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This paper proposes a decision treemodel for specifying the importance of 21 factors causing the landslides in a wide area of Penang
Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance
from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface
area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree
models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like
structure. Fourmodels were created using Chi-square Automatic InteractionDetector (CHAID), Exhaustive CHAID, Classification
and Regression Tree (CRT), and Quick-Unbiased-Efficient Statistical Tree (QUEST). Twenty-one factors were extracted using
digital elevation models (DEMs) and then used as input variables for the models. A data set of 137570 samples was selected for
each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-
validation was employed for testing the models.The highest accuracy was achieved using Exhaustive CHAID (82.0%) compared to
CHAID (81.9%), CRT (75.6%), and QUEST (74.0%) model. Across the four models, five factors were identified as most important
factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.

1. Introduction

Landslide is one of the most aggressive natural disasters that
causes loss of lives and billions of dollars damages annually
worldwide. They pose a threat to the safety of humankind
lives and, the environment, resources, and property [1].
Landslide susceptibility is defined as the propensity of an
area to generate landslides [2]. Assuming that landslides will
occur in the future because of the same conditions that
produced them in the past, susceptibility assessments can
be used to predict the geographical location of future land-
slides [3–5]. With the characteristics of high incidence and
extensive occurrence range, landslide research has aroused
the attention of many scientists, some of whom have focused
on landslide susceptibility mapping [6, 7]. Through scientific
analysis of landslide susceptibilitymapping,we can assess and
locate risky landslide susceptible areas. Furthermore, it allows

one to take the proper precautions to reduce the negative
impacts of landslides [8].

Many studies have been conducted to detect landslides
and to analyze the landslide hazard using the Geographic
Information Systems (GIS) and remote sensing [9–13].
Recently, with the development of GIS data processing tech-
niques, quantitative studies have been applied to landslide
susceptibility analysis using various techniques. Such studies
can be identified on the basis of the techniques used, such as
probabilisticmethods [14–18], logistic regression [19–21], and
artificial neural network [22–25]. Most of these studies were
aimed at increasing the accuracy of landslide prediction by
finding suitable techniques for the respective study area. The
objective of this study was to propose the best decision tree
model to determine the most important factors which lead
landslide susceptibility to occur. Decision tree is a popular
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classification technique and represents a good compromise
between comprehensibility, accuracy, and efficiency [26].

Statistical decision tree models have been successfully
used to classify and to estimate land use, land cover, and
other geographical attributes from remote sensing data [27,
28]. Decision tree, having its origin in machine learning
theory, is an efficient tool for classification and estimation.
Unlike other statistical methods, decision tree makes no
statistical assumptions, can handle data that are represented
on different measurement scales, and is computationally fast
[22]. Decision tree also has advantages that the estimation
processes and order of important explanatory variables are
explicitly represented by tree structures [29]. In addition,
recent developments of computer technologies, algorithms of
pattern recognition, and automatic methods of decision-tree
design have enabled the use of decision tree models.

Pal and Mather [30] demonstrated the advantages of the
decision tree for land cover classification in comparison with
other classifiers, such as the maximum likelihood method
and artificial neural networks. Saito et al. [2] used decision
tree models to analyze a distribution of landslides that were
almost suspended or dormant. They also indicated that
decision treemodels are useful for estimating landslide distri-
butions. Bui et al. [31] compared the decision tree for landslide
prediction in Vietnam. Decision tree showed a decent per-
formance compared with Support Vector Machines (SVM)
and Naive Bayes Models. Meanwhile decision tree showed
a good ability in determinations of the important factors
causing the landslide compared with other used models.
Pang et al. [32] produced the landslide hazard mapping of
Penang Island using decision tree Quinlan’s algorithm C4.5.
Twelve landslide causative factors were used in his study.
Pradhan [33] used three models: decision tree, SVM, and
adaptive neurofuzzy inference system (ANFIS) for producing
the landslide hazard map for Penang Hill area. The decision
tree showed a better performance compared with SVM and
ANFIS classifier.

In this paper, four decision tree methods were used
to build the optimum decision models including Chi-
square Automatic Interaction Detector (CHAID), Exhaus-
tive CHAID, Classification and Regression Tree (CRT) and
Quick-Unbiased-Efficient Statistical Tree (QUEST). Twenty
one factors were selected as the input variables of the decision
trees. A data set of 137570 samples from Penang Island in
Malaysia was used as examples for building the decision trees.
The experiment contained ten rounds according to different
partitions of training sets and test sets.

2. Decision Trees

A decision tree is a technique for finding and describing
structural patterns in data as tree structures; a decision
tree does not require the relationship between all the input
variables and an objective variable in advance.This technique
helps to explain data and to make predictions using the
data [34]. A decision tree can also handle data measured
on different scales, without any assumptions concerning the
frequency distributions of the data, based on its nonlinear

relationship [35]. Therefore, all variables were put into the
decision tree model.

The main purpose of using the decision tree is to
achieve amore concise and perspicuous representation of the
relationship between an objective variable and explanatory
variables. Namely, the decision tree can be visualized more
easily; unlike neural networks, it is not a “black box.”

The decision tree is based on a multistage or hierarchical
decision scheme (tree structure). The tree is composed of
a root node, a set of internal nodes, and a set of terminal
nodes (leaves). Each node of the decision tree structure
makes a binary decision that separates either one class
or some of the classes from the remaining classes. The
processing is carried out by moving down the tree until the
terminal node is reached. In a decision tree, features that
carry maximum information are selected for classification,
while remaining features are rejected, thereby increasing
computational efficiency [36].The top down induction of the
decision tree indicates that variables in the higher order of the
tree structure are more important.

There are three tree types of decision tree: CRT, CHAID
and Exhaustive CHAID, and Quest. The algorithms of the
three types follow the following steps. Start tree building by
assigning the node to classes, stopping tree building. Reach
the optimal tree selection and perform cross-validation [37].
CART performs tree “Pruning” before producing the optimal
tree selection, while CHAIDmethod performs statistical tests
at each step of splitting.

2.1. Classification and Regression Tree (CRT). CRT is a recur-
sive partitioning method to be used both for regression and
classification. CRT is constructed by splitting subsets of the
data set using all predictor variables to create two child
nodes repeatedly, beginning with the entire data set. The best
predictor is chosen using a variety of impurity or diversity
measures (Gini, towing, ordered towing and least-squared
deviation). The goal is to produce subsets of the data which
are as homogeneous as possible with respect to the target
variable [38]. In this study, we used measure of Gini impurity
that was used for categorical target variables.

Gini Impurity Measure. The Gini index at node 𝑡, 𝑔(𝑡), is
defined as

𝑔 (𝑡) = ∑

𝑗 ̸= 𝑖

𝑝 (𝑗 | 𝑡) (𝑖 | 𝑡) , (1)

where 𝑖 and 𝑗 are categories of the target variable. The
equation for the Gini index can also be written as

𝑔 (𝑡) = 1 − ∑

𝑗

𝑝
2

(𝑗 | 𝑡) . (2)

Thus, when the cases in a node are evenly distributed across
the categories, the Gini index takes its maximum value of
1 − (1/𝑘), where 𝑘 is the number of categories for the target
variable. When all cases in the node belong to the same
category, the Gini index equals 0.
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If costs of misclassification are specified, the Gini index is
computed as

𝑔 (𝑡) = ∑

𝑗 ̸= 𝑖

𝐶 (𝑖 | 𝑗) 𝑝 (𝑗 | 𝑡) 𝑝 (𝑖 | 𝑡) , (3)

where 𝐶(𝑖 | 𝑗) is the probability of misclassifying a category 𝑗

case as category 𝑖.
The Gini criterion function for split 𝑠 at node 𝑡 is defined

as

0 (𝑠, 𝑡) = 𝑔 (𝑡) − 𝑝𝐿𝑔 (𝑡𝐿) − 𝑝𝑅𝑔 (𝑡𝑅) , (4)

where 𝑝𝐿 is the proportion of cases in 𝑡 sent to the left child
node, and 𝑝𝑅 is the proportion sent to the right child node.
The split 𝑠 is chosen tomaximize the value of 0(𝑠, 𝑡).This value
is reported as the improvement in the tree [39].

2.2. Chi-Square Automatic Interaction Detector (CHAID) and
Exhaustive CHAID. CHAID method is based on the 𝜒

2-
test of association. A CHAID tree is a decision tree that is
constructed by repeatedly splitting subsets of the space into
two or more child nodes, beginning with the entire data set
[40]. To determine the best split at any node, any allowable
pair of categories of the predictor variables is merged until
there is no statistically significant difference within the pair
with respect to the target variable. This CHAID method
naturally deals with interactions between the independent
variables that are directly available from an examination
of the tree. The final nodes identify subgroups defined by
different sets of independent variables [41].

The CHAID algorithm only accepts nominal or ordinal
categorical predictors. When predictors are continuous, they
are transformed into ordinal predictors before using the
following algorithm. For each predictor variable 𝑋, merge
nonsignificant categories. Each final category of 𝑋 will result
in one child node if 𝑋 is used to split the node. The merging
step also calculates the adjusted 𝑝 value that is to be used in
the splitting step.

(1) If 𝑋 has 1 category only, stop and set the adjusted 𝑝

value to be 1.
(2) If 𝑋 has 2 categories, go to step 8.
(3) Else, find the allowable pair of categories of 𝑋 (an

allowable pair of categories for ordinal predictor is
two adjacent categories, and for nominal predictor is
any two categories) that is least significantly different.
The most similar pair is the pair whose test statistic
gives the largest 𝑝 value with respect to the dependent
variable 𝑌.

(4) For the pair having the largest 𝑝 value, check if its 𝑝

value is larger than a specified alpha-level 𝛼 merge.
If it does, this pair is merged into a single compound
category. Then a new set of categories of 𝑋 is formed.
If it does not, then go to step 7.

(5) (Optional) if the newly formed compound category
consists of three ormore original categories, then find
the best binary split within the compound category in

which𝑝 value is the smallest. Perform this binary split
if its 𝑝 value is not larger than an alpha-level 𝛼 split-
merge.

(6) Go to step 2.
(7) (Optional) any category having too few observations

(as compared with a user-specified minimum seg-
ment size) is merged with the most similar other
category as measured by the largest of the 𝑝 values.

(8) The adjusted 𝑝 value is computed for the merged cat-
egories by applying Bonferroni adjustments [42, 43].

The CHAID algorithm reduces the number of predictor
categories by merging categories when there is no significant
difference between them with respect to the class. When no
more classes can be merged the predictor can be considered
as a candidate for a split at the node. The original CHAID
algorithm is not guaranteed to find the best (most significant)
split of all of those examined because it uses the last
split tested. The Exhaustive CHAID algorithm attempts to
overcome this problem by continuing to merge categories,
irrespective of significance level, until only two categories
remain for each predictor. It then used the split with the
largest significance value rather than the last one tried.
The Exhaustive CHAID requires more computer time [44].
Calculations of (unadjusted)𝑝 values in the above algorithms
depend on the type of dependent variable. The merging step
of both CHAID and Exhaustive CHAID sometimes needs
the 𝑝 value for a pair of 𝑋 categories and sometimes needs
the 𝑝 value for all the categories of 𝑋. When 𝑝 value for
a pair of 𝑋 categories is needed, only part of data in the
current node is relevant. Let 𝐷 denotes the relevant data.
Suppose in 𝐷 there are 𝐼 categories of 𝑋, and 𝐽 categories
of 𝑌 (if 𝑌 is categorical). The 𝑝 value calculation using data
in 𝐷 is given below. The null hypothesis of independence
of 𝑋 and the dependent variable 𝑌 is tested. To do the test,
a contingency (or count) table is formed using classes of
𝑌 as columns and categories of the predictor 𝑋 as rows.
The expected cell frequencies under the null hypothesis are
estimated.The observed cell frequencies and the expected cell
frequencies are used to calculate Pearson chi-squared statistic
or likelihood ratio statistic.The 𝑝 value is computed based on
the Pearson’s chi-square statistic method. Consider

𝑋
2

=

𝐽

∑

𝑗=1

𝐼

∑

𝑖=1

(𝑛𝑖𝑗 − 𝑚̂𝑖𝑗)
2

𝑚̂𝑖𝑗

, (5)

where 𝑛𝑖𝑗 = ∑𝑛∈𝐷𝑓𝑛𝐼 (𝑥𝑛 = 𝑖 ∧ 𝑦𝑛 = 𝑗) is the observed cell
frequency and 𝑚̂𝑖𝑗 is the estimated expected cell frequency
for cell 𝑥𝑛 = 𝑖, 𝑦𝑛 = 𝑗 from independence model as follows.
The corresponding 𝑝 value is given by 𝑝 = pr(𝑋

2
𝑑 > 𝑋

2
)

for Pearson’s chi-square test where 𝑋
2
𝑑 follows a chi-squared

distribution with degrees of freedom 𝑑 = (𝐽 − 1)(𝐼 − 1),
𝑚̂𝑖𝑗 = 𝑛𝑖 ⋅ 𝑛𝑗/𝑛, 𝑛𝑖 = ∑

𝐽
𝑗=1 𝑛𝑖𝑗, 𝑛𝑗 = ∑

𝐼
𝑖=1 𝑛𝑖𝑗, 𝑛 = ∑

𝑗

𝑗=1∑
𝐼
𝑖=1 𝑛𝑖𝑗.

In step 8 the adjusted 𝑝-value is calculated as the 𝑝 value
times a Bonferroni multiplier. The Bonferroni multiplier
adjusts for multiple tests. Suppose that a predictor variable
originally has 𝐼 categories, and it is reduced to 𝑟 categories
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after the merging step. The Bonferroni multiplier 𝐵 is the
number of possible ways that 𝐼 categories can be merged into
𝑟 categories. For 𝑟 = 𝐼, 𝐵 = 1. For 2 ≤ 𝑟 < 𝐼, use the following
equation:

𝐵 =

𝑟−1

∑

V=0
(−1)

V (𝑟 − V)
𝐼

V!(𝑟 − V)
!
. (6)

2.3. Quick-Unbiased-Efficient Statistical Tree (QUEST).
QUEST is a binary split decision tree algorithm for clas-
sification and data mining. QUEST can be used with univar-
iant or linear combination splits. A unique feature is that its
attribute selectionmethod has negligible bias. If all the attrib-
utes are uninformative with respect to the class attribute, then
each has approximately the same change of being selected to
split a node [45].

TheQUEST tree growing process consists of the selection
of a split predictor, selection of a split point for the selected
predictor, and stopping. In this algorithm, only univariant
splits are considered. For selection of split predictor, it uses
the following algorithm.

(1) For each continuous predictor 𝑋, perform an
ANOVA 𝐹-test that tests if all the different classes of
the dependent variable 𝑌 have the same mean of 𝑋,
and calculate the 𝑝 value according to the 𝐹 statistics.
For each categorical predictor, perform Pearson’s
𝜒
2-test of 𝑌 and 𝑋’s independence, and calculate the

𝑝 value according to the 𝑋
2 statistics.

(2) Find the predictor with the smallest 𝑝 value and
denote it 𝑋

∗.
(3) If this smallest 𝑝 value is less than 𝛼/𝑀, where 𝛼 ∈

(0, 1) is a user-specified level of significance and 𝑀 is
the total number of predictor variables, predictor 𝑋

∗

is selected as the split predictor for the node. If not, go
to 4.

(4) For each continuous predictor 𝑋, compute Levene’s 𝐹

statistic based on the absolute deviation of 𝑋 from its
class mean to test if the variances of 𝑋 for different
classes of 𝑌 are the same, and calculate the 𝑝 value for
the test.

(5) Find the predictor with the smallest 𝑝 value and
denote it as 𝑋

∗∗.
(6) If this smallest 𝑝 value is less than 𝛼/(𝑀+𝑀1), where

𝑀1 is the number of continuous predictors, 𝑋
∗∗ is

selected as the split predictor for the node. Otherwise,
this node is not split [45].

3. Study Area

As shown in Figure 1, this study is focused on Penang Island
which lies between 5∘15󸀠 to 5∘30󸀠 N latitude and 100∘10󸀠 to
100∘20󸀠 E longitude. The North Channel separates the study
area from the mainland. It occupies an area of 285 km2 and is
one of the 13 states of Malaysia. The island is bounded to the
north and east by the state of Kedah, to the south by the state
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Figure 1: Study area map and landslide location map with hill
shaded map.

of Perak, and to the west by the Strait ofMalacca and Sumatra
(Indonesia).

Penang Island consists of both the island of Penang
and a coastal strip on the mainland known as the Province
Wellesley. This paper focuses only on the island, where
frequent landslides occurred and threaten lives and damage
properties [46, 47]. The heavy rain plays a major role in
triggering the landslides in the study area. Data from the
Malaysian Meteorological Department recorded that the
rainfall amount varies approximately between 2254mm and
2903mm annually in the study area. Penang Island has a
tropical climate with high temperature of 29∘C to 32∘C and
humidity ranges from 65% to 96%. Topographic elevations
vary between 0m and 820m above sea level. The slope angle
ranges from 0∘ to 87∘ while 43.28% of island is flat. Geolog-
ical data from the Minerals and Geosciences Department,
Malaysia, show that Ferringhi granite, Batu Maung granite,
clay, and sand granite represent more than 72% of the study
area’s geology. Vegetation cover consists mainly of forests and
fruit plantations.

4. Data Collection

An effective intelligent system requires a comprehensive data
set. Therefore 137570 samples of data were selected in this
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Table 1: Number of nodes, terminal nodes, and order of importance variable.

Decision tree
model No. of nodes No. of terminal

nodes
Independent variable included

“order of importance”
CHAID 317 254 𝑉3, 𝑉16, 𝑉15, 𝑉5, 𝑉4, 𝑉21, 𝑉17, 𝑉13, 𝑉1, 𝑉12, 𝑉19, 𝑉18, 𝑉10

Exhaustive
CHAID 377 302

𝑉3, 𝑉16, 𝑉15, 𝑉5, 𝑉4, 𝑉21, 𝑉9, 𝑉13, 𝑉1, 𝑉17, 𝑉12, 𝑉19, 𝑉18,
𝑉10

CRT 43 22
𝑉3, 𝑉16, 𝑉15, 𝑉5, 𝑉4, 𝑉2, 𝑉21, 𝑉6, 𝑉8, 𝑉9, 𝑉13, 𝑉1, 𝑉17,

𝑉12, 𝑉19, 𝑉20, 𝑉18, 𝑉11, 𝑉14, 𝑉7, 𝑉10

QUEST 55 28 𝑉3, 𝑉16, 𝑉15, 𝑉5, 𝑉4, 𝑉2, 𝑉21, 𝑉6, 𝑉8, 𝑉13, 𝑉1, 𝑉17, 𝑉12,
𝑉19, 𝑉18, 𝑉11, 𝑉7, 𝑉10

analysis, where 68786 samples represent landslides and 68786
samples represent no landslides.Then, Digital ElevationMap
(DEM) is used to extract 21 topographic factors. The DEM
with five-meter resolutions of Penang Island was obtained
from the Department of Survey and Mapping, Malaysia. The
extracted factors are acronyms as 𝑉1 (vegetation cover), 𝑉2

(distance from the fault line), 𝑉3 (slope angle), 𝑉4 (cross
curvature), 𝑉5 (slope aspect), 𝑉6 (distance from road), 𝑉7

(geology), 𝑉8 (diagonal length), 𝑉9 (longitude curvature),
𝑉10 (rugosity), 𝑉11 (plan curvature), 𝑉12 (elevation), 𝑉13

(rain perception), 𝑉14 (soil texture), 𝑉15 (surface area), 𝑉16

(distance from drainage), 𝑉17 (roughness), 𝑉18 (land cover),
𝑉19 (general curvature), 𝑉20 (tangent curvature), and 𝑉21

(profile curvature). In the previous studies which have been
done on Penang Island, only 14 factors (𝑉1 to 𝑉14) were on the
subject of investigation for landslide [48]. While, the factors
𝑉15 to 𝑉21 will be applied and investigated for the first time
on the study area. Furthermore the 21 factors represent the
available data of all factors that can cause the landslide in the
study area. The intelligent system target (landslides history)
is represented by 0 for no landslide and 1 for landslide. The
data were normalized to range between 0 and 1, for each of
the factors individually. A 10-fold cross-validation analysis
was performed as an initial evaluation of the test error of the
algorithms. Briefly, this process involves splitting up the data
set into 10 random segments and using 9 of them for training
and the 10th as a test set for the algorithm. Classification
accuracy of each model was calculated as follows.

The accuracy of correctly classified landslide (1) is given
by

accuracy (1) =

10

∑

𝑖=1

number of correctly classified (1)

number of (1)
. (7)

The accuracy of correctly classified no landslide (0) is
given by

accuracy (0) =

10

∑

𝑖=1

number of correctly classified (0)

number of (0)
. (8)

The overall accuracy for decision tree model is given by

overall accuracy =
accuracy (1) + accuracy (0)

2
. (9)

5. Discussion

Four tree algorithms, CHAID, Exhaustive CHAID, CRT, and
QUEST, were applied to map landslide susceptibility hazard.
The 4 trees construction is based on the entire sample of
137572 cases, a cross-validation with 10 folds, 0.05 adjustment
of the probabilities, a minimum cases in parent node of 100,
a minimum cases in child node of 50, and equal misclassifi-
cation costs. The maximum number of levels is 3 for CHAID
and exhaustive CHAID and 5 for CRT and QUEST.

The results for number of nodes, number of terminal
nodes, and importance of independent variable produced by
each model are presented in Table 1. The classification trees
obtained show a tree with a total of 317 nodes that consist
of 254 terminal nodes using CHAID, 377 nodes with 302
terminal nodes using exhaustive CHAID, 43 nodes with 22
terminal nodes using CRT, and 55 nodes with 28 terminal
nodes using QUEST. An example of decision tree using
CRT method is explained in Table 2. The tree has 43 nodes
including the root node, 20 internal nodes, and 22 leaves
(terminal nodes). Percentages in each category and in each
joint category are presented in Table 2.

Also, the decision tree methods are used to analyze
the relationships between landslide susceptibility and related
factors.Thenormalized importance of factors in classification
using CRT is shown in Figure 2. The top-down induction of
the decision tree indicates that variables in the higher order of
the tree structure are more important for analyzing landslide
susceptibility.The tree structure demonstrates that important
variables related to high landslide susceptibility catchments
are ordered as follows: 𝑉3 (slope angle), 𝑉16 (distance from
drainage), 𝑉15 (surface area), 𝑉5 (slope aspect), and 𝑉4 (cross
curvature).

The results for prediction accuracy produced by each
model are presented in Table 3. The results show high
classification accuracy for exhaustive CHAID algorithm as
compared to other algorithms. It is found that the prediction
accuracy for exhaustive CHAID is 82.0%, with sensitivity
72.3% and specificity 91.7%.

6. Conclusion

This study has analyzed landslide susceptibility in Penang
Island, Malaysia, using ensemble learning with a decision-
tree model. We can conclude that the decision tree clearly
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Table 2: Tree table using CRT method.

Node 0 1 Total Predicted
category Parent node Primary independent variable

𝑁 Percent 𝑁 Percent 𝑁 Percent Variable Improvement Split values
0 68786 50.0% 68786 50.0% 137572 100.0% 1
1 31018 95.8% 1347 4.2% 32365 23.5% 0 0 𝑉15 0.129 ≤0.03725
2 37768 35.9% 67439 64.1% 105207 76.5% 1 0 𝑉15 0.129 >0.03725
3 29797 99.0% 314 1.0% 30111 21.9% 0 1 𝑉16 0.006 ≤0.04580
4 1221 54.2% 1033 45.8% 2254 1.6% 0 1 𝑉16 0.006 >0.04580
5 15591 28.3% 39565 71.7% 55156 40.1% 1 2 𝑉19 0.010 ≤0.02120
6 22177 44.3% 27874 55.7% 50051 36.4% 1 2 𝑉19 0.010 >0.02120
7 379 36.0% 674 64.0% 1053 0.8% 1 4 𝑉17 0.001 ≤0.00958
8 842 70.1% 359 29.9% 1201 0.9% 0 4 𝑉17 0.001 >0.00958
9 6228 37.4% 10421 62.6% 16649 12.1% 1 5 𝑉3 0.003 ≤0.01292
10 9363 24.3% 29144 75.7% 38507 28.0% 1 5 𝑉3 0.003 >0.01292
11 3727 75.5% 1207 24.5% 4934 3.6% 0 6 𝑉16 0.008 ≤0.05104
12 18450 40.9% 26667 59.1% 45117 32.8% 1 6 𝑉16 0.008 >0.05104
13 237 28.0% 608 72.0% 845 0.6% 1 7 𝑉12 0.000 ≤0.15625
14 142 68.3% 66 31.7% 208 0.2% 0 7 𝑉12 0.000 >0.15625
15 216 99.5% 1 0.5% 217 0.2% 0 8 𝑉15 0.000 ≤0.02376
16 626 63.6% 358 36.4% 984 0.7% 0 8 𝑉15 0.000 >0.02376
17 1305 61.2% 829 38.8% 2134 1.6% 0 9 𝑉17 0.002 ≤0.02659
18 4923 33.9% 9592 66.1% 14515 10.6% 1 9 𝑉17 0.002 >0.02659
19 3413 30.0% 7980 70.0% 11393 8.3% 1 10 𝑉18 0.001 ≤0.05873
20 5950 21.9% 21164 78.1% 27114 19.7% 1 10 𝑉18 0.001 >0.05873
21 48 28.4% 121 71.6% 169 0.1% 1 11 𝑉13 0.001 ≤0.10
22 3679 77.2% 1086 22.8% 4765 3.5% 0 11 𝑉13 0.001 >0.10
23 10966 47.6% 12083 52.4% 23049 16.8% 1 12 𝑉3 0.003 ≤0.02510
24 7484 33.9% 14584 66.1% 22068 16.0% 1 12 𝑉3 0.003 >0.02510
25 68 98.6% 1 1.4% 69 0.1% 0 14 𝑉12 0.000 ≤0.21875
26 74 53.2% 65 46.8% 139 0.1% 0 14 𝑉12 0.000 >0.21875
27 232 47.5% 256 52.5% 488 0.4% 1 16 𝑉21 0.000 ≤0.4375
28 394 79.4% 102 20.6% 496 0.4% 0 16 𝑉21 0.000 >0.4375
29 758 79.2% 199 20.8% 957 0.7% 0 17 𝑉15 0.001 ≤0.07812
30 547 46.5% 630 53.5% 1177 0.9% 1 17 𝑉15 0.001 >0.07812
31 3200 29.5% 7633 70.5% 10833 7.9% 1 18 𝑉13 0.001 ≤0.50
32 1723 46.8% 1959 53.2% 3682 2.7% 1 18 𝑉13 0.001 >0.50
33 1828 22.1% 6450 77.9% 8278 6.0% 1 19 𝑉17 0.003 ≤0.17214
34 1585 50.9% 1530 49.1% 3115 2.3% 0 19 𝑉17 0.003 >0.17214
35 5873 21.7% 21164 78.3% 27037 19.7% 1 20 𝑉18 0.001 ≤0.46488
36 77 100.0% 0 0.0% 77 0.1% 0 20 𝑉18 0.001 >0.46488
37 2179 71.4% 873 28.6% 3052 2.2% 0 22 𝑉1 0.000 ≤0.15385
38 1500 87.6% 213 12.4% 1713 1.2% 0 22 𝑉1 0.000 >0.15385
39 5193 59.2% 3577 40.8% 8770 6.4% 0 23 𝑉18 0.003 ≤0.08809
40 5773 40.4% 8506 59.6% 14279 10.4% 1 23 𝑉18 0.003 >0.08809
41 7078 32.9% 14405 67.1% 21483 15.6% 1 24 𝑉17 0.001 ≤0.52185
42 406 69.4% 179 30.6% 585 0.4% 0 24 𝑉17 0.001 >0.52185
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Table 3: Classification accuracy produced by each model.

Decision tree model Classification
Predicted (0) Predicted (1) Overall

CHAID 73.5% 90.3% 81.9%
Exhaustive CHAID 72.3% 91.7% 82.0%
CRT 61.4% 89.7% 75.6%
QUEST 54.4% 93.5% 74.0%
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Figure 2: Normalized importance of factors using CRT method.

indicates the order of important variables and quantitatively
describes the relationships among the occurrence of land-
slides, topography, and geology. The decision-tree model
using the exhaustive CHAID algorithm showed greater accu-
racy than the other models, demonstrating the usefulness
of the decision tree model for landslide hazard mapping.
Accuracies were 82.0% for the exhaustive CHAID, 81.9%
for the CHAID, 75.6% for the CRT, and 74.0% for the
Quest algorithm. In this study, we determined factors that
may be involved in landslide susceptibility, and the results
can be used for landslide hazard mapping in other regions.
Moreover, landslide hazardmappingmap can be used to help
mitigate hazards to people and facilities and as basic data
for developing plans to prevent landslide hazards, such as in
locating, monitoring, and facility sites. Further case studies
and modeling are needed to better generalize the factors
involved in landslide susceptibility.
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