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Given current fast-changing market conditions and difficulty in obtaining financing for small- and medium-sized enterprises, this
paper studies the robust inventory financing model under partial information, that is, where the demand distribution is partly
known. Two demand information cases are discussed: (1) the mean and variance and (2) the support of the demand distribution.
In this setting, the robust method that maximizes the worst-case profit and minimizes the firm’s maximum possible regret of not
acting optimally would be used to formulate the optimal sales quantity. We show that the approach used in this paper is tractable,
and we provide an explicit expression for the robust optimal policy. We then use numerical examples to compare the firm’s losses
under two demand information cases with those occurring under demand certainty. More importantly, the numerical examples
indicate that our robust inventory financing model can obtain a robust but not conservative solution.

1. Introduction

The topic of this paper is inspired by the challenges in
obtaining financing faced by small- andmedium-sized enter-
prises. They often have little in the way of the fixed assets
that lenders are usually willing to recognize as security for
loans or leases, so it is difficult for them to borrow money
except at prohibitive interest rates [1]. Even if a loan is
taken out under such terms, the firm’s development will be
further constrained due to lack of money. To alleviate such
problems, the practice of inventory financing has become
increasingly common. Inventory financing allows firms to use
their inventory resources as pledges to obtain loans from a
bank. After examination and approval, the bank will transfer
the inventory to a third-party logistics (3PL) provider who
will store and monitor the inventory. The bank then lends
the firm money at a previously agreed interest rate [2]. By
using inventory financing, the bank, 3PL, and the borrowing
company cooperate in a new platform to achieve a win-
win-win situation. This practice has seen rapid growth in
China in recent years and is now very popular. It can also
be seen to be operating informally in the practice of some

small- and medium-sized enterprises to mortgage part of
their selling products to obtain loans to carry out different
profitable projects. For example, in Shandong province, some
enterprises that sell fodder for chicken, pigs, or other animals
use their inventory as pledges to obtain loans, which they
then use for breed aquatics. In Hebei province, a steel plant
mortgaged part of its products to obtain loans to develop a
new product.

Although inventory financing is widely used, research
about it remains scant. Jokivuolle and Peura [3] present a
model of risky debt in which collateral value is correlated
with the possibility of default. Cossin et al. [4] determine
the default probability of enterprises exogenously and acquire
a determination model of the collateral haircut consistent
with the bank’s level of risk tolerance based on the reduced-
form approach. Babich et al. [5] study firm procurement
with financing decisions on loan amount from each source.
In contrast to Babich et al. [5], Li et al. [6] assume that a
firm can continue operation by paying a default penalty even
after it defaults on a loan for a particular business activity.
Dada and Hu [7] present a capital-constrained newsvendor
model wherein the newsvendor must borrow money from
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a bank to finance additional procurement. In their paper, they
assume that the bank is coordinated and strategic regarding
the newsvendor’s order quantity as a Stackelberg leader.

All of these researches, however, focus on the determin-
istic case. But, the real world is full of uncertainties. As
the number of sources of uncertainty increases, studies on
uncertainty are also increasing, such as the researches carried
out by Suo et al. [8], Xu [9], and Lari [10]. Furthermore,
some researchers have studied inventory financing problems
under demand uncertainty. Gupta and Wang [11] present a
discrete time model of a retailer’s operations with random
demand to prove that the optimal policy’s structure is not
affected by credit terms. Buzacott and Zhang [1] model the
available cash in each period as a function of assets and
liabilities that may be updated periodically according to
the dynamics of production activities. Lee and Rhee [12]
investigate the impact of inventory financing costs on supply
chain coordination.

However, all of the above researches on inventory financ-
ingmainly focus on scenarios in which complete information
about demand is available. In practice, it is often difficult
to completely characterize demand or the demand distri-
bution, especially in fast-changing markets. Accordingly, in
this paper, we study the inventory financing problem with
only partial information available regarding the demand
distribution, and two different types of demand information
are discussed. Based on this, we propose a robust inventory
financingmodel, and rather than giving an exact distribution,
we limit the information to only know themean and variance
or the support. From this, we derive the robust optimal sales
quantity and the profit or loss under the two different types
of demand information. The contributions of this paper are
as follows.

(1) We combine inventory financing with sales. Further-
more, we jointly consider the impacts of inventory
financing and project investment on a firm’s decisions
and profit.

(2) We introduce partial demand information into
the inventory financing problem. Furthermore, the
impacts of two types of partial demand information
(mean and variance and support) on the firm’s deci-
sions and profit are considered.

The remainder of this paper is organized as follows. In
Section 2, we describe the inventory financing model and
introduce the notations. In Section 3, we discuss the inven-
tory financingmodelwith partial demand information (mean
and variance). In Section 4, we formulate the inventory
financing model with partial demand information (support).
In Section 5, we present the numerical results. In Section 6,
we conclude the results and suggest topics for future research.

2. The Model

We construct a single-period model to study a firm’s inven-
tory financing decisions. In our model, a firm that faces a
random demand in the market and that possesses partial
information about such demand faces a trade-off between

pledging for cash to invest and selling before the sales season.
The pledges will be taken care of by a designated third party
and the unsold product will be kept as inventory by the firm.
Consider the time period [0, 𝑇]; for simplicity, we assume
that the investment horizon and the financing horizon are
both [0, 𝑇]. At time 0, the firm has no cash and must make a
choice between pledging some of her products to invest and
selling all of them. If the firmdecides to pledge, itmust further
decide how many. The related notations are given as follows:

𝑝: the unit selling price;

𝑑: the demand in the single period, a randomvariable;

𝑐
1
; 𝑐
2
: the unit storage cost; the unit penalty cost for

shortages;

𝑄: the initial inventory;

𝑞; 𝑄 − 𝑞: the sales quantity, the decision variable; the
pledge quantity;

𝐴𝑆, 𝐵𝑆: the revenue if investment succeeded and
initial investment is 𝑆, the revenue if investment failed
and initial investment is 𝑆, 𝐴 ≥ 1, 0 ≤ 𝐵 < 1;

𝛼, 1 − 𝛼: the probability of success of the investment
and the probability of failure of the investment;

𝜆: loan-to-value ratios specified in the contract with
the bank;

𝑖: the simple interest rate;

𝐿 + 𝑐
3
(𝑄 − 𝑞): where L is fixed service fee paid to the

3PL; 𝑐
3
is the unit service cost.

The expected profit for the firm in the single period is

𝐸 [𝜋 (𝑞)]

= 𝐸 [𝑝min {𝑞, 𝑑} − 𝑐
1
(𝑞 − 𝑑)

+

− 𝑐
2
(𝑑 − 𝑞)

+

+ 𝛼𝐴𝜆𝑝 (𝑄 − 𝑞) + (1 − 𝛼) 𝐵𝜆𝑝 (𝑄 − 𝑞)

− 𝜆𝑝 (𝑄 − 𝑞) − 𝑖𝜆𝑝 (𝑄 − 𝑞) 𝑇 − 𝐿 − 𝑐
3
(𝑄 − 𝑞) ] .

(1)

3. Inventory Financing Decision with Partial
Demand Information (Mean and Variance)

In this section, we assume that the firm possesses only partial
demand information, that is, mean 𝜇 and variance 𝜎2, and its
objective is to maximize its expected profit. Under the above
conditions, the robust optimization approach first addressed
by Scarf [13] will be adopted to model demand uncertainty.
Accordingly, the firm’s objective can be rewritten as follows:

max
𝑞

inf
𝑑∼(𝜇,𝜎

2
)

𝐸 [𝜋 (𝑞)] . (2)



Journal of Applied Mathematics 3

Since min{𝑞, 𝑑} = 𝑑 − (𝑑 − 𝑞)
+ and (𝑞 − 𝑑)+ = (𝑞 − 𝑑) +

(𝑑 − 𝑞)
+, we obtain

𝐸 [𝜋 (𝑞)] = 𝑝𝜇 − (𝑝 + 𝑐
1
+ 𝑐
2
) 𝐸 [(𝑑 − 𝑞)

+

] − 𝑐
1
(𝑞 − 𝜇)

+ 𝛼𝐴𝜆𝑝 (𝑄 − 𝑞) + (1 − 𝛼) 𝐵𝜆𝑝 (𝑄 − 𝑞)

− 𝜆𝑝 (𝑄 − 𝑞) − 𝑖𝜆𝑝 (𝑄 − 𝑞) 𝑇 − 𝐿 − 𝑐
3
(𝑄 − 𝑞) .

(3)

Following Gallego and Moon [14], we get

𝑓 (𝑞) = inf
𝐷∼(𝜇,𝜎2)

𝐸 [𝜋 (𝑞)] = Ψ (𝑞) − Φ (𝑞) , (4)

where

Ψ (𝑞) = 𝑝𝜇 − 𝑐
1
(𝑞 − 𝜇) + 𝛼𝐴𝜆𝑝 (𝑄 − 𝑞)

+ (1 − 𝛼) 𝐵𝜆𝑝 (𝑄 − 𝑞)

− 𝜆𝑝 (𝑄 − 𝑞) − 𝑖𝜆𝑝 (𝑄 − 𝑞) 𝑇 − 𝐿 − 𝑐
3
(𝑄 − 𝑞) ,

(5)

Φ(𝑞) = (𝑝 + 𝑐
1
+ 𝑐
2
)
√𝜎2 + (𝑞 − 𝜇)

2

− (𝑞 − 𝜇)

2
.

(6)

Note that (5) indicates the riskless profit function (e.g., Mills
[15] and Petruzzi and Dada [16]), the profit in the certainty
equivalent problem in which 𝑑 is replaced by 𝜇. Equation (6)
indicates the loss function [17] because of the uncertainty in
demand. Thus, from (4), we can find that (1) the expected
profit with uncertainty is less than that with certainty and
(2) we can increase the expected profit through decreasing
uncertainty. Therefore, the objective is transformed to

max
𝑞
𝑓 (𝑞) . (7)

We take the first and second partial derivatives of 𝑓(𝑞) with
respect to 𝑞:

𝜕𝑓 (𝑞)

𝜕𝑞
= −𝛼𝐴𝜆𝑝 − (1 − 𝛼) 𝐵𝜆𝑝 + 𝜆𝑝 + 𝑖𝜆𝑝𝑇 + 𝑐

3

+
1

2
(𝑝 − 𝑐

1
+ 𝑐
2
)

−
1

2
(𝑝 + 𝑐

1
+ 𝑐
2
)

𝑞 − 𝜇

√𝜎2 + (𝑞 − 𝜇)
2

,

(8)

𝜕
2
𝑓 (𝑞)

𝜕𝑞2
= −

1

2
(𝑝 + 𝑐

1
+ 𝑐
2
)

𝜎
2

[𝜎2 + (𝑞 − 𝜇)
2

]
3/2
. (9)

Notice from (9) that 𝑓(𝑞) is concave in 𝑞. Therefore, we can
obtain the optimal sales quantity through setting 𝜕𝑓(𝑞)/𝜕𝑞 =
0.

Proposition 1. The optimal sales quantity is given by

𝑞
∗
=

𝐸

√𝐺2 − 𝐸2
𝜎 + 𝜇, (10)

where 𝐸 = −𝛼𝐴𝜆𝑝 − (1 − 𝛼)𝐵𝜆𝑝 + 𝜆𝑝 + 𝑖𝜆𝑝𝑇 + 𝑐
3
+ (1/2)(𝑝 −

𝑐
1
+𝑐
2
),𝐺 = (1/2)(𝑝+𝑐

1
+𝑐
2
). To examine the effects of certain

exogenous variables on sales quantity, we differentiate 𝑞 with
respect to 𝑇, 𝑖, 𝜆, 𝑐

1
, 𝑐
2
, 𝑐
3
and obtain the following results.

Proposition 2. (1) Consider 𝑑𝑞/𝑑𝑇 > 0, 𝑑𝑞/𝑑𝑖 > 0;
(2) 𝑑𝑞/𝑑𝜆 > 0, when −𝛼𝐴𝜆𝑝−(1−𝛼)𝐵𝜆𝑝+𝜆𝑝+𝑖𝜆𝑝𝑇 > 0,

𝑑𝑞/𝑑𝜆 < 0, when −𝛼𝐴𝜆𝑝 − (1 − 𝛼)𝐵𝜆𝑝 + 𝜆𝑝 + 𝑖𝜆𝑝𝑇 < 0;
(3) 𝑑𝑞/𝑑𝑐

1
< 0, 𝑑𝑞/𝑑𝑐

2
> 0, 𝑑𝑞/𝑑𝑐

3
> 0.

Proposition 2(1) indicates that 𝑞 increaseswith increasing
𝑇 or 𝑖. This is straightforward because whether there is an
increase in 𝑇 or 𝑖, both mean an increase in the cost of
loan. Therefore, the firm will increase the sales quantity and
decrease the pledge quantity. Proposition 2(2) shows that
when the expected revenue from an investment is lower than
the cost of the loan, that is, the firm suffers loss from the
investment, then the firm will increase the sales quantity and
decrease the pledge quantity. Accordingly, when the expected
revenue of an investment is higher than the cost of the loan,
the firm will decrease the sales quantity. Proposition 2(3)
indicates that 𝑞 decreases as 𝑐

1
increases and also increases

with increasing 𝑐
2
or 𝑐
3
. As when 𝑐

1
increases, the cost of

inventory will also increase, so the firm will decrease the
quantity of inventory, and when 𝑐

2
or 𝑐
3
increases, the cost

of pledges will increase, so the firm will increase the quantity
of inventory; that is, it will decrease the amount of pledges.
We can find a simple truth from the above description; that
is, the firm will increase the quantity of inventory if the
cost of pledges increases, and it will decrease the quantity of
inventory when the cost of inventory increases.

4. Inventory Financing Decision with Partial
Demand Information (Support)

Facing a rapidly changing market, a firm might not have
past sales data available, or the data might even be absent, in
particular for products with short life cycles in new markets.
Sometimes, only an educated guess is available for the lower
and upper bounds of demand. In such a situation, the
approaches based onBayesian learning [18] or nonparametric
learning [19, 20] are not applicable. Furthermore, some
researchers think that the maximin approach is too con-
servative. Therefore, the minimax regret, a less conservative
approach provided by Savage [21], will be adopted in this
section. The minimax regret has also been investigated by
Vairaktarakis [22], Yue et al. [23], Perakis and Roeis [24], and
Lin and Ng [25].

In this section, we assume that a firm only knows the
support of demand [𝑀,𝑁] and its objective is to minimize
its regret. To guarantee the probability of pledges, we assume
that 𝑄 > 𝑁. Let 𝑧 denote the optimal sales quantity. For a
given decision 𝑞 and a probability distribution 𝐹, the regret
measures the additional profit that could have been obtained
if the firm possessed full information about the distribution;
that is, max

𝑧∈[𝑀,𝑁]
𝐸[𝜋
𝐹
(𝑧)]−𝐸[𝜋

𝐹
(𝑞)].Themaximum regret

𝜌(𝑞) = max
𝐹
max
𝑧∈[𝑀,𝑁]

𝐸[𝜋
𝐹
(𝑧)] − 𝐸[𝜋

𝐹
(𝑞)] can be regarded

as the maximum price one would pay to know the exact
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demand distribution (e.g., with a marketing survey) [24].
Therefore, the decision criterion consisting of minimizing
𝜌(𝑞) can be written as follows:

𝜌
∗
= min
𝑞∈[𝑀,𝑁]

𝜌 (𝑞)

= min
𝑞∈[𝑀,𝑁]

max
𝐹

max
𝑧∈[𝑀,𝑁]

𝐸 [𝜋
𝐹
(𝑧)] − 𝐸 [𝜋

𝐹
(𝑞)] .

(11)

We formulate the problem of identifying the worst-case
demand scenario as a moment problem. Then, by inverting
the order of maximization, (11) can be rewritten as follows:

min
𝑞∈[𝑀,𝑁]

𝜌 (𝑞)

= min
𝑞∈[𝑀,𝑁]

max
𝑧∈[𝑀,𝑁]

{max
𝐹

𝐸 [𝜋
𝐹
(𝑧)] − 𝐸 [𝜋

𝐹
(𝑞)]}

= min
𝑞∈[𝑀,𝑁]

max
𝑧∈[𝑀,𝑁]

{max
𝐹

∫
𝑁

𝑀

𝑝 (min {𝑧, 𝑑}

−min {𝑞, 𝑑}) 𝑑𝐹 (𝑑) }

− (𝑐
1
+ 𝑐
2
) [(𝑧 − 𝑑)

+
− (𝑞 − 𝑑)

+

] + 𝐻 (𝑧 − 𝑞) ,

(12)

where𝐻 = 𝑐
2
− 𝛼𝐴𝜆𝑝 − (1 − 𝛼)𝐵𝜆𝑝 + 𝜆𝑝 + 𝑖𝜆𝑝𝑇 + 𝑐

3
. Solving

the programming problem (12), we obtain the optimal sales
quantity.

Proposition 3 (see [22, 24]). If the demand distribution is
nonnegative, then, with support [𝑀,𝑁], the optimal sales
quantity in minimax regret is equal to the following:

𝑞
∗

𝑅
=
(𝑝 + 𝐻)𝑁 + (𝑐

1
+ 𝑐
2
− 𝐻)𝑀

𝑝 + 𝑐
1
+ 𝑐
2

. (13)

Proof. The inner problem of (12), consisting of finding the
distribution that maximizes the regret for given 𝑞 and 𝑧, can
be rewritten as follows:

max
𝐹

∫
𝑁

𝑀

𝑝 (min {𝑑, 𝑧} −min {𝑑, 𝑞}) 𝑑𝐹 (𝑑) − (𝑐
1
+ 𝑐
2
)

× [(𝑧 − 𝑑)
+
− (𝑞 − 𝑑)

+

] + 𝐻 (𝑧 − 𝑞)

s.t. 𝑑𝐹 (𝑑) ≥ 0

∫
𝑁

𝑀

𝑑𝐹 (𝑑) = 1.

(14)

By strong duality, problem (14) is equivalent to the following
dual problem ([24, 26]):

min 1 ⋅ 𝑦

s.t. 1 ⋅ 𝑦 ≥ 𝑝 (min {𝑑, 𝑧} −min {𝑑, 𝑞})

− (𝑐
1
+ 𝑐
2
) [(𝑧 − 𝑑)

+
− (𝑞 − 𝑑)

+

] + 𝐻 (𝑧 − 𝑞) .

(15)

y

y

d
M q z N

Figure 1: The case of 𝑧 ≥ 𝑞.

We distinguish the two cases 𝑧 ≥ 𝑞 and 𝑧 < 𝑞 to discuss the
programming problem (15). In order to reflect the two kinds
of situations, we refer to the following two figures. Figure 1
reflects the case of 𝑧 ≥ 𝑞; accordingly, Figure 2 reflects the
other case. From Figure 1, we can find that the minimum for
𝑦 in the case of 𝑧 ≥ 𝑞 is (𝑝 + 𝐻)(𝑧 − 𝑞). And from Figure 2,
the minimum for 𝑦 in the other case is (𝐻 − 𝑐

1
− 𝑐
2
)(𝑧 − 𝑞).

Therefore, we can obtain

max
𝐹

𝐸 [𝜋
𝐹
(𝑧)] − 𝐸 [𝜋

𝐹
(𝑞)]

= {
(𝑝 + 𝐻) (𝑧 − 𝑞) , if 𝑧 ≥ 𝑝
(𝐻 − 𝑐

1
− 𝑐
2
) (𝑧 − 𝑞) , if 𝑧 < 𝑞.

(16)

Since 𝑧 ∈ [𝑀,𝑁], we can get

𝜌 (𝑞) =

{{{{{{{{

{{{{{{{{

{

(𝑝 + 𝐻) (𝑁 − 𝑞) ,

if 𝑞 ≤
(𝑝 + 𝐻)𝑁 + (𝑐

1
+ 𝑐
2
− 𝐻)𝑀

𝑝 + 𝑐
1
+ 𝑐
2

(𝐻 − 𝑐
1
− 𝑐
2
) (𝑀 − 𝑞) ,

if 𝑞 >
(𝑝 + 𝐻)𝑁 + (𝑐

1
+ 𝑐
2
− 𝐻)𝑀

𝑝 + 𝑐
1
+ 𝑐
2

.

(17)

Due to 𝑞 ∈ [𝑀,𝑁], then we obtain 𝜌∗ = 1/(𝑝 + 𝑐
1
+ 𝑐
2
)(𝑐
1
+

𝑐
2
−𝐻)(𝑝 + 𝐻)(𝑁 −𝑀) and the optimal quantity 𝑞∗

𝑅
= ((𝑝 +

𝐻)𝑁 + (𝑐
1
+ 𝑐
2
− 𝐻)𝑀)/(𝑝 + 𝑐

1
+ 𝑐
2
).

Differentiating 𝑞∗
𝑅
with respect to 𝑇, 𝑖, 𝜆, 𝑐

1
, 𝑐
2
, 𝑐
3
, we can

then obtain the same conclusions as obtained in Section 3.

5. Numerical Simulation

In this section, based on our previous analysis, wewill analyze
the effects of different exogenous variable values on the firm’s
optimal decision and expected profit. We will then compare
the results of the two demand information scenarios. We
use the following parameters as benchmarks for the coming
numerical studies:
𝑝 = 30,𝑄 = 1600, 𝑐

1
= 6, 𝑐
2
= 4, 𝑖 = 0.06, 𝑇 = 1, 𝜆 = 0.75,

𝐴 = 1.5, 𝐵 = 0.5, 𝛼 = 0.5, 𝐿 = 10, 𝑐
3
= 2, 𝜇 = 1000, 𝜎 = 20,

𝑀 = 800,𝑁 = 1200.
Substituting the above data into (10) and (13), we obtain

the optimal sales quantity 𝑞∗ = 1035 and 𝑞∗
𝑅
= 1174.
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y

y

d
M qz N

Figure 2: The case of 𝑧 < 𝑞.

900 950 1000 1050 1100
900
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1000
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q

𝜇
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Figure 3: Impacts of 𝜇 on 𝑞∗.

Therefore, in the two cases, the firm will use some of its
products for pledges, with the remainder being used for sales.

The impacts of having only partial demand information
on the firm’s decisions and the profit under two cases are
shown in Figures 3, 4, 5, 6, 7, and 8. Figure 3 shows that, as
𝜇 increases, the firm should increase the sales quantity. This
can be considered as an intuitive response because increasing
the expected demand will force the firm to allocate more
products to sales. More specifically, if 𝜇 increases by 10%,
the sales quantity should increase by 10%. From Figure 4, we
find that a change of 𝜎 has less impact on 𝑞∗. For instance,
when 𝜎 increases by 10%, the quantity allocated for sales only
increases by 0.3%. Figure 5 indicates that increasing 𝜇 will
enable the firm to earn higher profits. However, increasing
𝜎 will have the opposite effect (see Figure 6). Furthermore,
we also find that changing 𝜇 has a great impact on the firm’s
profit. For instance, when 𝜇 increases by 10%, the firm’s profit
will increase by 12%. However, when 𝜎 increases by 10%, the
firm’s profit will decrease by 0.07%. On the basis of the above
analysis, we conclude that, regardless of the firm’s optimal
sales quantity or the profit level, 𝜇 has a greater impact and
the impact of 𝜎 can be omitted. Therefore, we suggest the

18
1031

1032

1033

1034

1035

1036

1037

1038

1039

q∗

q

18.5 19 19.5 20 20.5 21 21.5 22

𝜎

Figure 4: Impacts of 𝜎 on 𝑞∗.

900 950 1000 1050 1100

Pr
ofi

t
×104

3.2

3.1

3

2.9

2.8

2.7

2.6

2.5

2.4

𝜇

f∗

Figure 5: Impacts of 𝜇 on 𝑓∗.

firm should invest more for the information of the mean of
the demand and less for the information of the variance of
the demand. From Figures 7 and 8, we can see that a positive
correlation exists between𝑀 (or𝑁) and 𝑞∗

𝑅
. In other words,

𝑞
∗

𝑅
increases with increasing𝑀 (or𝑁). However, the impacts

of 𝑁 on 𝑞∗
𝑅
are much greater than 𝑀. For instance, when

𝑁 increases by 10%, 𝑞∗
𝑅
increases by 9.5%; if 𝑀 increases

by 10%, then 𝑞∗
𝑅
only increases by 0.5%. If the firm only

cares about the maximum price 𝜌∗ it pays to know the exact
demand distribution, then it only needs to know the absolute
difference between𝑀 and 𝑁, which can be found from the
expression of 𝜌∗.

The impacts of 𝑇, 𝛼, and 𝜆 on 𝑞∗ and 𝑞∗
𝑅
under the two

cases are shown in Figures 9, 10, and 11. Figure 9 shows that,
as described previously, as 𝑇 increases, the firm will raise
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the sales quantity in two cases; that is, it will reduce the
pledge quantity. Figure 10 indicates that the firm’s optimal
sales quantities 𝑞∗ and 𝑞∗

𝑅
decrease with increasing 𝛼. This is

straightforward because an increase in 𝛼 intuitively means an
increase in expected income from the investment, so the firm
will pledge more products for money; that is, the quantity for
sales will decrease.The conclusionwe obtain from Figure 11 is
consistent with that stated in Proposition 2(2); that is, when
the expected revenue from an investment is lower than the
cost of loan, the firmwill increase the sales quantity to reduce
borrowing costs. From Figures 3, 4, 5, 6, 7, 8, 9, 10, and 11, we
can also find that nomatter how 𝑇, 𝛼, 𝜆 change, 𝑞∗ < 𝑞∗

𝑅
.This

reflects the fact that the minimax regret is a less conservative
approach. Therefore, when a firm only knows the support of
demand, it will distribute more products for sales.
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To verify the robustness of ourmethods,wewill firstmake
a comparison between the profits under demand certainty
and uncertainty (with 𝜇 and 𝜎), and then we will inves-
tigate the effects of incomplete information upon the two
approaches. In accordance with (4)–(6), we can calculate the
firm’s profit under both demand certainty and uncertainty.
The impacts of 𝑇, 𝛼, and 𝜆 on profits under demand certainty
and uncertainty (with 𝜇 and 𝜎) are shown in Figures 12, 13,
and 14, and the losses of the two approaches due to partial
information under different values of 𝑇, 𝛼, and 𝜆 are shown
in Figures 15, 16, and 17.

FromFigures 12, 13, and 14, we can see that the firm’s profit
decreases with increasing𝑇 or 𝜆 but increases with increasing
𝛼. Associated with the relationship between the optimal sales
quantity and the three parameters, we find that when the gap
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between the optimal sales quantity and 𝜇 grows larger, profits
will fall. Furthermore, we see that when 𝑇, 𝛼, or 𝜆 is given,
the firm’s profit under demand uncertainty can reach more
than 97% of that under demand certainty. Therefore, we can
draw the conclusion that the maximin approach is not overly
conservative.

Figures 15, 16, and 17 show that the money the firm paid
for increased information or the loss due to the uncertainty
of demand will decrease with increasing 𝑇 or 𝜆 and increase
with increasing 𝛼. By comparison and analysis of these three
figures, we find that the loss in the second case (only support
of the demand is known) is bigger than that in the first case
(only𝜇 and𝜎 are known).We can also find that the parameter
𝛼 has a significant influence on the amount ofmoney the firm
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paid for increased information. Therefore, the firm should
invest more on the probability of succeeding in the project.

6. Conclusion

In this paper, we use the maximin robust and the minimax
regret approach in studying the inventory financing problem,
in which a firm having only partial information must make
a trade-off between pledging for cash to invest and selling
before the sales season. We provided a decision-making aid
for the firm and analyzed the impacts of certain parameters
and uncertainties upon the firm’s decision and profits. We
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obtained new conclusions differing from those in the extant
literature. We found that, in the first case, no matter the
firm’s optimal sales quantity or profit, 𝜇 has much greater
impact and the impact of 𝜎 can be omitted. Accordingly,
the firm should invest much more for the information of
mean of the demand. In the second case, if the firm only
cares about themaximumprice it pays to acquire information
regarding the exact demand distribution, then it only needs
to know the absolute difference between𝑀 and 𝑁. We also
found that, in both cases, the firm’s optimal sales quantity
increases with increasing𝑇 or 𝜆 but decreases with increasing
𝛼. On the contrary, the firm’s profit decreases with increasing
𝑇 or 𝜆 and decreases with increasing 𝛼; that is, if the gap
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between the optimal sales quantity and 𝜇 grows larger, the
profit will fall. We also found that the losses due to demand
uncertainty in the second case are bigger than in the first
case, a difference that can be attributed to the lower level of
available information in the second case. More importantly,
we found that the approaches we used here can deal with the
problem of partial information well.

Certainly, this paper has limitations. First, our models
only study single-period decision problems. It may be inter-
esting to studymultiperiod versions in future studies. Second,
in this paper, we assumed a fixed selling price for the product.
However, the selling price may be a function of demand.
Therefore, we can explore the case in which the firm jointly
decides both the sales quantity and the selling price.
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