖

2

𝑘+1,Ω
+
∪Ω
−) + 𝜀 ∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
± .

(45)

At the other hand, setting q
ℎ
= ∇𝜂
𝑢
in the first equality of

(38), we obtain

𝑎 (𝜂p, ∇𝜂𝑢) − 𝑏 (𝜂
𝑢
, ∇𝜂
𝑢
) = 𝑎 (𝜉p, ∇𝜂𝑢) − 𝑏 (𝜉

𝑢
, ∇𝜂
𝑢
) . (46)

By the definition of 𝑏(⋅, ⋅), an integration by parts implies that

∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
± = 𝑎 (p − p

ℎ
, ∇𝜂
𝑢
) + 𝑏 (𝜉

𝑢
, ∇𝜂
𝑢
)

+ ∑

𝑒∈Eℎ

⟨{{∇𝜂
𝑢
}}
𝑤
, ⟦𝜂
𝑢
⟧⟩
𝑒

+ ∑

𝑇∈T𝑜
ℎ

({∇𝜂
𝑢
⋅ n}
𝑤
, [𝜂
𝑢
])
Γ𝑇
.

(47)

Using Lemmas 8 and 10 yields

∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
± ≤ 𝐶

p − p
ℎ



2

0,Ω
+
Ω
−

+ 𝐶ℎ
2𝑘
‖𝑢‖𝑘+1,Ω+∪Ω− + 𝑐 (𝜂

𝑢
, 𝜂
𝑢
)

+ 𝜀 ∑

𝑇∈Tℎ

∇𝜂𝑢


2

0,𝑇
± .

(48)

Combining (45) and (48), choosing 𝜀 enough small, from
the definition |‖ ⋅ ‖|

ℎ
and the triangle inequality, we can

arrive at
p − p

ℎ



2

0,Ω
+
∪Ω
− +



𝑢 − 𝑢
ℎ





2

ℎ

≤ 𝐶ℎ
2𝑘

(‖p‖2
𝑘,Ω
+
∪Ω
− + ‖𝑢‖

2

𝑘+1,Ω
+
∪Ω
−) ,

(49)

which completes the proof.

Using the standard duality argument, we can obtain the
following error estimate in the 𝐿2 norm.

Theorem 14. Under the condition of Theorem 13, we have
𝑢 − 𝑢

ℎ

0,Ω+∪Ω−
≤ 𝐶ℎ
𝑘+1

(‖p‖
𝑘,Ω
+
∪Ω
− + ‖𝑢‖𝑘+1,Ω+∪Ω−) .

(50)

Proof. Consider the following so-called adjoint problem

−∇ ⋅ (𝛽∇𝜙) = 𝑢 − 𝑢
ℎ

in Ω
1
∪ Ω
2
,

𝜙 = 0 on 𝜕Ω,

[𝜙] = 0 on Γ,

[𝛽
𝜕𝜙

𝜕n
] = 0 on Γ.

(51)

UsingTheorem 1, we get
𝜙

2,Ω+∪Ω−
≤ 𝐶

𝑢 − 𝑢
ℎ

0,Ω+∪Ω−
. (52)

By introducing an auxiliary variable q = 𝛽∇𝜙, we obtain

1

𝛽
q = ∇𝜙 in Ω

+
∪ Ω
−
,

−∇ ⋅ q = 𝑢 − 𝑢
ℎ

in Ω
+
∪ Ω
−
,

𝜙 = 0 on 𝜕Ω,

[𝜙] = 0 on Γ,

[q ⋅ n] = 0 on Γ.

(53)
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Since [𝜙] = 0 on Γ and ⟦𝜙⟧ = 0 on E
ℎ
, using integration

by parts and the consistency property (17), we deduce
𝑢 − 𝑢

ℎ



2

0,Ω
+
∪Ω
− = (𝑢 − 𝑢

ℎ
, 𝑢 − 𝑢

ℎ
)

= 𝑎 (q, p − p
ℎ
) − 𝑏 (𝜙, p − p

ℎ
)

+ 𝑏 (𝑢 − 𝑢
ℎ
, q) + 𝑐 (𝜙, 𝑢 − 𝑢

ℎ
)

= ∑

𝑇∈Tℎ

⟨
1

𝛽
𝜉q, p − p

ℎ
⟩

𝑇

− ∑

𝑇∈Tℎ

⟨∇𝜉
𝜙
, p − p

ℎ
⟩
𝑇

+ ∑

𝑒∈Eℎ

⟨{{p − p
ℎ
}}
𝑤
, ⟦𝜉
𝜙
⟧⟩
𝑒

+ ∑

𝑇∈T𝑜
ℎ

({(p − p
ℎ
) ⋅ n}
𝑤
, [𝜉
𝜙
])
Γ𝑇

+ ∑

𝑇∈Tℎ

⟨𝜉q, ∇ (𝑢 − 𝑢
ℎ
)⟩
𝑇

− ∑

𝑒∈Eℎ

⟨{{𝜉q}}
𝑤
, ⟦𝑢 − 𝑢

ℎ
⟧⟩
𝑒

− ∑

𝑇∈T𝑜
ℎ

({𝜉q ⋅ n}
𝑤
, [𝑢 − 𝑢

ℎ
])
Γ𝑇

+ ∑

𝑒∈Eℎ

⟨
1

|𝑒
±
|
⟦𝜉
𝜙
⟧ , ⟦𝑢 − 𝑢

ℎ
⟧⟩

𝑒

+ ∑

𝑇∈T𝑜
ℎ

1

ℎ
𝑇

([𝜉
𝜙
] , [𝑢 − 𝑢

ℎ
])
Γ𝑇

=

9

∑

𝑖=1

𝐸
𝑖
.

(54)

Due to q = 𝛽∇𝜙, as in the proof ofTheorem 13, an application
of Theorem 1 implies that

𝐸1
 +

𝐸2
 +

9

∑

𝑖=5

𝐸𝑖


≤ 𝐶ℎ
𝜙

2,Ω+∪Ω−
(
p − p

ℎ

0,Ω+∪Ω−
+


𝑢 − 𝑢
ℎ



ℎ
) .

(55)

Now we estimate 𝐸
3
as follows:

𝐸
3
= ∑

𝑒∈Eℎ

⟨{{𝜉p}}
𝑤
, ⟦𝜉
𝜙
⟧⟩
𝑒
+ ∑

𝑒∈Eℎ

⟨{{𝜂p}}𝑤, ⟦𝜉𝜙⟧⟩𝑒

= ( ∑

𝑒∈Eℎ

𝑒
±


{{𝜉p}}

𝑤



2

0,𝑒
±
)

1/2

( ∑

𝑒∈Eℎ

1

|𝑒±|


⟦𝜉
𝜙
⟧


2

0,𝑒
±
)

1/2

+ ( ∑

𝑒∈Eℎ

𝑒
±


{{𝜂p}}𝑤



2

0,𝑒
±
)

1/2

( ∑

𝑒∈Eℎ

1

|𝑒±|


⟦𝜉
𝜙
⟧


2

0,𝑒
±
)

1/2

≤ 𝐶ℎ (ℎ
𝑘
‖p‖
𝑘,Ω
+
∪Ω
− +

p − p
ℎ

0,Ω+∪Ω−
)
𝜙

2,Ω+∪Ω−
.

(56)

Similarly,
𝐸4

 ≤ 𝐶ℎ (ℎ
𝑘
‖p‖
𝑘,Ω
+
∪Ω
− +

p − p
ℎ

0,Ω+∪Ω−
)
𝜙

2,Ω+∪Ω−
.

(57)
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Figure 2:Thenumerical solution on a 64×64 uniformmesh for 𝛽
1
:

𝛽
2
= 1 : 1000.

We now combine (54)–(57) and use (52) and Theorem 13 to
obtain

𝑢 − 𝑢
ℎ

0,Ω+∪Ω−
≤ 𝐶ℎ
𝑘+1

(‖p‖
𝑘,Ω
+
∪Ω
− + ‖𝑢‖𝑘+1,Ω+∪Ω−) , (58)

which completes the proof.

4. Numerical Experiments

In this section, we consider the following nontrivial example
with a homogeneous jump condition (from [10, 13]). The
exact solution is given by

𝑢 (𝑥, 𝑦) =

{{{

{{{

{

𝑟
2

𝛽
1

if 𝑟 ≤ 𝑟
0
,

𝑟
2

𝛽
2

−
𝑟
2

0

𝛽
2

+
𝑟
2

0

𝛽
1

, if 𝑟 > 𝑟
0
,

(59)

where 𝑟 = √(𝑥 − 0.5)
2
+ (𝑦 − 0.5)

2, and on the domain Ω =

(0, 1) × (0, 1) we choose 𝑟
0
= 0.3. A simple calculation shows

that p(𝑥, 𝑦) = (𝑥, 𝑦)
𝑇.

We compute the order of convergence for 𝑒
𝑢

= 𝑢 − 𝑢
ℎ

and ep = p − p
ℎ
, when piecewise linear polynomials are used

to approximate 𝑢 and p, respectively. In Figure 2, we plot the
numerical solution for this example on a 64×64uniformmesh
for𝛽
1
: 𝛽
2
= 1 : 1000. Figures 3, 4, 5, and 6 show the computed

order of convergence for ‖𝑒
𝑢
‖
0,Ω1∪Ω2

and ‖ep‖0,Ω1∪Ω2 when the
jump in the coefficient is taken as𝛽

1
: 𝛽
2
= 1 : 10, 1 : 1000, 10 : 1,

1000 : 1, respectively, in the log-log scale. These computed
results coincide with the theoretical results in Theorems 13
and 14.

5. Conclusions

In this paper, we have discussed an unfitted discontinuous
Galerkin method for elliptic problems with a smooth inter-
face. Based on a variant of local discontinuous Galerkin
method, we have obtained the optimal order error estimates
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Figure 3: The convergence rates of 𝐿2 norm in the exact 𝑢 and its
flux p for 𝛽
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= 1 : 10.
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Figure 4: The convergence rates of 𝐿2 norm in the exact 𝑢 and its
flux p for 𝛽

1
: 𝛽
2
= 1 : 1000.

in the energy norm in 𝑢 and its flux p. And by using the
standard duality argument the optimal convergence rate in
𝐿
2 norm for 𝑢 has also been derived. These presented results

are the same as that of elliptic problems without interface.
Finally, numerical experiments are given to confirm our
theoretical results. We note that the convergence behavior in
most existing works concerning the elliptic interface prob-
lems depends on the jump in the discontinuous coefficients.
It will be one of our future subjects to design an efficient
numerical scheme that is robust with respect to the jump in
the discontinuous coefficients.
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Figure 5: The convergence rates of 𝐿2 norm in the exact 𝑢 and its
flux p for 𝛽

1
: 𝛽
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= 10 : 1.
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