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Cooperation of all the members in a supply chain plays an important role in logistics service. The service integrator can encourage
cooperation from service suppliers by sharing their cost during the service, which we assume can increase the sales by accumulating
the reputation of the supply chain. A differential game model is established with the logistics service supply chain that consists of
one service integrator and one supplier. And we derive the optimal solutions of the Nash equilibrium without cost sharing contract
and the Stackelberg equilibrium with the integrator as the leader who partially shares the cost of the efforts of the supplier. The
results make the benefits of the cost sharing contract in increasing the profits of both players as well as the whole supply chain
explicit, which means that the cost sharing contract is an effective coordination mechanism in the long-term relationship of the
members in a logistics service supply chain.

1. Introduction

A logistics service supply chain, abbreviated as LSSC, is a
typical service supply chain, which consists of functional
service providers, service integrators, and customers [1]. A
functional logistics service provider (FLSP) is a traditional
logistics enterprise that can provide standard service, such as
transportation or warehousing. A logistics service integrator
(LSI) can integrate various functional services in different
regions to satisfy different needs of customers who may be
a manufacture or other enterprise. LSI is the focal company
in LSSC which integrates and controls all types of resources
by the use of the information technology to meet the needs
of customers and enhance the performance while decreasing
the total cost of service.Meanwhile, LSI and FLSP are separate
and independent economic entities, which results in the
conflict and competition in revenue or the risk during the
cooperation in service. As a result, the key issue is to develop
mechanisms that can incentivize the members to coordinate
their activities so as to enhance the performance of the whole
supply chain.

The coordination of supply chain is an important area of
supply chain management, and a lot of strategies have been

proposed so far [2]. Among them, a common mechanism
is to develop a set of properly designed contracts [3]. Since
the concept of supply chain contract was first introduced
by Pasternack [4]; the design of contracts has received a
considerable interest. A large number of contracts have been
proposed including the wholesale price contract [5–10], the
quantity flexibility contract [11–16], the buy-back contract
[17–22], the revenue sharing contract [23–30], the option
contract [31–35], and the cost sharing contract [36–38].

Nevertheless, most of the previous studies have focused
on contracts with respect to the coordination of traditional
supply chain, and few studies focus on service supply chain
contracts, which will be very important given the rapid
development of service industry. To quote a few, Wei and Hu
[39] introduce a wholesale price contract into service supply
chain and study the ordering, pricing, and allocation strategy.
Liu et al. [40] analyze the fairest revenue sharing coefficient
in the coordination of a two-stage logistics service supply
chain under the stochastic demand condition and expand
the result to a three-stage supply chain. Cui and Liu [41]
propose a coordination mechanism by the use of the option
contract and analyze the allocation of extra profits between
the integrator and the provider. Lu [42] makes use of the
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cost sharing contract to coordinate the service supply chain
under the assumption that the market demand depends on
the efforts made by the service provider and the integrator.

On the other hand, the supply chain coordination by the
use of contracts is based on one-time transaction between
members. But members in a supply chain are often long-
term and stable partners in reality. That means that time
becomes a critical factor in the game of members because
all the members may make different decisions by taking the
future into consideration. So, we propose a differential game
strategy which has been widely applied in themanagement of
investment, dual-oligopolymarket, and cooperative advertis-
ing [43–46].

In this study, we consider time to be a critical factor
in the coordination of LSSC. The rest of this paper is
organized as follows. Section 2 presents the differentialmodel
of LSSC under the assumption that reputation contributes
to the increase of sales. In Sections 3 and 4, we come up
with the optimal decisions of both parties in supply chain
under the Nash (without cost sharing contract) feedback
equilibrium and Stackelberg (with cost sharing contract)
feedback equilibrium. Section 5 compares the results of two
different equilibrium strategies and analyzes the coordinating
role of the cost sharing contract. Section 6 concludes.

2. Model

The logistics service supply chain in themodel consists of one
service integrator and one professional service supplier, both
of which need to endeavor together to satisfy the customer.
Corporate reputation, as one of themost important intangible
assets, is the comprehensive reflection of the behavior of
corporate in the past [47]. The results of empirical research
of service industry indicate that reputation is conducive to
the creation and maintaining of customer trust resulting in
the increase in successive purchase by loyal customers [48].
Hence, the demand of the LSSC can be reflected by the
function of the reputation of LSSC, and the accumulation of
LSSC reputation depends on the efforts contributed by the
LSI and FLSP in their respective service.

It is assumed that the demand of logistics service 𝑆(𝑡)

adopts the following specification:

𝑆(𝑡) = 𝜃(𝑡) 𝑅(𝑡) − 𝛾(𝑡) 𝑅
2
(𝑡) , (1)

where 𝜃(𝑡) and 𝛾(𝑡) are positive parameters capturing the
effect of the reputation on the demand and 𝜃(𝑡) ≫ 𝛾(𝑡) > 0.

The growth and accumulation of the reputation 𝑅(𝑡) of
LSSC depend on the efforts of supply members. The service
integrator controls his efforts 𝐸

𝑖
(𝑡) while the service supplier

controls his efforts 𝐸
𝑝
(𝑡) during the cooperation in service.

The efforts of both parties during the service contribute
to the accumulation of the reputation of LSSC 𝑅(𝑡), which
evolves according to the Nerlove and Arrow model [49]; that
is,

𝑅

(𝑡) = 𝜆

𝑖
(𝑡) 𝐸
𝑖
(𝑡) + 𝜆

𝑝
(𝑡) 𝐸
𝑝
(𝑡) − 𝛿(𝑡) 𝑅(𝑡) ,

𝑅(0) = 𝑅
0
≥ 0,

(2)

where 𝜆
𝑖
(𝑡) > 0 and 𝜆

𝑝
(𝑡) > 0 reflecting the efficiency

of the efforts of the integrator and the supplier, respectively.
Since the reputation decays by time [50], 𝛿(𝑡) > 0, in fact,
is the constant decay rate of LSSC reputation caused by
environment disturbance.

Let𝐶
𝑖
(𝑡) and𝐶

𝑝
(𝑡) be the cost of both parties to maintain

the reputation, which are convex and increasing, indicating
increasing marginal costs of the efforts and assuming to be
quadratic,

𝐶
𝑖
(𝑡) =

𝜇
𝑖
(𝑡)

2
𝐸
2

𝑖
(𝑡) , 𝐶

𝑝
(𝑡) =

𝜇
𝑝
(𝑡)

2
𝐸
2

𝑝
(𝑡) , (3)

where 𝜇
𝑖
(𝑡) and 𝜇

𝑝
(𝑡) are the positive coefficient.

Let 𝐷(𝑡) be the rate of cost that the integrator will share
with the supplier, which ranges from zero (the integrator will
not share the cost) to one (the integrator pays the full cost).
Let 𝜌 denote the discount rate of both parties. 𝜋

𝑖
(𝑡) and 𝜋

𝑝
(𝑡)

represent the profit margin of the integrator and the supplier,
respectively. Consider

𝐽
𝑖
= ∫

∞

0

𝑒
−𝜌𝑡

{𝜋
𝑖
(𝑡) [𝜃(𝑡) 𝑅(𝑡) − 𝛾(𝑡) 𝑅

2
(𝑡)] −

𝜇
𝑖
(𝑡)

2
𝐸
2

𝑖
(𝑡)

−
𝜇
𝑝
(𝑡)

2
𝐷(𝑡) 𝐸

2

𝑝
(𝑡)} 𝑑𝑡,

𝐽
𝑝
= ∫

∞

0

𝑒
−𝜌𝑡

{𝜋
𝑝
(𝑡) [𝜃(𝑡) 𝑅(𝑡) − 𝛾(𝑡) 𝑅

2
(𝑡)]

−
𝜇
𝑝
(𝑡)

2
[1 − 𝐷(𝑡)] 𝐸

2

𝑝
(𝑡)} 𝑑𝑡.

(4)

To recapitulate, (1) to (4) define a differential game with
two players, three control variables𝐸

𝑖
(𝑡),𝐸
𝑝
(𝑡), and𝐷(𝑡), and

one state variable𝑅(𝑡).The controls are constrained by𝐸
𝑖
(𝑡) ≥

0, 𝐸
𝑠
(𝑡) ≥ 0, 0 ≤ 𝐷(𝑡) ≤ 1. The state constraint 𝑅(𝑡) ≥ 0 is

automatically satisfied.
The optimal decisions of both parties are decided by a

feedback game, so that they are all functions of reputation and
time. Let 𝐼(𝑅(𝑡), 𝑡) and 𝑃(𝑅(𝑡), 𝑡) be the decisions of LSI and
FLSP, respectively. To simplify the model, it is assumed that
all the parameters in the model, 𝜇

𝑖
(𝑡), 𝜇
𝑝
(𝑡), 𝜆
𝑖
(𝑡), 𝜆
𝑝
(𝑡), 𝛿(𝑡),

𝜃(𝑡), 𝛾(𝑡), 𝜋
𝑖
(𝑡), and 𝜋

𝑝
(𝑡), are constants and have nothing to

do with time, which means the players are in the same game
in different time horizons. Thus, the differential games can
be changed to static games [51]. The decisions of both parties
can be defined as 𝐼(𝑅(𝑡)) and𝑃(𝑅(𝑡)). In the followingmodel,
𝑅(𝑡), 𝐸

𝑖
(𝑡), 𝐸
𝑝
(𝑡), and 𝐷(𝑡) are simplified as 𝑅, 𝐸

𝑖
, 𝐸
𝑝
, and 𝐷.

3. Nash Equilibrium without
Cost Sharing Contract

In this section, we try to analyze the decision strategies
of players under the circumstance that LSI does not share
the cost of FLSP (𝐷 = 0). We assume that each member
determines his optimal decisions independently at the same
time, which means the optimal decisions of both players are
the solutions of Nash equilibrium.
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Theorem 1. If the feasible solutions of the following constraint
equations (𝑝

#
1
, 𝑝

#
2
, 𝑝

#
3
, 𝑞

#
1
, 𝑞

#
2
, 𝑞

#
3
) exist, the optimal decisions of

both parties can be derived without the cost sharing contract in
LSSC. Consider

2𝜆
2

𝑖
𝑝
2

1

𝜇
𝑖

+

4𝜆
2

𝑝
𝑝
1
𝑞
1

𝜇
𝑝

− (2𝛿 + 𝜌) 𝑝
1
− 𝜋
𝑖
𝛾 = 0,

2𝜆
2

𝑖
𝑝
1
𝑝
2

𝜇
𝑖

+

2𝜆
2

𝑝
(𝑝
1
𝑞
2
+ 𝑝
2
𝑞
1
)

𝜇
𝑝

− (𝛿 + 𝜌) 𝑝
2
+ 𝜋
𝑖
𝜃 = 0,

𝜆
2

𝑖
𝑝
2

2

2𝜇
𝑖

+

𝜆
2

𝑝
𝑝
2
𝑞
2

𝜇
𝑝

− 𝜌𝑝
3
= 0,

4𝜆
2

𝑖
𝑝
1
𝑞
1

𝜇
𝑖

+

2𝜆
2

𝑝
𝑞
2

1

𝜇
𝑝

− (2𝛿 + 𝜌) 𝑞
1
− 𝜋
𝑝
𝛾 = 0,

2𝜆
2

𝑖
(𝑝
1
𝑞
2
+ 𝑝
2
𝑞
1
)

𝜇
𝑖

+

2𝜆
2

𝑝
𝑞
1
𝑞
2

𝜇
𝑝

− (𝛿 + 𝜌) 𝑞
2
+ 𝜋
𝑝
𝜃 = 0,

𝜆
2

𝑖
𝑝
2
𝑞
2

𝜇
𝑖

+

𝜆
2

𝑝
𝑞
2

2

2𝜇
𝑝

− 𝜌𝑞
3
= 0.

(5)

The optimal efforts of LSI and FLSP under Nash equilib-
rium are

𝐸
#
𝑖
=

𝜆
𝑖
(2𝑝

#
1
𝑅
#
+ 𝑝

#
2
)

𝜇
𝑖

,

𝐸
#
𝑝
=

𝜆
𝑝
(2𝑞

#
1
𝑅
#
+ 𝑞

#
2
)

𝜇
𝑝

,

(6)

where 𝑅
#
= (𝑅
0
+ 𝑠/𝑟)𝑒

𝑟𝑡
− 𝑠/𝑟, 𝑟 = 2𝜆

2

𝑖
𝑝
#
1
/𝜇
𝑖
+ 2𝜆
2

𝑝
𝑞
#
1
/𝜇
𝑝
− 𝛿,

and 𝑠 = 𝜆
2

𝑖
𝑝
#
2
/𝜇
𝑖
+ 𝜆
2

𝑝
𝑞
#
2
/𝜇
𝑝
.

Proof. We apply a standard sufficient condition for a sta-
tionary Markov perfect Nash equilibrium and wish to find
bounded and continuously differentiable functions 𝑉

𝑛
(𝑅),

𝑛 ∈ {𝑖, 𝑝}, which satisfy for all 𝑅 ≥ 0 the Hamilton-Jacobi-
Bellman (HJB) equations [52]:

𝜌𝑉
𝑖
(𝑅) = Max

𝐸𝑖≥0

{𝜋
𝑖
(𝜃𝑅 − 𝛾𝑅

2
) −

𝜇
𝑖

2
𝐸
2

𝑖

+ 𝑉


𝑖
(𝑅) [𝜆

𝑖
𝐸
𝑖
+ 𝜆
𝑝
𝐸
𝑝
− 𝛿𝑅] } ,

(7)

𝜌𝑉
𝑝
(𝑅) = Max

𝐸𝑝≥0

{𝜋
𝑝
(𝜃𝑅 − 𝛾𝑅

2
) −

𝜇
𝑝

2
𝐸
2

𝑝

+𝑉


𝑝
(𝑅) [𝜆

𝑖
𝐸
𝑖
+ 𝜆
𝑝
𝐸
𝑝
− 𝛿𝑅] } .

(8)

Equations (7) and (8) are both concave in 𝐸
𝑖
and 𝐸

𝑝
,

yielding the unique effort level of both parties

𝐸
𝑖
=

𝜆
𝑖
𝑉


𝑖
(𝑅)

𝜇
𝑖

, 𝐸
𝑝
=

𝜆
𝑝
𝑉


𝑝
(𝑅)

𝜇
𝑝

. (9)

Substitute 𝐸
𝑖
and 𝐸

𝑝
into (7) to obtain

𝜌𝑉
𝑖
(𝑅) = [𝜋

𝑖
(𝜃 − 𝛾𝑅) − 𝛿𝑉



𝑖
(𝑅)] 𝑅

+
[𝜆
𝑖
𝑉


𝑖
(𝑅)]
2

2𝜇
𝑖

+

𝜆
2

𝑝
𝑉


𝑖
(𝑅)𝑉


𝑝
(𝑅)

𝜇
𝑝

,

𝜌𝑉
𝑝
(𝑅) = [𝜋

𝑝
(𝜃 − 𝛾𝑅) − 𝛿𝑉



𝑝
(𝑅)] 𝑅

+

𝜆
2

𝑖
𝑉


𝑖
(𝑅)𝑉


𝑝
(𝑅)

𝜇
𝑖

+

[𝜆
𝑝
𝑉


𝑝
(𝑅)]
2

2𝜇
𝑝

.

(10)

We conjecture that the solutions to (10) will be quadratic

𝑉
𝑖
(𝑅) = 𝑝

1
𝑅
2
+ 𝑝
2
𝑅 + 𝑝
3
,

𝑉
𝑝
(𝑅) = 𝑞

1
𝑅
2
+ 𝑞
2
𝑅 + 𝑞
3
,

(11)

in which 𝑝
1
, 𝑝
2
, 𝑝
3
and 𝑞
1
, 𝑞
2
, 𝑞
3
are constants. We substitute

𝑉
𝑖
(𝑅),𝑉

𝑝
(𝑅) and their derivatives from (11) into (10) to obtain

𝜌(𝑝
1
𝑅
2
+ 𝑝
2
𝑅 + 𝑝
3
) = [(𝜋

𝑖
𝜃 − 𝛿𝑝

2
) 𝑅 − (𝜋

𝑖
𝛾 + 2𝛿𝑝

1
) 𝑅
2
]

+
𝜆
2

𝑖
(2𝑝
1
𝑅 + 𝑝
2
)
2

2𝜇
𝑖

+

𝜆
2

𝑝
(2𝑝
1
𝑅 + 𝑝
2
) (2𝑞
1
𝑅 + 𝑞
2
)

𝜇
𝑝

,

(12)

𝜌(𝑞
1
𝑅
2
+ 𝑞
2
𝑅 + 𝑞
3
) = [(𝜋

𝑝
𝜃 − 𝛿𝑞

2
) 𝑅 − (𝜋

𝑝
𝛾 + 2𝛿𝑞

1
) 𝑅
2
]

+
𝜆
2

𝑖
(2𝑝
1
𝑅 + 𝑝
2
) (2𝑞
1
𝑅 + 𝑞
2
)

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑞
1
𝑅 + 𝑞
2
)
2

2𝜇
𝑝

.

(13)

Equations (12) and (13) both satisfy for all 𝑅 ≥ 0. Thus,
we can find out that a set of values for (𝑝

#
1
, 𝑝

#
2
, 𝑝

#
3
, 𝑞

#
1
, 𝑞

#
2
, 𝑞

#
3
),
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which can result in the maximization of the profits, is the
solution for the following equations:

𝜌𝑝
1
=

2𝜆
2

𝑖
𝑝
2

1

𝜇
𝑖

+

4𝜆
2

𝑝
𝑝
1
𝑞
1

𝜇
𝑝

− (𝜋
𝑖
𝛾 + 2𝛿𝑝

1
) ,

𝜌𝑝
2
=

2𝜆
2

𝑖
𝑝
1
𝑝
2

𝜇
𝑖

+

2𝜆
2

𝑝
(𝑝
1
𝑞
2
+ 𝑝
2
𝑞
1
)

𝜇
𝑝

+ (𝜋
𝑖
𝜃 − 𝛿𝑝

2
) ,

𝜌𝑝
3
=

𝜆
2

𝑖
𝑝
2

2

2𝜇
𝑖

+

𝜆
2

𝑝
𝑝
2
𝑞
2

𝜇
𝑝

,

𝜌𝑞
1
=

4𝜆
2

𝑖
𝑝
1
𝑞
1

𝜇
𝑖

+

2𝜆
2

𝑝
𝑞
2

1

𝜇
𝑝

− (𝜋
𝑝
𝛾 + 2𝛿𝑞

1
) ,

𝜌𝑞
2
=

2𝜆
2

𝑖
(𝑝
1
𝑞
2
+ 𝑝
2
𝑞
1
)

𝜇
𝑖

+

2𝜆
2

𝑝
𝑞
1
𝑞
2

𝜇
𝑝

+ (𝜋
𝑝
𝜃 − 𝛿𝑞

2
) ,

𝜌𝑞
3
=

𝜆
2

𝑖
𝑝
2
𝑞
2

𝜇
𝑖

+

𝜆
2

𝑝
𝑞
2

2

2𝜇
𝑝

.

(14)

Then, the optimal profits of LSI and FLSP can be repre-
sented as

𝑉
#
𝑖
(𝑅) = 𝑝

#
1
𝑅
2
+ 𝑝

#
2
𝑅 + 𝑝

#
3
,

𝑉
#
𝑝
(𝑅) = 𝑞

#
1
𝑅
2
+ 𝑞

#
2
𝑅 + 𝑞

#
3
.

(15)

Substituting the derivatives of 𝑉
#
𝑖
(𝑅), 𝑉

#
𝑝
(𝑅) obtained

from (15) into (9), the optimal effort level of both parties can
be represented as

𝐸
#
𝑖
=

𝜆
𝑖
(2𝑝

#
1
𝑅 + 𝑝

#
2
)

𝜇
𝑖

, 𝐸
#
𝑝
=

𝜆
𝑝
(2𝑞

#
1
𝑅 + 𝑞

#
2
)

𝜇
𝑝

. (16)

Substitute the results into (2) to obtain

𝑅

= 𝑟𝑅 + 𝑠, (17)

in which 𝑟 = 2𝜆
2

𝑖
𝑝
#
1
/𝜇
𝑖
+2𝜆
2

𝑝
𝑞
#
1
/𝜇
𝑝
−𝛿, 𝑠 = 𝜆

2

𝑖
𝑝
#
2
/𝜇
𝑖
+𝜆
2

𝑝
𝑞
#
2
/𝜇
𝑝
.

The general solution to (17) is

𝑅 = 𝑤𝑒
𝑘𝑡

+ 𝑤
1
. (18)

By substituting 𝑅 and its derivative, for 𝑡, (19) can be
obtained

𝑤
1
= −

𝑠

𝑟
. (19)

Hence, the general solution can be represented as

𝑅 = 𝑤𝑒
𝑟𝑡

−
𝑠

𝑟
, (20)

in which 𝑤 is a constant. Given 𝑅|
𝑡=0

= 𝑅
0
≥ 0, a particular

solution can be obtained

𝑅
#
= (𝑅
0
+

𝑠

𝑟
) 𝑒
𝑟𝑡

−
𝑠

𝑟
. (21)

4. Stackelberg Equilibrium with
Cost Sharing Contract

In this section, we apply a cost sharing contract to realize
the coordination of LSSC in a Stackelberg game with the LSI
as the leader of the game and the provider as the follower.
Firstly, the integrator decides the optimal efforts 𝐸

𝑖
and

the sharing rate 𝐷. Then, the functional service provider
determines his optimal efforts after observing the strategy of
the integrator. The optimal decisions of both parties are the
results of Stackelberg equilibrium.

Theorem 2. If the feasible solutions to the following constraint
equations (𝑓

∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑔
∗

1
, 𝑔
∗

2
, 𝑔
∗

3
) exist, the optimal decisions

of both parties can be derived after adopting the cost sharing
contract in LSSC:

2𝜆
2

𝑖
𝑓
2

1

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
1
+ 𝑔
1
)
2

2𝜇
𝑝

− (2𝛿 + 𝜌) 𝑓
1
− 𝜋
𝑖
𝛾 = 0,

2𝜆
2

𝑖
𝑓
1
𝑓
2

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
1
+ 𝑔
1
) (2𝑓
2
+ 𝑔
2
)

2𝜇
𝑝

− (𝛿 + 𝜌) 𝑓
2
+ 𝜋
𝑖
𝜃 = 0,

𝜆
2

𝑖
𝑓
2

2

2𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
2
+ 𝑔
2
)
2

8𝜇
𝑝

− 𝜌𝑓
3
= 0,

2𝜆
2

𝑖
𝑓
1
𝑔
1

𝜇
𝑖

+

𝜆
2

𝑝
𝑔
1
(2𝑓
1
+ 𝑔
1
)

𝜇
𝑝

− (2𝛿 + 𝜌) 𝑔
1
− 𝜋
𝑝
𝛾 = 0,

𝜆
2

𝑖
(𝑓
1
𝑔
2
+ 𝑓
2
𝑔
1
)

𝜇
𝑖

+

𝜆
2

𝑝
(𝑓
1
𝑔
2
+ 𝑓
2
𝑔
1
+ 𝑔
1
𝑔
2
)

𝜇
𝑝

− (𝛿 + 𝜌) 𝑔
2
+ 𝜋
𝑝
𝜃 = 0,

𝜆
2

𝑖
𝑓
2
𝑔
2

2𝜇
𝑖

+

𝜆
2

𝑝
𝑔
2
(2𝑓
2
+ 𝑔
2
)

4𝜇
𝑝

− 𝜌𝑔
3
= 0.

(22)

The optimal decisions of LSI and FLS in the Stackelberg
equilibrium with LSI as the leader can be represented as

𝐸
∗

𝑖
=

𝜆
𝑖
(2𝑓
∗

1
𝑅
∗
+ 𝑓
∗

2
)

𝜇
𝑖

,

𝐸
∗

𝑝
=

𝜆
𝑝
[(4𝑓
∗

1
+ 2𝑔
∗

1
) 𝑅
∗
+ (2𝑓

∗

2
+ 𝑔
∗

2
)]

2𝜇
𝑝

,

𝐷
∗
=

(4𝑓
∗

1
− 2𝑔
∗

1
) 𝑅
∗
+ (2𝑓

∗

2
− 𝑔
∗

2
)

(4𝑓
∗

1
+ 2𝑔
∗

1
) 𝑅∗ + (2𝑓

∗

2
+ 𝑔
∗

2
)
,

(23)

in which 𝑅
∗
= (𝑅
0
+ 𝑑/𝑘)𝑒

𝑘𝑡
− 𝑑/𝑘, 𝑘 = 2𝜆

2

𝑖
𝑓
∗

1
/𝜇
𝑖
+ 𝜆
2

𝑝
(2𝑓
∗

1
+

𝑔
∗

1
)/𝜇
𝑝
− 𝛿, and 𝑑 = 𝜆

2

𝑖
𝑓
∗

2
/𝜇
𝑖
+ 𝜆
2

𝑝
(2𝑓
∗

2
+ 𝑔
∗

2
)/2𝜇
𝑝
.
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Proof. Given that the integrator announced decisions 𝐸
𝑖
and

𝐷, the provider faces a maximization problem where the
profit function must satisfy the HJB equation

𝜌𝑉
𝑝
(𝑅) = Max

𝐸𝑝≥0

{𝜋
𝑝
(𝜃𝑅 − 𝛾𝑅

2
) −

𝜇
𝑝

2
(1 − 𝐷) 𝐸

2

𝑝

+ 𝑉


𝑝
(𝑅)[𝜆

𝑖
𝐸
𝑖
+ 𝜆
𝑝
𝐸
𝑝
− 𝛿𝑅]} .

(24)

Maximization on the right side of (24) yields

𝐸
𝑝
=

𝜆
𝑝
𝑉


𝑝
(𝑅)

𝜇
𝑝
(1 − 𝐷)

. (25)

The integrator, as the leader of game, can forecast the
decision of the provider, and then the leader HJB equation
is

𝜌𝑉
𝑖
(𝑅) = Max

𝐸𝑖≥0

{𝜋
𝑖
(𝜃𝑅 − 𝛾𝑅

2
) −

𝜇
𝑖

2
𝐸
2

𝑖
−

𝜇
𝑝

2
𝐷𝐸
2

𝑝

+ 𝑉


𝑖
(𝑅)[𝜆

𝑖
𝐸
𝑖
+ 𝜆
𝑝
𝐸
𝑝
− 𝛿𝑅]} .

(26)

Insert (25) into (26) and obtain the efforts and sharing
rate as

𝐸
𝑖
=

𝜆
𝑖
𝑉


𝑖
(𝑅)

𝜇
𝑖

, (27)

𝐷 =

2𝑉


𝑖
(𝑅) − 𝑉



𝑝
(𝑅)

2𝑉


𝑖
(𝑅) + 𝑉

𝑝
(𝑅)

. (28)

Insert (25), (27), and (28) into (24) and (26) to obtain

𝜌𝑉
𝑖
(𝑅) = [𝜋

𝑖
(𝜃𝑅 − 𝛾𝑅

2
) − 𝛿𝑉



𝑖
(𝑅)] 𝑅 +

[𝜆
𝑖
𝑉


𝑖
(𝑅)]
2

2𝜇
𝑖

+

𝜆
2

𝑝
[2𝑉


𝑖
(𝑅) + 𝑉



𝑝
(𝑅)]
2

8𝜇
𝑝

,

𝜌𝑉
𝑝
(𝑅) = [𝜋

𝑝
(𝜃𝑅 − 𝛾𝑅

2
) − 𝛿𝑉



𝑝
(𝑅)] 𝑅

+

𝜆
2

𝑖
𝑉


𝑖
(𝑅)𝑉


𝑝
(𝑅)

2𝜇
𝑖

+

𝜆
2

𝑝
𝑉


𝑝
(𝑅) [2𝑉



𝑖
(𝑅) + 𝑉



𝑝
(𝑅)]

4𝜇
𝑝

.

(29)

We conjecture that the solutions of (29) will be quadratic

𝑉
𝑖
(𝑅) = 𝑓

1
𝑅
2
+ 𝑓
2
𝑅 + 𝑓
3
, 𝑉

𝑝
(𝑅) = 𝑔

1
𝑅
2
+ 𝑔
2
𝑅 + 𝑔
3
,

(30)

in which𝑓
1
,𝑓
2
, and𝑓

3
and 𝑔
1
, 𝑔
2
, and 𝑔

3
are all constants.We

substitute 𝑉
𝑖
(𝑅), 𝑉

𝑝
(𝑅) and their derivatives from (30) into

(29) to obtain

𝜌(𝑓
1
𝑅
2
+ 𝑓
2
𝑅 + 𝑓
3
)

= [(𝜋
𝑖
𝜃 − 𝛿𝑓

2
) 𝑅 − (𝜋

𝑖
𝛾 + 2𝛿𝑓

1
) 𝑅
2
] +

𝜆
2

𝑖
(2𝑓
1
𝑅 + 𝑓
2
)
2

2𝜇
𝑖

+

𝜆
2

𝑝
[2 (2𝑓

1
𝑅 + 𝑓
2
) + (2𝑔

1
𝑅 + 𝑔
2
)]
2

8𝜇
𝑝

,

(31)

𝜌(𝑔
1
𝑅
2
+ 𝑔
2
𝑅 + 𝑔
3
)

= [(𝜋
𝑝
𝜃 − 𝛿𝑔

2
) 𝑅 − (𝜋

𝑝
𝛾 + 2𝛿𝑔

1
) 𝑅
2
]

+
𝜆
2

𝑖
(2𝑓
1
𝑅 + 𝑓
2
) (2𝑔
1
𝑅 + 𝑔
2
)

2𝜇
𝑖

+

𝜆
2

𝑝
(2𝑔
1
𝑅 + 𝑔
2
) [2 (2𝑓

1
𝑅 + 𝑓
2
) + (2𝑔

1
𝑅 + 𝑔
2
)]

4𝜇
𝑝

.

(32)

Equations (31) and (32) both satisfy for all𝑅 ≥ 0.Thus, we
can find out that a set of values for (𝑓

∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑔
∗

1
, 𝑔
∗

2
, 𝑔
∗

3
),

which can result in the maximization of the profits, is the
solution for the following equations:

𝜌𝑓
1
=

2𝜆
2

𝑖
𝑓
2

1

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
1
+ 𝑔
1
)
2

2𝜇
𝑝

− (𝜋
𝑖
𝛾 + 2𝛿𝑓

1
) ,

𝜌𝑓
2
=

2𝜆
2

𝑖
𝑓
1
𝑓
2

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
1
+ 𝑔
1
) (2𝑓
2
+ 𝑔
2
)

2𝜇
𝑝

+ (𝜋
𝑖
𝜃 − 𝛿𝑓

2
) ,

𝜌𝑓
3
=

𝜆
2

𝑖
𝑓
2

2

2𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
2
+ 𝑔
2
)
2

8𝜇
𝑝

,

𝜌𝑔
1
=

2𝜆
2

𝑖
𝑓
1
𝑔
1

𝜇
𝑖

+

𝜆
2

𝑝
𝑔
1
(2𝑓
1
+ 𝑔
1
)

𝜇
𝑝

− (𝜋
𝑝
𝛾 + 2𝛿𝑔

1
) ,

𝜌𝑔
2
=

𝜆
2

𝑖
(𝑓
1
𝑔
2
+ 𝑓
2
𝑔
1
)

𝜇
𝑖

+

𝜆
2

𝑝
(𝑓
1
𝑔
2
+ 𝑓
2
𝑔
1
+ 𝑔
1
𝑔
2
)

𝜇
𝑝

,

+ (𝜋
𝑝
𝜃 − 𝛿𝑔

2
)

𝜌𝑔
3
=

𝜆
2

𝑖
𝑓
2
𝑔
2

2𝜇
𝑖

+

𝜆
2

𝑝
𝑔
2
(2𝑓
2
+ 𝑔
2
)

4𝜇
𝑝

.

(33)

The optimal profits of LSI and FLSP can be represented as

𝑉
∗

𝑖
(𝑅) = 𝑓

∗

1
𝑅
2
+ 𝑓
∗

2
𝑅 + 𝑓

∗

3
, (34)

𝑉
∗

𝑝
(𝑅) = 𝑔

∗

1
𝑅
2
+ 𝑔
∗

2
𝑅 + 𝑔
∗

3
. (35)



6 Journal of Applied Mathematics

Substituting the derivative of 𝑉∗
𝑖
(𝑅) from (34) into (27),

the optimal efforts of LSI can be represented as

𝐸
∗

𝑖
=

𝜆
𝑖
(2𝑓
∗

1
𝑅 + 𝑓

∗

2
)

𝜇
𝑖

. (36)

Substituting the derivatives of𝑉∗
𝑖
(𝑅) and𝑉

∗

𝑝
(𝑅) from (34)

and (35) into (28), the optimal sharing rate can be represented
as

𝐷
∗
=

(4𝑓
∗

1
− 2𝑔
∗

1
) 𝑅 + (2𝑓

∗

2
− 𝑔
∗

2
)

(4𝑓
∗

1
+ 2𝑔
∗

1
) 𝑅 + (2𝑓

∗

2
+ 𝑔
∗

2
)
. (37)

Also, we can obtain the optimal efforts of FLSP by
substituting𝑉

∗

𝑝
(𝑅)’s derivative and𝐷

∗ from (35) and (37) into
(25)

𝐸
∗

𝑝
=

𝜆
𝑝
[(4𝑓
∗

1
+ 2𝑔
∗

1
) 𝑅 + (2𝑓

∗

2
+ 𝑔
∗

2
)]

2𝜇
𝑝

. (38)

Substitute (36) and (38) into differential game equation
(2) to obtain

𝑅

= 𝑘𝑅 + 𝑑, (39)

in which 𝑘 = 2𝜆
2

𝑖
𝑓
∗

1
/𝜇
𝑖
+𝜆
2

𝑝
(2𝑓
∗

1
+𝑔
∗

1
)/𝜇
𝑝
−𝛿, 𝑑 = 𝜆

2

𝑖
𝑓
∗

2
/𝜇
𝑖
+

𝜆
2

𝑝
(2𝑓
∗

2
+ 𝑔
∗

2
)/2𝜇
𝑝
.

Same as the proof ofTheorem 2, the general solutions can
represented as

𝑅 = 𝑐𝑒
𝑘𝑡

−
𝑑

𝑘
, (40)

in which 𝑐 is a constant. Given 𝑅|
𝑡=0

= 𝑅
0
≥ 0, the particular

solution is

𝑅
∗
= (𝑅
0
+

𝑑

𝑘
) 𝑒
𝑘𝑡

−
𝑑

𝑘
. (41)

5. Numerical Analysis

Consider a case with the following set of parameters:

𝜇
𝑖
= 1.2, 𝜇

𝑝
= 1, 𝜆

𝑖
= 0.6,

𝜆
𝑝
= 0.5, 𝛿 = 0.01, 𝜃 = 0.5,

𝛾 = 0.05, 𝜋
𝑖
= 0.6, 𝜋

𝑝
= 0.4,

𝜌 = 0.9, 𝑅
0
= 0.5.

(42)

Then, we can get the results of (5) and (22)

(𝑝
#
1
, 𝑝

#
2
, 𝑝

#
3
, 𝑞

#
1
, 𝑞

#
2
, 𝑞

#
3
)

= (−0.031269, 0.315981, 0.034968,

− 0.020664, 0.208800, 0.028047) ,

(𝑓
∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑔
∗

1
, 𝑔
∗

2
, 𝑔
∗

3
)

= (−0.031046, 0.313701, 0.040789,

− 0.020847, 0.210668, 0.023275) ,

𝑟 =
2𝜆
2

𝑖
𝑝
#
1

𝜇
𝑖

+

2𝜆
2

𝑝
𝑞
#
1

𝜇
𝑝

− 𝛿 = −0.039093,

𝑠 =
𝜆
2

𝑖
𝑝
#
2

𝜇
𝑖

+

𝜆
2

𝑝
𝑞
#
2

𝜇
𝑝

= 0.146994,

𝑘 =
2𝜆
2

𝑖
𝑓
∗

1

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
∗

1
+ 𝑔
∗

1
)

𝜇
𝑝

− 𝛿 = −0.049362,

𝑑 =
𝜆
2

𝑖
𝑓
∗

2

𝜇
𝑖

+

𝜆
2

𝑝
(2𝑓
∗

2
+ 𝑔
∗

2
)

2𝜇
𝑝

= 0.198869.

(43)

As a result, we can obtain the optimal solutions of the
differential game.

(1) Nash Equilibrium without Cost Sharing Contract. The
optimal efforts of LSI and FLSP are

𝐸
#
𝑖
=

𝜆
𝑖
(2𝑝

#
1
𝑅
#
+ 𝑝

#
2
)

𝜇
𝑖

= 0.1020𝑒
−0.04𝑡

+ 0.0404,

𝐸
#
𝑝
=

𝜆
𝑝
(2𝑞

#
1
𝑅
#
+ 𝑞

#
2
)

𝜇
𝑝

= 0.0673𝑒
−0.04𝑡

+ 0.0267.

(44)

Under the circumstances, the accumulation of the reputation
of LSSC is

𝑅
#
(𝑡) = (𝑅

0
+

𝑠

𝑟
) 𝑒
𝑟𝑡

−
𝑠

𝑟
= −3.26𝑒

−0.04𝑡
+ 3.76. (45)

And the profits of both parties and the whole supply chain are

𝑉
#
𝑖
(𝑅) = 𝑝

#
1
𝑅
2
+ 𝑝

#
2
𝑅 + 𝑝

#
3

= −0.3323𝑒
−0.08𝑡

− 0.2635𝑒
−0.04𝑡

+ 0.7810,

𝑉
#
𝑝
(𝑅) = 𝑞

#
1
𝑅
2
+ 𝑞

#
2
𝑅 + 𝑞

#
3

= −0.2196𝑒
−0.08𝑡

− 0.1741𝑒
−0.04𝑡

+ 0.5210,

𝑉
#
LSSC = 𝑉

#
𝑖
+ 𝑉

#
𝑝

= −0.5519𝑒
−0.08𝑡

− 0.4376𝑒
−0.04𝑡

+ 1.3020.

(46)
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Figure 1: Difference of optimal efforts between Nash equilibrium and Stackelberg equilibrium.

(2) Stackelberg Equilibrium with Cost Sharing Contract. The
optimal efforts of LSI and FLSP are

𝐸
∗

𝑖
=

𝜆
𝑖
(2𝑓
∗

1
𝑅
∗
+ 𝑓
∗

2
)

𝜇
𝑖

= 0.1096𝑒
−0.05𝑡

+ 0.0318,

𝐸
∗

𝑝
=

𝜆
𝑝
[(4𝑓
∗

1
+ 2𝑔
∗

1
) 𝑅
∗
+ (2𝑓

∗

2
+ 𝑔
∗

2
)]

2𝜇
𝑝

= 0.1463𝑒
−0.05𝑡

+ 0.0424.

(47)

The optimal sharing rate of LSI is

𝐷
∗
=

(4𝑓
∗

1
− 2𝑔
∗

1
) 𝑅
∗
+ (2𝑓

∗

2
− 𝑔
∗

2
)

(4𝑓
∗

1
+ 2𝑔
∗

1
) 𝑅∗ + (2𝑓

∗

2
+ 𝑔
∗

2
)

=
0.2911𝑒

−0.05𝑡
+ 0.0844

0.5853𝑒−0.05𝑡 + 0.1698
.

(48)

Under the circumstances, the accumulation of the reputation
of LSSC is

𝑅
∗
(𝑡) = (𝑅

0
+

𝑑

𝑘
) 𝑒
𝑘𝑡

−
𝑑

𝑘
= −3.53𝑒

−0.05𝑡
+ 4.03. (49)

And the profits of both parties and the whole supply chain are

𝑉
∗

𝑖
(𝑅) = 𝑓

∗

1
𝑅
2
+ 𝑓
∗

2
𝑅 + 𝑓

∗

3

= −0.3866𝑒
−0.10𝑡

− 0.2242𝑒
−0.05𝑡

+ 0.8007,

𝑉
∗

𝑝
(𝑅) = 𝑔

∗

1
𝑅
2
+ 𝑔
∗

2
𝑅 + 𝑔
∗

3

= −0.2596𝑒
−0.10𝑡

− 0.1507𝑒
−0.05𝑡

+ 0.5336,

𝑉
∗

LSSC = 𝑉
∗

𝑖
+ 𝑉
∗

𝑝

= −0.6462𝑒
−0.10𝑡

− 0.3749𝑒
−0.05𝑡

+ 1.3343.

(50)

In the long-term relationship among members in LSSC,
LSI and FLSP are faced with dynamic games, which means
that the optimal strategies of LSI and FLSP will change with
time. As a result, both players will adjust their decisions to
maximize their profits in an infinite-time horizon. However,
the optimal decisionswill become stable at last, suggesting the
autonomy of the LSSC.

Figure 1 illustrates the difference between efforts of both
parties obtained from Nash equilibrium and Stackelberg
equilibrium. The efforts will decline with time until they
reach an appropriate level.This is because themarginal utility
of reputation for revenue is diminishing while the cost to
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Figure 2: The optimal cost sharing rate of the LSI.
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Figure 3: Change of the reputation after adopting cost sharing
contract.

maintain reputation remains the same. By comparing the
results from the two equilibria, we can see that efforts of
FLSP enhance remarkably under the Stackelberg equilibrium,
which means that the cost sharing contract can help LSI to
encourage FLSP to endeavor in service.

The optimal sharing rate of the LSI can be observed in
Figure 2, declining until it reaches an appropriate level which
is about 0.5. Thus, LSI should share about half of the cost of
FLSP to realize the coordination of the supply chain.

Figure 3 illustrates the whole process of the building
reputation. The reputation of LSSC will increase because of
accumulation. But the rate of growth will decrease with the
decline of the efforts of both parties, resulting in a stable
level at last. The stable state of reputation gets higher in the
Stackelberg equilibriumwith the cost sharing contract, which
suggests that the cost sharing contract contributes to the
growth of reputation. Same as reputation, the profits of LSSC
as well as members can be enhanced by the use of the cost
sharing contract, as seen in Figure 4.

To sum up, the long-term relationship among the mem-
bers of the supply chain contributes to the stability of the
service supply chain. In the long-term relationship between
LSI and FLSP, the cost sharing contract is helpful in increasing
the reputation and profits of the supply chain by encouraging
a higher level of the efforts by FLSP, which implies that cost
sharing contract is an effective coordination mechanism.
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Figure 4: Change of profits of LSSC and themembers after adopting
cost sharing contract.

6. Conclusions

Given the long-term relationship amongmembers in a supply
chain, we take time and reputation into consideration as
the main factors in a dynamic differential model in LSSC
consisting of one LSI and one FLSP. The results indicate the
autonomy of the logistics service system and the effectiveness
of cost sharing contract in the coordination of the supply
chain.

However, we simplify the parameters, the expression form
of whichmay be various in reality resulting in different forms
of solutions, in the model to obtain the optimal decisions of
both parties, which is an interesting subject for future work.
Meanwhile, further studies in the coordination of the supply
chain that consists of multi-integrators and multiproviders
and the empirical analysis of the mathematical models will
play an important role in the practice of supply chain
management.
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