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Wireless sensor networks (WSNs) are increasingly being utilized to monitor the structural health of the underground subway
tunnels, showing many promising advantages over traditional monitoring schemes. Meanwhile, with the increase of the network
size, the system is incapable of dealing with big data to ensure efficient data communication, transmission, and storage. Being
considered as a feasible solution to these issues, data compression can reduce the volume of data travelling between sensor nodes.
In this paper, an optimization algorithm based on the spatial and temporal data compression is proposed to cope with these issues
appearing inWSNs in the underground tunnel environment.The spatial and temporal correlation functions are introduced for the
data compression and data recovery. It is verified that the proposed algorithm is applicable to WSNs in the underground tunnel.

1. Introduction

It is well known that traditional structural health monitoring
mainly relies on manual work, which is a labor-intensive and
time-consuming process. Utilizing wireless sensor networks
(WSNs) is considered as a promising solution to address these
issues. WSNs have been installed in some sections of the
London underground, Prague Metro, and Barcelona Metro
to perform a task of structural health monitoring [1, 2].

At the same time, as an emerging technology, there
are some limitations for the application of WSNs in sub-
way tunnel monitoring, such as big data communication,
transmission, and storage. Data compression is consid-
ered as a promising method to overcome these limita-
tions, which reduces data capacity prior to data transmis-
sion and also reduces power consumption. A variety of
data compression approaches appeared in the literature:
a distributed data compression approach [3] and a local
data compression approach [4]. Distributed compression
approaches are broadly classified into four main techniques:
distributed source modeling (DSM), distributed transform
coding (DTC), distributed source coding (DSC), and com-
pressed sensing (CS) techniques [5]. In general, distributed
data compression approaches in WSNs are usually applied

in dense sensor networks. Ciancio et al. introduced energy-
aware distributed wavelet compression algorithms for WSN.
However, the proposed algorithm only considers the spatial
redundancy in sensor data [3]. Ji et al. proposed Bayesian
compressive sensing to estimate the original signal based on
the compressive-sensing measurements [6]. But the number
of the compressive-sensing measurements in their study is
relatively small, resulting in a corresponding higher recovery
error.

Meanwhile, in order to achieve satisfactory coverage,
typical WSNs are densely deployed in sensor field [7]. As a
result, spatially proximal sensors observations about a single
event are highly correlated.Moreover,WSNs are also required
to periodically perform observations and transmission of the
sensed event features, thus constituting the temporal corre-
lation between consecutive sensor measurements of sensor
node [8]. The existence of spatial and temporal correlations
poses a significant challenge for data compression and data
recovery. Chou et al. developed a simple DSC to adaptively
compress spatially and temporally correlated sensor readings
[9]. However, the proposed DSC schemes are not efficient in
terms of coding efficiency.

Based on the analysis above, we develop an optimization
algorithm for WSNs in the underground tunnel, which takes
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Figure 1: Wireless sensor network deployment model in subway
tunnel.

into account two properties: temporal correlation property
and spatial correlation property. Our algorithm is considered
as an extension to spatial and temporal data compression
algorithms [10], lying in the fact that we further explore the
correlation property among sensor nodes to carry out the
corresponding data compression and recovery based on the
correlation degree [11, 12].

In this paper, we proposed an optimization algorithm
based on the temporal and spatial data compression. The
temporal and spatial correlation functions are introduced to
measure the correlation degree of sensing data.The temporal
and spatial correlation degree of sensing data determines
the transmission contents of sensor nodes. Transmitting the
variation of the sensing signals, rather than the original
signals, to the base station can reduce the volume of data
stream in the routing path and save the energy, thereby
prolonging the lifetime of the network.

The remainder of the paper is organized as follows.
Section 2 presents amodel ofWSNs installation in the under-
ground tunnel. In Section 3, an optimization algorithm based
on the temporal and spatial data compression is provided to
address these issues emerging from data communication and
transmission in WSNs. Section 4 verifies the effectiveness of
the algorithm through some experiments carried out using
the data acquired from a realWSNused for subway structural
health monitoring system. The energy consumption for
baseline data transmission is analyzed based on the proposed
algorithm. The last section summarizes the conclusions of
this paper.

2. Wireless Sensor Network
Deployment Model

We deployed a WSN in a Shanghai tunnel. Figure 1 shows
a model of the tunnel and the sensor nodes deployed. Here
the base station is 50 meters away from the tunnel entrance
and is perpendicular to the tunnel mouth. In order to obtain
the specific distribution location, we establish a Cartesian
coordinate system, in which the 𝑥-axis is parallel to the
ground, the 𝑦-axis is perpendicular to the ground, and the
𝑧-axis is perpendicular to the 𝑥- and 𝑦-axes.

Each circle in Figure 1 contains one or two sensor nodes
and a routing node which serve as a single unit. One circle is
allowed to communicate with an adjacent circle along 𝑧-axis
negative direction. The last circle contains all the data from

the other circles and itself and transmits this data to the base
station. This completes the transmission process.

For a circle, we consider the temporal correlation
between sensor nodes, whereas we consider spatial correla-
tion between two adjacent circles. Two functions are intro-
duced to show the correlation degree: temporal correlation
function 𝑅V (⋅) and spatial correlation function 𝑅ℎ (⋅). And
two correlation thresholds 𝜀 and 𝛿 are set to detect the degree
of the correlation. 𝑅V (⋅) is used to measure the degree of
correlation of the same node at different moments, while
𝑅ℎ (⋅) is used to measure the degree of correlation of the
different nodes at the same moment:
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(1)

where 𝑆𝑇
𝐼

denotes the sensing information of node 𝐼 at
moment 𝑇 and contains𝑚 sensing information components,
𝐷(⋅) denotes the spatial and temporal correlation function
for the sensing information components, distributed in the
closed set [0, 1] and expressed in (2), and𝑊𝑘 is the weighted
value at component 𝑘 under the condition of ∑𝑚+1

𝑘=0
𝑊𝑘 = 1.
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)
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If 𝑅V (⋅) < 𝜀, which shows that the correlation degree is
low, it means that the sensing values largely change from the
moment 𝑇𝑎 to 𝑇𝑏.

If 𝑅V (⋅) > 𝜀, which shows that the correlation degree is
high, it means that the sensing values remain almost stable
from the moment 𝑇𝑎 to 𝑇𝑏.

Similarly, 𝛿 is employed as the threshold to evaluate
the spatial correlation function. It should be noted that the
values of 𝜀 and 𝛿 are determined by awareness information
requirements, distributed in the open set (0, 1). The proper
choice for the values helps ensure effective compression
performance and high recovery degree.

3. Optimization Algorithm Based on
Temporal and Spatial Correlation

Every circle in Figure 1 is seen as a cluster which contains
many sensor nodes.Thewhole data compression algorithm is
called cluster compression. Every sensor node in the cluster
experiences the temporal and spatial data compression. In
every cluster, one sensor node is chosen as a reference
node responsible for data transmission based on the power
saving. From the moment 𝑇𝑎 to 𝑇𝑏, every sensor node
needs to compute the temporal correlation degree used as a
criterion to determine data transmission content in the link.
At the moment 𝑇𝑏, two sensor nodes in the same cluster
need to compute the spatial correlation degree utilized as
a criterion to determine transmission content in the link.
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Algorithm 1: Data compression based on the temporal and spatial correlation.

These reference nodes combined with routing nodes located
in the cluster form a routing path and are in charge of data
transmission.

3.1. Cluster Compression Algorithm. For each sensor node,
the temporal correlation function𝑅V (⋅) is used tomeasure the
degree of temporal correlation with respect to itself located
in the circle during a specific time interval. 𝑅ℎ (⋅) is used to
measure the degree of spatial correlation with respect to two
nodes at the same moment. The variation of the temporal
and spatial sensing value is transmitted through routing node
to the next cluster, thus completing the cluster compression.
The temporal and spatial correlation compression algorithm
is expressed in Algorithm 1.

It is noted that the variation of the temporal and spatial
sensing values,Δ𝑆𝑇𝑎

𝐼
andΔ𝑆𝑇𝑗

𝐼
, rather than the original sensing

values, is transmitted through routing node to the next
cluster.

3.2. Analysis of Optimization Algorithm. At the moment 𝑇𝑎,
the variation of the spatial sensing information between node
𝐼 and node 𝐿 is Δ𝑆𝑇𝑎

𝐼,𝐿
; at the moment of 𝑇𝑏, the variation of

the spatial sensing information between node 𝐼 and node 𝐿 is
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. During the period from 𝑇𝑎 and 𝑇𝑏, the variation value

of the temporal sensing information of node 𝐼 is Δ𝑆𝑇𝑎→𝑇𝑏
𝐼

;
the variation of the temporal sensing information of node
𝐿 is Δ𝑆𝑇𝑎→𝑇𝑏

𝐿
. If the distance between node 𝐼 and routing

node in the same cluster is shorter than that between node
𝐿 and routing node, node 𝐼 will be chosen as a reference
node based on power saving and will be responsible for
forwarding the variation values of the sensing data (Δ𝑆𝑇𝑎

𝐼,𝐿
,

Δ𝑆
𝑇
𝑏

𝐼,𝐿
, Δ𝑆𝑇𝑎→𝑇𝑏
𝐼

, Δ𝑆𝑇𝑎→𝑇𝑏
𝐿

) through routing node to the next
cluster. The situation for node 𝑍 is the same. It should be
pointed out that if the correlation degree is high, the variation
values of the sensing data are equal to 0. There is no need
for the reference node to transmit the sensing information to
another node.

From Figure 1, we see that there are many circles located
in the deployment model. Every circle serves as a single unit
with multiple inputs and one output. Input means sensing
data of sensor nodes; output refers to the variation of the
sensing data. Circle 𝐶1 transmits the variation to circle 𝐶2,
and circle 𝐶2 transmits the variation from both circle 𝐶1 and
itself to circle𝐶3. In the same way, circle𝐶𝑁 is responsible for
forwarding all of the variation from nodes to the base station.
The output of the first circle is expressed as follows:
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Likewise, the output of circle 𝐶2 is obtained as follows:
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Along the routing path, the base station finally receives all
the data from all the circles. A matrix 𝐺 (⋅) can be used to
represent the data received by the base station. Consider
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where each row of sensing formation matrix 𝐺 (𝑆𝑇𝑏) rep-
resents the corresponding output of each cluster. Based on
the recovery algorithm, the data will be recovered later with
a close approximation to the original data. Based on the
recovery data, we are further familiar with current situation
of each node in the underground tunnel.

3.3. The Routing Strategy. The sensor nodes in Figure 1 are
numbered according to their locations and are projected in
a square area with their fixed relative distance. Routing nodes
and sensor nodes close to these routing nodes form a routing
path on which all the data is delivered to the base station.
The choice of the routing path is decided by minimal energy
consumption. Some sensor nodes are selected in the route,
while others are not selected in the route. Coefficient 𝛼𝑖 is
used to show the relationship between node 𝐼 and the routing
path. The output model is formulated as follows:

𝑌𝑖 =

17

∑

𝑖=1

𝛼𝑖𝑥𝑖, 𝛼𝑖 = {

1, If node 𝐼 is in the route
0, Otherwise.

(6)

3.4. Data Recovery. The process of data recovery is contrary
to that of data compression. The process of data acquisition
by base station consists of two phases.

At the moment 𝑇𝑎, the original sensing data are transmit-
ted to the base station without data compression. These data
construct an initial sensing matrix denoted by 𝐺ori (𝑆

𝑇
𝑎
).

At themoment𝑇𝑏, the compressed data are transmitted to
the base station.These data forma compressed sensingmatrix
denoted by 𝐺 (𝑆𝑇𝑏).

The recovery data matrix at the moment 𝑇𝑏 is obtained
below:
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Figure 2: Temporal correlation of node 𝑗 and node 𝑘.

Meanwhile, the recovery error is introduced to evaluate the
recovery effect and defined as follows:

𝛾 =
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where 𝐺ori (𝑆
𝑇
𝑏
) is the original data from the sensor nodes,

while 𝐺rec (𝑆
𝑇
𝑏
) is recovery value.

4. Simulation and Experimental Results

Our wireless inclinometers monitoring system is currently
installed at Shanghai Metro Line 12 Lijin Road station.
The function of the monitoring system is to detect the
deformation of the underground tunnel in the early stage.

4.1. Temporal and Spatial Correlation. All the data comes
from sensor nodes located in the underground tunnel. We
perform the following simulations based on the sensing data
from node ℎ, node 𝑗, and node 𝑘 located underground.

At the moment 𝑇𝑎, we got two sets of the sensing data of
node 𝑗 and node 𝑘, respectively. At themoment𝑇𝑏, we got the
other two sets of the sensing data of node 𝑗 and node 𝑘. Based
on these data, we obtained the temporal correlation of node𝑗
and node 𝑘 (see Figure 2). It can be seen that the temporal
correlation degree is very highwith the correlation coefficient
being larger than 0.965. High temporal correlation degree
means that the sensing data of different moments is almost
stable irrespectively of time. Our optimization algorithm just
makes uses of the high correlation degree property to reduce
amount of data transmission, hence saving energy.

At the moment 𝑇𝑐, we obtained three sets of sensing data
of node ℎ, node 𝑗, and node 𝑘, respectively. Node ℎ was
chosen as a reference node to achieve the spatial correlation
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Figure 4: Temporal correlation recovery of node 𝑗 and node 𝑘.

with regard to node 𝑗 and node 𝑘. From Figure 3, the spatial
correlation values of node 𝑗 are bounded below by 0.9731,
while those of node 𝑘 are bounded above by 0.9514 and
below by 0.9003. According to these data analyzed above, we
can conclude that the sensing data of node 𝑗 and node 𝑘 is
less influenced by the space position. So the sensing data of
reference node in combination with the variation values are
used to recover the original sensing data of the latter.

4.2. Temporal Recovery of Sensor Nodes. Figure 4 shows the
temporal recovery error 𝜀 versus the number of measure-
ments corresponding to node 𝑗 and node 𝑘. We can see that
the recovery error of node 𝑗 is a little larger than that of node
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Figure 5: Spatial correlation recovery of node 𝑗 and node 𝑘.

𝑘. Our recovery error is an ordermagnitude lower than that of
the other data compression and recovery methods proposed
in the literatures [13, 14]. Moreover, bounded fluctuation of
recovery error curve of node𝑗 fails to influence the recovery
performance. When the number of measurements gradually
increases, the recovery errors still remain in a certain range.
Therefore, it can be concluded that the data compression
scheme is effective in terms of the relative recovery error level.

4.3. Spatial Recovery of Sensor Nodes. Figure 5 represents the
spatial recovery error 𝛿 versus the number of measurements
corresponding to node 𝑗 and node 𝑘. The reason why the
spatial correlation error of node 𝑗 is lower than that of node 𝑘
shown in Figure 5 is that node 𝑗 has higher spatial correlation
degree than node 𝑘 illustrated above. Moreover, for node
𝑘 or node 𝑗, its temporal recovery performance is superior
to spatial recovery performance based on the fact that the
temporal recovery error is an ordermagnitude lower than the
spatial recovery error. When the number of measurements
increases, the spatial recovery errors are bounded above
by some constants. Forasmuch, the proposed algorithm is
applicable to the underground tunnel environment.

WSNs are used to monitor the structural health of
the underground tunnel. When the underground tunnel is
subject to the vibrations that mainly resulted from passage of
trains, the sensor nodes deployed in the underground tunnel
begin to sample these signals. When the underground tunnel
is free of vibrations mentioned above, these sensor nodes
still sample these unchanged signals. Rather than the original
signals, the variation of these signals is forwarded to base
station along the routing path.

Low recovery error means that the recovery values are
very close to the original values. It can be seen that the
performance of the temporal recovery has an advantage
over the spatial recovery based on the former’s low recovery
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Figure 7: Data transmission based on spatial correlation property.

error. When sensing signals vary with time and space, the
proposed algorithm captures only the variation to complete
the data recovery; when sensing signals are irrespective of
time and space, the proposed algorithm makes use of high
correlation property to achieve a complete recovery with a
high approximation to the original signals. Meanwhile, high
correlated property helps eliminate redundant information of
WSNs and reduce data volume needed to forward to the base
station.

4.4. Energy Consumption Optimization Analysis. Figure 6
shows such a network where sensors are densely deployed
in the region of interest and monitor the environment on
a regular basis. Suppose 𝑁 sensors, denoted as 𝐶1, 𝐶2, . . .,
𝐶𝑁, form a multihop route to the base station. Let 𝑑𝑗 denote
the readings obtained by node 𝐶𝑗. The intuitive way to
transmit 𝑑𝑗, 𝑗 = 1, 2, . . ., 𝑁 to the base station is through
multihop relay as depicted in Figure 1. Node 𝐶1 transmits
its reading to 𝐶2, and 𝐶2 transmits both its reading 𝑑2 and
the relayed reading 𝑑1 to 𝐶3. At the end of the route, 𝐶𝑁
transmits all 𝑁 readings to the sink. We can observe that
𝐶𝑁 carries more traffic load compared with other nodes due
to the much more amount of data transmission. Obviously,
node 𝐶𝑁 will soon use up its energy and lifetime of sensor
network will be significantly shortened. In Figure 6, the total
number of reading 𝑑1 transmission is (𝑁 − 1) and that of
reading 𝑑2 transmission is (𝑁 − 2). The total number of data
transmission in baseline data transmission model is 𝑁(𝑁 +

1)/2.
Due to the dense deployment in the region of interest,

sensing readings from all the nodes are spatially correlated.
Assume that readings among 𝐶1, 𝐶2, and 𝐶3 have high
spatial correlation, while readings between 𝐶3 and 𝐶4 are not
spatially correlated. Based on the data compression algorithm
mentioned above, the model of data transmission is changed
as follows. Node 𝐶2 receives the reading from node 𝐶1 and
finds spatial correlation degree between its reading and the
reading of node 𝐶1; then it transmits only its reading to node
𝐶3. In the same way, node 𝐶3 transmits only its reading to
node𝐶4. Due to the fact that the readings between 𝐶3 and𝐶4

are uncorrelated, node 𝐶4 needs to transmit both its reading
and the variation between 𝐶3 and 𝐶4 to node 𝐶5. The model
of data transmission is depicted as shown in Figure 7.

Compared with Figure 6, the total number of data trans-
mission in Figure 7 is greatly reduced, thus saving energy
consumption and prolonging the lifetime ofWSNs.Themore
correlated the readings are, the more energy the wireless
sensor network saves. The network can achieve very high
energy efficiency.

In the paper, the energymodel considered only the energy
consumption during the data reception and transmission.
𝐸𝑇𝑋 (𝑙, 𝑟) stands for the energy cost that a single node is
sending 𝐿 bits data of 𝑟 distance, and 𝐸𝑅𝑋 (𝑙) represents the
energy consumption that a single node is receiving 𝐿 length
data. In order to evaluate the approach, we chose the “first
order radio model” [15]; thus,

𝐸𝑇𝑋 (𝑙, 𝑟) = 𝐸elec𝑙 + 𝜀amp𝑙𝑟
𝜎

𝐸𝑅𝑋 (𝑙) = 𝐸elec𝑙.
(9)

In our work, we assume a simple model where a radio
dissipates 𝐸elec = 50 nJ/bit to run the transmitter or receiver
circuitry; the communication channel is assumed to be
multipath fading with a path-loss exponent 𝜎 = 2; then
𝜀amp = 0.1 nJ/bit/m2 for the transmitter amplifier. The unit
transmission range is 20m.The length of unit data is 400 bits.
In Figure 6, each node will require (𝑗 − 1) and 𝑗 represent
the number of data reception and transmission for node 𝑗.
The total energy consumption of each node is expressed as
follows:

𝐸Total = (𝑗 − 1) × 𝐸elec𝑙 + 𝑗 × (𝐸elec𝑙 + 𝜀amp𝑙𝑟
𝜎
) . (10)

In Figure 6, node 𝐶𝑗 will require (𝑗 − 1) receives and 𝑗
transmits. In Figure 7, node𝐶1 will require only one transmit.
Node 𝐶2 and node 𝐶3 have one receive and one transmit.
Node 𝐶4 has one receive and two transmits. Node𝐶5 has two
receives and three transmits.

From Figure 8, it can be observed that the energy con-
sumption increases linearly with the increase on the node
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Figure 8: Energy consumption comparison.

number in the baseline data transmission. However, energy
consumption remains stable if readings between nodes are
spatially correlated. Generally, data compression based on
spatial correlation property, which is applicable to the case
where sensor nodes are densely deployed, can lower the
total energy consumption of WSNs based on the decrease
on the amount of data transmission. On the other hand,
dense deployment of sensor nodes leads to the emergence
of redundant information, which increases the overall power
consumption of WSNs. Spatial correlation analysis provides
new insights into optimal sensors placement and helps avoid
the sensor field overlap. According to spatial correlation
property, the optimal number of sensors is placed in the
proper location to achieve satisfactory coverage.

5. Conclusion and Future Work

Aiming at many issues such as data communication, trans-
mission, and storage in large size WSNs, we propose an
optimization algorithm based on the temporal and spatial
data compression to address these issues. Transmitting the
variation of the sensing signals, rather than the original
signals, to the base station can reduce the volume of data
stream in the routing path and save the energy consump-
tion, thereby prolonging the lifetime of the network. It is
verified through simulations performed above that the data
compression algorithm is feasible to WSNs of underground
tunnel. Meanwhile, efficient recovery performance ensures
the accuracy of the recovery data, and these recovery data
are very effective and reliable in performing an analysis of the
structural health in underground tunnel.

This paper is only concerned with a multiple-hop data
transmission mode. In the future, the single-hop data trans-
mission mode is our primary concern. Besides, the influence
of time delay of data transmission on the wireless sensor
network will be taken into account.
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