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For a vertex V of a graph 𝐺, the lower connectivity, denoted by 𝑠V(𝐺), is the smallest number of vertices that contains V and those
vertices whose deletion from 𝐺 produces a disconnected or a trivial graph. The average lower connectivity denoted by 𝜅av(𝐺) is
the value (∑V∈𝑉(𝐺) 𝑠V(𝐺))/|𝑉(𝐺)|. It is shown that this parameter can be used to measure the vulnerability of networks. This paper
contains results on bounds for the average lower connectivity and obtains the average lower connectivity of some graphs.

1. Introduction

In a communication network, the vulnerability parameters
measure the resistance of the network to disruption of oper-
ation after the failure of certain stations or communication
links. The best known and most useful measures of how well
a graph is connected is the connectivity, defined to be the
minimum number of vertices in a set whose deletion results
in a disconnected or trivial graph. As the connectivity is the
worst-case measure, it does not always reflect what happens
throughout the graph. Recent interest in the vulnerability and
reliability of networks (communication, computer, and trans-
portation) has given rise to a host of other measures, some of
which are more global in nature; see, for example, [1, 2].

Let 𝐺 be a finite simple graph with vertex set 𝑉(𝐺)
and edge set 𝐸(𝐺). In the graph 𝐺, 𝑛 denotes the number
of vertices. The minimum degree of a graph 𝐺 is denoted
by 𝛿(𝐺). A subset 𝑆 ⊂ 𝑉(𝐺) of vertices is a dominating
set if every vertex in 𝑉(𝐺) − 𝑆 is adjacent to at least one
vertex of 𝑆. The domination number 𝛾(𝐺) is the minimum
cardinality of a dominating set. A subset 𝑆 of 𝑉(𝐺) is called
an independent set of 𝐺 if no two vertices of 𝑆 are adjacent to
𝐺. An independent set 𝑆 ismaximum if𝐺 has no independent
set 𝑆󸀠 with |𝑆󸀠| > |𝑆|. The independence number of𝐺, 𝛼(𝐺), is
the number of vertices in a maximum independent set of 𝐺.

Henning [3] introduced the concept of average indepen-
dence and average domination. For a vertex V of a graph
𝐺, the lower independence number, denoted by 𝑖V(𝐺), is the
minimum cardinality of a maximal independent set of𝐺 that

contains V, and the lower domination number, denoted by
𝛾V(𝐺), is the minimum cardinality of a dominating set of 𝐺
that contains V. The average lower independence number of𝐺,
denoted by 𝑖

𝑎V(𝐺), is the value (∑V∈𝑉(𝐺) 𝑖V(𝐺))/|𝑉(𝐺)| and the
average lower domination number of 𝐺, denoted by 𝛾

𝑎V(𝐺), is
the value (∑V∈𝑉(𝐺) 𝛾V(𝐺))/|𝑉(𝐺)|. Since 𝛾V(𝐺) ≤ 𝑖V(𝐺) holds
for every vertex V, we have 𝛾

𝑎V(𝐺) ≤ 𝑖𝑎V(𝐺) for any graph
𝐺. Also, it is clear that 𝑖(𝐺) = min{𝑖V(𝐺) | V ∈ 𝑉(𝐺)} and
𝛾(𝐺) = min{𝛾V(𝐺) | V ∈ 𝑉(𝐺)} so 𝛾(𝐺) ≤ 𝛾

𝑎V(𝐺) and
𝑖(𝐺) ≤ 𝑖

𝑎V(𝐺).
The (𝑢, V)-connectivity of 𝐺, denoted by 𝜅

𝐺
(𝑢, V), is

defined to be the maximum value of 𝑘 for which 𝑢 and V are
𝑘-connected. It is a well-known fact that the connectivity 𝜅(𝐺)
equals min{𝜅

𝐺
(𝑢, V)𝑢, V ∈ 𝑉(𝐺)}.

In 2002, Beineke et al. [4] introduced a parameter to give a
more refined measure of the global “amount” of connectivity.
If the order of 𝐺 is 𝑛, then the average connectivity of 𝐺,
denoted by 𝜅(𝐺), is defined to be 𝜅(𝐺) = (∑

𝑢,V 𝜅𝐺(𝑢, V))/ (
𝑛

2
).

The expression ∑
𝑢,V 𝜅𝐺(𝑢, V) is sometimes referred to as the

total connectivity of𝐺. Clearly, for any graph𝐺, 𝜅(𝐺) ≥ 𝜅(𝐺).
There are a lot of researches on the connectivity of a graph

[5]. Many works provide sufficient conditions for a graph to
be maximally connected [6–8]. The average connectivity has
been extensively studied [4, 9].

2. The Average Lower Connectivity of a Graph

We introduce a new vulnerability parameter, the average
lower connectivity. For a vertex V of a graph 𝐺, the lower
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Figure 1: 3-cycle 𝐺: with one additional vertex and edge.
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Figure 2: The graphs 𝐺
1
and 𝐺

2
.

connectivity, denoted by 𝑠V(𝐺), is the smallest number of
vertices that contains V and those vertices whose deletion
from 𝐺 produces a disconnected or a trivial graph. We
observe that

(i) 1 ≤ 𝑠V(𝐺) ≤ 𝑛 − 1;

(ii) 𝑠V(𝐺) = 1 if and only if V is a cut vertex;

(iii) 𝑠V(𝐺) = 𝑛 − 1 if and only if 𝐺 − V is complete.

The average lower connectivity denoted by 𝜅
𝑎V(𝐺) is the value

(∑V∈𝑉(𝐺) 𝑠V(𝐺))/𝑛, where 𝑛will denote the number of vertices
in graph 𝐺 and ∑V∈𝑉(𝐺) 𝑠V(𝐺) will denote the sum over all
vertices of𝐺. For any graph𝐺, 𝜅(𝐺) = min{𝑠V(𝐺) | V ∈ 𝑉(𝐺)}
so 𝜅av(𝐺) ≥ 𝜅(𝐺). We also observe that

(i) 𝜅av(𝐺) ≤ 𝑛 − 1;

(ii) 𝜅av(𝐺) = 𝑛 − 1 if and only if 𝐺 is complete.

Example 1. Let the graph 𝐺 be 3-cycle with one additional
vertex and edge, as shown in Figure 1. It is easy to see that
𝑠
𝑎
(𝐺) = 2, 𝑠

𝑏
(𝐺) = 2, 𝑠

𝑐
(𝐺) = 1, and 𝑠

𝑑
(𝐺) = 3 and we have

𝜅
𝑎V(𝐺) = (2 + 2 + 1 + 3)/4 = 2.

Let 𝐺
1
and 𝐺

2
be graphs. Now one can ask the following

question: is the average lower connectivity a suitable param-
eter? In other words, does the average lower connectivity
distinguish between 𝐺

1
and 𝐺

2
?

For example, consider the graphs in Figure 2.
It can be easily seen that the connectivity and average

connectivity of these graphs are equal:

𝜅 (𝐺
1
) = 𝜅 (𝐺

2
) = 𝜅 (𝐺

1
) = 𝜅 (𝐺

2
) = 1. (1)

On the other hand, the average lower connectivity of 𝐺
1
and

𝐺
2
is different:

𝜅av (𝐺1) = 1, 8,

𝜅av (𝐺2) = 1, 6.
(2)

Thus, the average lower connectivity is a better parameter
than the connectivity and average connectivity to distinguish
these two graphs.The average parameters have been found to
be more useful in some circumstances than the correspond-
ing measures based on worst-case situations.

Theorem 2. Let 𝐺 be a connected graph. Then,

𝜅
𝑎V (𝐺) < 𝜅 (𝐺) + 2. (3)

Proof. For every vertex of𝐺, 𝑠V(𝐺) ≤ 𝜅(𝐺)+2. For at least one
vertex V, 𝑠V(𝐺) = 𝜅(𝐺). Hence, the inequality is strict. Then,

𝜅av (𝐺) < 𝜅 (𝐺) + 2. (4)

The proof is completed.

Theorem 3. Let 𝐺 be a connected graph. Then,

𝜅
𝑎V (𝐺) ≤ 𝜅𝑎V (𝐺 + 𝑒) . (5)

Proof. It is easy to see that 𝑠V(𝐺) ≤ 𝑠V(𝐺 + 𝑒). Therefore,

∑V∈𝑉(𝐺) 𝑠V (𝐺)

𝑛
≤
∑V∈𝑉(𝐺) 𝑠V (𝐺 + 𝑒)

𝑛
. (6)

So, we have

𝜅av (𝐺) ≤ 𝜅av (𝐺 + 𝑒) . (7)

The proof is completed.

Theorem 4. Let 𝐺 be a 𝑘-connected and 𝑘-regular graph.
Then,

𝜅
𝑎V (𝐺) = 𝑘. (8)

Proof. The cardinality of 𝑠V(𝐺)-sets is always the same for
every vertex of any graph 𝐺 and equals 𝑘. Then, we have

𝜅av (𝐺) =
∑V∈𝑉(𝐺) 𝑠V (𝐺)

𝑛
=
𝑛 ⋅ 𝑘

𝑛
= 𝑘. (9)

This means that the proof is completed.

It is obvious that we can give the following equality for the
average lower connectivity of the cycle 𝐶

𝑛
.

(i) The average lower connectivity of the cycle 𝐶
𝑛
is 2.

Theorem 5. Let 𝐺 be a connected graph. Then,

𝜅
𝑎V (𝐺) ≤ 𝛿 (𝐺) + 2. (10)

Proof. For every vertex of 𝐺, 𝑠V(𝐺) ≤ 𝛿(𝐺) + 2. Thus,

𝜅av (𝐺) =
∑V∈𝑉(𝐺) 𝑠V (𝐺)

𝑛
≤
𝑛 ⋅ (𝛿 (𝐺) + 2)

𝑛
,

𝜅av (𝐺) ≤ 𝛿 (𝐺) + 2.

(11)

The proof is completed.
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3. Average Lower Connectivity of
Several Specific Graphs

In this section, we determine the average lower connectivity
of several special graphs.

Theorem 6. Let 𝑇 be a tree with order 𝑛. If 𝑇 has 𝑘 vertices
with degree 1, then

𝜅
𝑎V (𝑇) =

𝑛 + 𝑘

𝑛
. (12)

Proof. Assume that 𝑇 has 𝑘 vertices with degree 1 and 𝑛 − 𝑘
vertices with degree at least 2. Let vertices set of 𝑇 be 𝑉(𝑇) =
𝑉(𝐺
1
)∪𝑉(𝐺

2
)where in𝑉(𝐺

1
) the set contains 𝑘 vertices with

degree 1; in 𝑉(𝐺
2
) the set contains 𝑛 − 𝑘 vertices with degree

at least 2. If V ∈ 𝑉(𝐺
1
), then 𝑠V(𝐺1) = 2. We have to repeat

this process for 𝑘 vertices with degree 1. If V ∈ 𝑉(𝐺
2
), then

𝑠V(𝐺2) = 1. We have to repeat this process for 𝑛 − 𝑘 vertices
with degree at least 2. Thus, we have

𝜅av (𝑇) =
∑V∈𝑉(𝑇) 𝑠V (𝑇)

|𝑉 (𝑇)|
=
𝑘 ⋅ 2 + (𝑛 − 𝑘) ⋅ 1

𝑛
=
𝑛 + 𝑘

𝑛
. (13)

The proof is completed.

Corollary 7. The average lower connectivity of

(a) the path 𝑃
𝑛
is (𝑛 + 2)/𝑛;

(b) the star 𝐾
1,𝑛−1

is (2𝑛 − 1)/𝑛;

(c) the comet 𝐶
𝑡,𝑟
is (2𝑟 + 𝑡 + 1)/(𝑡 + 𝑟).

Theorem 8. Let 𝐾
𝑟,𝑠

be a complete bipartite graph. Then

𝜅
𝑎V (𝐾𝑟,𝑠) =

{

{

{

𝑠
2
+ 𝑠𝑟 + 𝑟

𝑟 + 𝑠
, 𝑖𝑓 𝑠 < 𝑟;

𝑟, 𝑖𝑓 𝑟 = 𝑠.

(14)

Proof. Let the partite sets of 𝐾
𝑟,𝑠

be 𝑅 and 𝑆 with |𝑅| = 𝑟 and
|𝑆| = 𝑠. We distinguish two cases.

Case 1. If 𝑟 = 𝑠, then byTheorem 4 we have 𝜅av(𝐾𝑟,𝑠) = 𝑟.

Case 2 (𝑟 < 𝑠). For 𝑥 ∈ 𝑅, a minimum disconnecting set of
𝐺 that contains 𝑥 must be 𝑆 ∪ {𝑥}, so 𝑠

𝑥
(𝐺) = 𝑠 + 1. On the

other hand, for 𝑦 ∈ 𝑆, a minimum disconnecting set of𝐺 that
contains 𝑦must be 𝑅, so 𝑠

𝑦
(𝐺) = 𝑟. Elementary computation

yields the result.

Definition 9. The wheel graph with 𝑛 − 1 spokes,𝑊
𝑛
, is the

graph that consists of an (𝑛 − 1)-cycle and one additional
vertex, say 𝑢, that is adjacent to all the vertices of the cycle.
In Figure 3, we display𝑊

7
.

Theorem 10. Let𝑊
𝑛
be a wheel graph. Then,

𝜅
𝑎V (𝑊𝑛) = 3. (15)

u

Figure 3: The wheel graph𝑊
7
.

u

Figure 4: The gear graph 𝐺
6

Proof. The wheel graph𝑊
𝑛
has 𝑛 vertices. The cardinality of

𝑠V(𝐺)-sets is always the same for every vertex of any𝑊
𝑛
and

equals 3. Then, we have

𝜅av (𝑊𝑛) =
∑V∈𝑉(𝑊

𝑛
)
𝑠V (𝑊𝑛)

𝑛
=
𝑛 ⋅ 3

𝑛
= 3. (16)

This means that the proof is completed.

Definition 11. The gear graph is a wheel graph with a vertex
added between each pair adjacent to graph vertices of the
outer cycle.The gear graph𝐺

𝑟
has 2𝑟+1 vertices and 3𝑟 edges.

In Figure 4 we display 𝐺
6
.

Theorem 12. Let 𝐺
𝑟
be a gear graph. Then,

𝜅
𝑎V (𝐺𝑟) =

5𝑟 + 3

2𝑟 + 1
. (17)

Proof. Let vertices set of𝐺
𝑟
be𝑉(𝐺

𝑟
) = (𝐻

1
)∪𝑉(𝐻

2
)∪𝑉(𝐻

3
)

where in𝑉(𝐻
1
) the set contains 1 vertex with degree 𝑛,𝑉(𝐻

2
)

the set contains 𝑛 vertices with degree 2, and 𝑉(𝐻
3
) the set

contains 𝑛 vertices with degree 3.If V ∉ 𝑉(𝐻
3
), then 𝑠V(𝐺) = 3.

If V ∈ 𝑉(𝐻
3
), then 𝑠V(𝐺3) = 2. Therefore,

𝜅av (𝐺𝑟) =
∑V∈𝑉(𝐺

𝑟
)
𝑠V (𝐺𝑟)

2𝑟 + 1

=
(𝑟 + 1) ⋅ 3 + 2 ⋅ 𝑟

2𝑟 + 1
=
5𝑟 + 3

2𝑟 + 1
.

(18)

The proof is completed.

Now we give the definition of Cartesian product.

Definition 13. TheCartesian product𝐺
1
×𝐺
2
of graphs𝐺

1
and

𝐺
2
has𝑉(𝐺

1
) × 𝑉(𝐺

2
) as its vertex set and (𝑢

1
, 𝑢
2
) is adjacent

to (V
1
, V
2
) if either 𝑢

1
= V
1
and 𝑢

2
is adjacent to V

2
or 𝑢
2
= V
2

and 𝑢
1
is adjacent to V

1
.

Connectivity of graph products has already been studied
by different authors. In [10] it is proved that 𝜅(𝐺

1
× 𝐺
2
) ≥

𝜅(𝐺
1
) + 𝜅(𝐺

2
).
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Theorem 14. Let 𝐺
1
and 𝐺

2
be two connected graphs; then

𝜅
𝑎V (𝐺1 × 𝐺2) ≥ 𝜅 (𝐺1 × 𝐺2) . (19)

Proof. We know 𝜅av(𝐺) ≥ 𝜅(𝐺). Therefore, we get

𝜅av (𝐺1 × 𝐺2) ≥ 𝜅 (𝐺1 × 𝐺2) . (20)

The proof is completed.

Proposition 15. For positive integer𝑚 ≥ 3,

(i) 𝜅
𝑎V(𝐾2 × 𝑃𝑚) = 2;

(ii) 𝜅
𝑎V(𝐾2 × 𝐶𝑚) = 3.

Proposition 16. Let 𝑟 ≥ 3 and 𝑡 ≥ 3 be positive integers. Then

(𝑖) 𝜅
𝑎V (𝑃𝑟 × 𝑃𝑡) =

{{{{{

{{{{{

{

23

9
, 𝑖𝑓 𝑟 = 3, 𝑡 = 3;

3 −
2

𝑡
, 𝑖𝑓 𝑟 = 3, 𝑡 ≥ 4;

3 −
8

𝑟 ⋅ 𝑡
, 𝑖𝑓 𝑟 ≥ 4, 𝑡 ≥ 4.

(𝑖𝑖) 𝜅
𝑎V (𝑃𝑟 × 𝐶𝑡) =

{

{

{

3, 𝑖𝑓 𝑟 = 3, 4, 𝑡 ≥ 3;

4 −
4

𝑟
, 𝑖𝑓 𝑟 ≥ 5, 𝑡 ≥ 4.

(𝑖𝑖𝑖) 𝜅
𝑎V (𝐶𝑟 × 𝐶𝑡) = 4.

(21)
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