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1 Escuela de Ingenieŕıa Industrial, Universidad Diego Portales, 8370179 Santiago, Chile
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We explore a portfolio constructive model, formulated in terms of satisfaction of a given set of technical requirements, with the
minimum number of projects and minimum redundancy. An algorithm issued from robust portfolio modeling is adapted to a
vector model, modifying the dominance condition as convenient, in order to find the set of nondominated portfolios, as solutions
of a bicriteria integer linear programming problem. In order to improve the former algorithm, a process finding an optimal solution
of a monocriteria version of this problem is proposed, which is further used as a first feasible solution aiding to find nondominated
solutions more rapidly. Next, a sorting process is applied on the input data or information matrix, which is intended to prune
nonfeasible solutions early in the constructive algorithm. Numerical examples show that the optimization and sorting processes
both improve computational efficiency of the original algorithm. Their limits are also shown on certain complex instances.

1. Introduction

Markowitz provided one of the first comprehensive theoreti-
cal frameworks for the portfolio selection problem [1]. In his
proposal, each portfolio is evaluated in terms of the expected
return and risk. Then, the efficient set, or efficient frontier,
corresponds to all portfolios with the largest expected return,
given a level of risk. From this framework, the expected return
is usually evaluated as the weighted sum of the expected
return from each project in the portfolio, while the risk value
is evaluated by the variance of the portfolio.Thus, the investor
may select the portfolios in the efficient frontier that best
match her/his needs.

In portfolio selection two vectors are defined [2]. First, the
investment proportion vector corresponds to the proportion
of money that the investor accepts to invest on each member
of a set of securities (projects). The criteria vector, instead,
contains the values of measures evaluating the portfolio. In
this sense, an efficient portfolio, in terms of the first vector, is
a nondominated portfolio, in the sense of the second one. A
multicriteria portfolio selection problem supposes a criteria
vector with three or more criteria [3], which is expected to

be more difficult in terms of computing of nondominated
portfolios. However, below, we show that depending on what
it is to be taken into account as an evaluation measure,
even with two criteria the generation of portfolios is a hard
combinatorial problem.

Since the portfolio selection problem intrinsically incor-
porates business criteria, budget restrictions, and returns
volatility [4], in the literature the problem is formulated as
the maximization of the expected return, under uncertainty
of returns. When the multicriteria version is considered,
several utility functions need to be maximized, subject to
constrains defining the feasible portfolios [1, 4, 5]. In this
context, nondominated portfolios may be computed using
multiobjective algorithms [6], evolutionarymethods formul-
tiobjective models [7, 8], or preference programming [9].

In this article, we focus on the portfolio generation
process, when business, budget, or even volatility information
is poor. Several stringent situations obligate to split the project
portfolio selection process into at least two phases: technical
and business concerns. We place ourselves in the first phase
and formulate our problem in terms of satisfaction of a given
set of technical requirements, with the minimum number
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of projects and minimum redundancy. This is a particular
viewpoint where the selection problem is stated. In fact, as
explained below, we are concerned with the generation of
interesting portfolios more than with the problem of choos-
ing the best portfolio.

Therefore, we place the problem in a very early phase
of nondominated portfolios identification. In order to fix
the ideas, a general multicriteria decision aiding (MCDA)
framework is chosen [10], centering our attention on the
problem formulation stage, which supposes the definition
of the set of potential actions (i.e., alternatives, candidates,
or decision subjects) [11]. Nevertheless, as given in many
practical situations, we assume that actions are not well-
defined elements at hand. Indeed, Simon was one of the
first scientists proposing that actions do not come perfectly
defined and represented in decision processes [12]. Thus,
when actions are not given in advance, a searching process
must be activated in order to discover or design them.
In some situations, except for abstract or very elementary
decision processes, a potential action must be constructed
from objects available in a repertory of primitive elements.
The project portfolio problem parallels this situation very
well. Stipulated as a management activity, portfolio selection
is the processes of conceiving portfolios from discrete, even
interrelated, projects.

We propose an approach to support exploratory search
of an analyst, aiding him/her to identify a restricted list
of nondominated interesting portfolios from a projects set,
satisfying the whole set of requirements. Observing that the
most relevant projects in a portfolio do not necessarily corre-
spond to those satisfying the largest number of requirements,
but rather to those blending well with other projects, we
propose an algorithm that provides a list of all potentially
interesting portfolios, based on requirements coverage and
minimal collective redundancy.The approach is applicable in
situations where detailed business information is poor and
nondominated interesting portfolios could be analyzed in
further stages of development, when better information is
available [13].

This article is organized as follows. In Section 2, the
problem stated is modeled as a bicriteria integer linear
program and a constructive procedure allowing exploring a
set of projects in order to identify nondominated portfolios
is defined. A proposition guaranteeing that such proce-
dure converges is proved. Next, an algorithm grounded on
the constructive approach is introduced in Section 3. An
improvement to this process is proposed, realizing that the
approach is sensitive to initial values obtained on one of
criteria of the ILP model. In Section 4 our approach is tested
and results are compared to those obtained in a previous
work. Finally, Section 6 is dedicated to conclusions.

2. Model Formulation

Let us consider a manager involved in a portfolio selection
and composition process, looking for different combina-
tions of projects, satisfying some technical requirements.
In addition, let us assume that she/he prefers to initially
explore a restricted set of projects, only looking for some

interesting portfolio alternatives. The small exploration of
pieces reveals to her/him possibilities to further consider
them with new business criteria (costs, benefits, profit, etc.)
or market related features (expansion, collocation, territorial
coverage, etc.), among others.Therefore, the problem consists
of identifying the set of portfolios satisfying a given number
of requirements defined by the analyst, knowing that a
systematic exploration might be a very hard task, even not
reasonable. In such a context, is it possible to aid the analyst in
the construction of early interesting solutions, using limited
information?

Methodologically, this is a decision-making activity
unfolding the following phases [11].

2.1. Problem Formulation. The problem formulation is a
statement defining the triplet Γ = ⟨𝐴,𝑉,Π⟩, where 𝐴 is a set
of actions, in our case portfolios, 𝑉 is a set of points of view
(e.g., dimensions) considered to evaluate elements of 𝐴, and
Π is a statement defining what would be done with elements
of 𝐴 (selection, ranking, classification, etc.).

2.2. Evaluation Model. Formally, an evaluation model is a
tuple𝑀 = ⟨𝐴,𝐺,𝑈, 𝑅⟩, where𝐺 is a set of criteria, eventually
derived from 𝑉, allowing the evaltation of elements of 𝐴
in terms of each criteria; 𝑈 models uncertainty regarding
available information in 𝐴 × 𝐺; and 𝑅 is an aggregation logic
defining the way that the information concerning 𝐴 and 𝐺

is operated in order to obtain a global conclusion solving the
problem Π. The evaluation model produces a process output
Φ.

2.3. Recommendation. The output of the evaluation model is
translated into the decision maker’s language, verifying that
it is technically sound and deployable in the decision maker’s
setting and processes.

In the problem formulation phase, 𝐴 is frequently sup-
posed to be a known fact or the result of a modeling task,
as usually done in linear programming, for instance, when a
set of feasible alternatives is modeled by linear restrictions.
Under such assumption, elements of 𝐴 become the matter
of analysis, evaluation, and recommendation. Then, further
phases may be applied in a regular way.

In our case, a portfolio is not known in advance and
becomes an alternative once it has been conceived or
designed as a project composite. We restrict ourselves to
the problem of definition of a set of portfolios, considering
that a pool of projects is given a priori. Then, a portfolio
will be a subset of components covering a set of predefined
requirements.

Finding of nondominated portfolios is formulated here as
a bicriteria integer linear program. Let us consider

(i) 𝑃 = {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} is the collection of projects;

(ii) ℘ = 2
𝑃 the set of possible portfolios, 𝑎, 𝑏 ∈ ℘, 𝑓

𝑖
:

℘ → 𝑅;
(iii) 𝐴 = (𝑎

𝑗𝑖
)
𝑚×𝑛

; matrix of projects and requirements;
(iv) 𝑎
𝑗𝑖

∈ {0, 1} : 𝑎
𝑗𝑖

= 1 if 𝑝
𝑗
covers the requirement

𝑟
𝑖
, 𝑎
𝑗𝑖
= 0 otherwise.
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(v) 𝑥
𝑗
∈ {0, 1} : 𝑥

𝑗
= 1 if 𝑝

𝑗
was included in a feasible

solution, and 𝑥
𝑗
= 0 if not;

(vi) 𝑦
𝑖
times 𝑖th requirement is covered.

The following program is a model of the problem, where
the whole set of nondominated portfolios simultaneously
minimize the number of projects in a composite and the
portfolio redundancy; that is, the number of times that
requirements are of covered by more than one project.
Consider

min ∑

𝑖

𝑦
𝑖
,

min ∑

𝑗

𝑥
𝑗

St. ∑

𝑗

𝑎
𝑗𝑖
𝑥
𝑗
= 𝑦
𝑖
, ∀𝑖

𝑦
𝑖
≥ 1, ∀𝑖

𝑥
𝑗
∈ {0, 1} , ∀𝑗.

(1)

Inspecting this model we observe that taking into account
only the objective (min∑

𝑗
𝑥
𝑗
), this program corresponds to

an instance of the set covering problem, well known to beNP-
hard. In consequence, there are instances where this program
cannot be solved by a traditional approach as the branch
and bound method [14]. Instead, we propose an algorithm
based on a constructive procedure adapted from a preference
programming approach presented in [9], where an efficient
algorithm aiding to find robust nondominated portfolios has
been introduced. Such an algorithm was originally presented
in the context of imperfect information regarding evaluation
of projects on a number of continue value functions and their
respectiveweights. Interestingly, the algorithmwas also based
on the progressive generation of nondominated portfolios,
which could be split in two phases: generation of candidates
and pruning.

Proposition 1 below guarantees a procedure for finding
every nondominated solution in the Pareto front, grounded
on the two-phase approach described.

Proposition 1. Let 2 ≤ 𝑘 ≤ 𝑛, 𝑃 = {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} be a set

of projects and 𝑎
𝑘
⊂ 𝑃 a portfolio having at most k projects.

Equally, let 𝜂(𝑎
𝑘
) and cov(𝑎

𝑘
) be defined as the redundancy and

coverage levels of 𝑎
𝑘
, 𝑅 the set of requirements to be satisfied,

and𝑁
𝑛
the set of nondominated portfolios 2𝑃 in given the sets

𝐶
𝑘
, 𝐿
𝑘+1

, 𝑁
𝑘
, defined as follows:

𝐶
𝑘
= {𝑎
𝑘
∈ 2
𝑃
| 𝜂 (𝑎
𝑘
) ≤ min
𝑎∈𝑁𝑘−1

𝜂 (𝑎)} ,

𝐿
𝑘+1

= {𝑎
𝑘
∈ 𝐶
𝑘
|
 cov (𝑎

𝑘
)
 < |𝑅|} ,

𝑁
𝑘
= {𝑎 | ∄ 𝑎


∈ 𝑁
𝑘−1

∪ (𝐶
𝑘
\ 𝐿
𝑘+1

) such that 𝑎 ≻ 𝑎} .

(2)

Then

𝑁
𝑛
= {𝑎 | ∄ 𝑎


∈ 2
𝑃 such that 𝑎 ≻ 𝑎} . (3)

(1)𝑁
0
= ⌀, 𝐿

1
= {⌀} , 𝑛 = 𝑀𝑀;

(2) for (𝑘 = 1, 𝑛, 𝑘++) do
(3) 𝐶

𝑘
= Candidates(𝐿

𝑘
)

(4) 𝐿
𝑘+1

= {𝑎 ∈ 𝐶
𝑘
| |Cov(𝑎)| < |𝑅|}

(5) 𝑁
𝑘
= {𝑎| ∄ 𝑎


∈ 𝑁
𝑘−1

∪ (𝐶
𝑘
\ 𝐿
𝑘+1

) such that 𝑎 ≻ 𝑎}

(6) 𝑛 = min
𝑎∈𝑁𝑘

𝜂(𝑎)

(7) end for

Algorithm 1

Proof. Let us proceed by induction. Thus, assume that 𝑁
𝑘−1

contains the whole set of nondominated portfolios bringing
together 1, 2, or 𝑘 − 1 size projects. By construction, 𝐶

𝑘

contains the whole set of feasible and unfeasible project
portfolios improving, or at least equaling, the minimum
redundancy value computed in the 𝑘 − 1 stage. Any portfolio
worsen this value is not included in this collection.Therefore,
(𝐶
𝑘
\ 𝐿
𝑘+1

) = {𝑎 ∈ 𝐶
𝑘
| cov(𝑎) = |𝑅|}. Let𝑀

𝑘
be defined as

𝑀
𝑘
= {𝑎 ∈ 𝑁

𝑘−1
| ∄ 𝑎

∈ (𝐶
𝑘
\ 𝐿
𝑘+1

) , 𝜂 (𝑎) = 𝜂 (𝑎

)}

∪ {𝑎 ∈ (𝐶
𝑘
\ 𝐿
𝑘+1

) ∄ 𝑎

∈ 𝑁
𝑘−1

, 𝜂 (𝑎) ≥ 𝜂 (𝑎

)} .

(4)

Then, it is clear that ∀𝑎 ∈ (𝑁
𝑘−1

∪ (𝐶
𝑘
\ 𝐿
𝑘+1

)) \ 𝑀
𝑘

and ∀𝑎 ∈ 𝑀
𝑘
, 𝑎 ≻ 𝑎

. In consequence, 𝑁
𝑘
= 𝑀
𝑘
is set of

nondominated portfolios discovered until the stage 𝑘. In the
𝑛th round, 𝑁

𝑛
will contain the whole set of nondominated

portfolios.

In the next section, we present an algorithm based on
Proposition 1. Further, an improvement is introduced notic-
ing that the progressive construction and pruning of project
portfolios may be accelerated when a convenient upper
bound is set for 𝜂 and a convenient sorting is applied on the
information matrix.

3. Algorithm

The main purpose of the algorithm presented in this section
is the identification of the whole set of nondominated portfo-
lios.Different algorithms and approaches have been proposed
for this task [14]. However, we focus on a solution provided
by [9], which we have adapted as a strategy for the program
(1). It is based on the candidates building and pruning
processes implementing a constructive generation of project
portfolios. In this algorithm, in order to generate candidates
potentially selected as feasible solutions, any portfolio having
a redundancy greater or equal than the minimal redundancy,
found at the current level of the procedure, is pruned. Next,
potential feasible solutions are compared to nondominated
candidates, which have been found in the precedent iteration.
The algorithm is defined in Algorithm 1.

The function candidates (Algorithm 2) is the generation
module in this approach. It is interesting because we could
change it in order to alter the behavior of the algorithm
[15]. Notice that an initial redundancy value is set at 𝑀𝑀,
a number big enough that will be modified the first time
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(1) 𝐿 = ⌀

(2) for 𝑎 ∈ 𝐶
𝑘
do

(3) 𝑎 = 𝑎 ∪ {𝑝
𝑘
}

(4) if 𝜂(𝑎) ≤ 𝜂 then
(5) 𝐿 = 𝐿 ∪ {𝑎}

(6) end if
(7) end for
(8) Return 𝐿

Algorithm 2: Function candidates (𝐶
𝑘
).

a feasible solution is found (i.e., a portfolio covering 𝑅).
Actually, the algorithm progressively generates nonfeasible
candidates until a feasible solution is found, which sets the
first values for the minimal redundancy (𝜂) and the portfolio
size. However, such behavior implies that, depending on
the coverage structure of components over requirements,
these initial values could be identified after a very expensive
searching process.

Indeed, the procedure could be improved if a convenient
initial value for 𝜂was known at the very start of the algorithm.
Then, let us consider the following program:

min 𝜇

St. ∑

𝑖

𝑦
𝑖
≤ 𝜇

∑

𝑗

𝑎
𝑗𝑖
𝑥
𝑗
= 𝑦
𝑖
, ∀𝑖

𝑦
𝑖
≥ 1, ∀𝑖

𝑥
𝑗
∈ {0, 1} , ∀𝑗.

(5)

In this case, we enforce the monocriteria version of the
bicriteria ILP program, where its optimal solution does not
necessarily solve the original problem, but it gives a good
upper bound for the redundancy and the portfolio size.
In what follows a comparison between the situation with
and without an upper bound is analyzed. Results for both
programs are presented in Section 4.

4. Results

In order to know if differences exist between the original
algorithm and the version with an upper bound, both applied
on model (1), a group of instances has been defined. An
instance corresponds to a set of 𝑚 projects, 𝑛 requirements,
and an information matrix 𝐴

𝑇

𝑚×𝑛
= (𝑎
𝑗𝑖
). According to

exploratory results [15], the instances are tested against
different ratio of zeroes, or density, in 𝐴: 50%, 75%, and
80%. For each instance and expected ratio of zeroes, thirty
randommatrices have been filled using aMontecarlo process,
agreeing to the given density value. In consequence, each
instance has been simulated thirty times and the average time

to solution, measured in milliseconds, has been calculated. A
MacBook Pro I5, 8Gb RAM, and 2.3Ghz was used for the
experiments.

Average time to find the Pareto front for the algorithm
with the upper bound (WUB) and the algorithm without
that bound (NUB) is presented in Table 1. We compare these
results with those found with an Apriori-based algorithm
[13, 14]. In this algorithm, which we call AP, the pruning rules
are the same: minimum number of objects and redundancy.
Only average time less or equal to 1 minute is reported, which
emphasizes cases where both or one of algorithms respond in
a very short period of time. Cases where no entry is shown
for an instance mean that the respective model is not capable
of solving the problem in such time.

When a particular simulation of the WUB algorithm is
considered, the initial value of redundancy is selected as the
optimal value obtained in the respective simulation run in
NUB. In this way, we enforce the WUB model to present its
best behavior. As expected, themore requirements or number
of projects increase, the more time to solution rises. Results
show that the WUB model outperforms the others, except in
one case (underlined). Density 𝛿 (the ratio of zeroes) is an
important condition for algorithms. NUB and AP are very
sensitive to that feature, but it allows us to consider how this
density acts on the algorithm performance. We hypothesize
that distribution of zeroes in the information matrix may be
important, because it determines theway that the first feasible
solution is found.

In order to know how the distribution of zeroes impacts
algorithms, a sorting process is applied on the information
matrices for every case of the experiment as follows.

(i) Requirements (columns) are sorted from left to right,
according the number of times they are covered.

(ii) Projects (rows) are sorted in descending order
according to the number of requirements they cover.

Therefore, two processes are added to the analysis: the WUB
and NUB algorithms, where an early sorting process is
applied to the current information matrix, namedWUB/Ord
and NUB/Ord, respectively. In Table 2, results for WUB and
the new processes are compared.

It is observed that WUB/Ord performs better than other
algorithms.This suggests that sorting could have good effects
on results. In Table 3, WUB/Ord is compared to other two
versions of the Apriori algorithm, the first with a sorting
process and the upper limit for redundancy (WAP/Ord) and
the second with the sorting process but without the upper
limit (NAP/Ord).

These results show thatWUB/Ord is not the best method
in all cases. For example, it does not solve some instances
solved by the Apriori based processes. Conversely,WUB/Ord
may outperform these processes in different situations. In
general, we conclude that the distribution of zeroes in the
informationmatrix is a critical issue. Additionally, the sorting
process is a good strategy, but it does not scale in front of
sparse structures (e.g., 𝛿 = 0.8).
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Table 1: Time in (ms) to find solutions as a function of 0’s density (𝛿).

Project Req. 𝛿 = 0.5 𝛿 = 0.75 𝛿 = 0.8
WUB NUB AP WUB NUB AP WUB NUB AP

25

4 0 2 9 0 43 3 0 173 2
8 0 3 4 0 2 1 0 5 58377
16 2 4 9 5 15 22747 746
32 9 15 322 7533 9341
64 20 93 189

50

4 1 2 28 0 788 8 0 11292 7
8 0 2 26 0 37 10985 0 12075
16 3 7 24 0 809 0 281
32 57 112 4756
64 278 548

100

4 3 16 214 1786 25970 102 85
8 0 4 25 0 420 5203
16 0 8 1502 0 3218 0 9889
32 419 631 46459
64 7736 13434

200

4 23 67 2397 562 162
8 0 3 98 14274
16 0 52 4503 1 367 0 162
32 729 1983
64

Table 2: Performance of algorithms in (ms), including sorting process WUB/Ord and NUB/Ord.

Project Req.
𝛿 = 0.5 𝛿 = 0.75 𝛿 = 0.8

WUB WUB NUB WUB WUB NUB WUB WUB NUB
/Ord /Ord /Ord /Ord /Ord /Ord

25

4 0 0 0 0 0 2 0 0 5
8 0 0 1 0 0 0 0 0 1
16 2 1 1 5 2 5
32 9 4 5 7533 1608 2068
64 20 10 36

50

4 1 0 0 0 0 32 0 0 486
8 0 0 0 0 0 11 0 0 2608
16 3 2 2 0 0 231 0 18 78
32 57 24 45
64 278 120 212

100

4 3 2 1 1786 748 5948
8 0 0 1 0 0 19
16 0 1 18 0 0 725 0 0 2132
32 419 151 252
64 7736 2733 4435

200

4 23 11 11
8 0 0 1
16 0 0 21 1 120 372 0 0 51
32 729 234 811
64
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Table 3: Comparison of WUB/Ord with Apriori sorting process WAP/Ord and NAP/Ord in (ms).

Project Req.
𝛿 = 0.5 𝛿 = 0.75 𝛿 = 0.8

WUB WAP NAP WUB WAP NAP WUB WAP NAP
/Ord /Ord /Ord /Ord /Ord /Ord /Ord /Ord /Ord

25

4 0 5 6 0 1 2 0 2 1
8 0 1 1 0 0 1 0 1384 1374
16 1 2 3 2 4196 4249
32 4 69 69 1608
64 10

50

4 0 14 0 6 4 0 2 3
8 0 2 0 6077 6085 0
16 2 2 0 18
32 24 651
64 120

100

4 2 64 101 748 19 41 17 31
8 0 9 13 0 6 10
16 1 21 32 0 0
32 151
64 2733

200

4 11 875 1134 76 83 34 36
8 0 33 52
16 0 55 94 120 0
32 234
64

5. Discussion

Results show that performance of the algorithms depends
on the number of projects, the number of requirements, and
the distribution of zeroes in the information matrix of a
given instance. A simple strategy to apply consists of having
small size instances. This approach may be found in other
studies. Actually, the portfolio composition problemhas been
modeled using multicriteria frameworks. The rationale of
these methods consists of identifying interesting projects and
next composing portfolios with them.

In [16] a two-stage combination of discrete and con-
tinuous multicriteria decision aid methods is proposed for
mutual funds selection and composition. In the first stage,
a multicriteria decision method is used to select the most
promising mutual funds. In the second stage, a goal pro-
gramming approach is applied in order to search for the
best proportions of mutual funds in the final portfolio.
Criteria used for selection and composition are grouped
into three categories: criteria regarding expected outcome
of investment in a mutual fund; criteria measuring risk to
obtain an outcome; and criteria about efficiency of mutual
funds. In [5] a two-level process is applied for selection and
composition of portfolios from a set of projects. In the first
level, the ELECTRE TRI decision aid method is used to sort
projects according to given categories, for instance, good,
average, and bad projects. In the second level, a portfolio on
each category is identified as the list of projects satisfying
specific constraints.

In [4], the selection and composition portfolio problem
is also solved in a two-stage process but in a different way.
First, a multicriteria decision analysis is applied to evaluate
projects. Next, a knapsack optimization problem, where
portfolio benefit is maximized, subject to a budget constraint,
is solved to find an efficient portfolio. The optimization
problem is included in an algorithm searching for the set of
efficient portfolios.

Several aspects of techniques mentioned above may be
relevant for our purpose. For instance, following [16] or [5],
a process may be applied to filter noninteresting projects
and reduce the size of the instance to be analyzed. In
addition, according to [4], the constructive algorithm could
be implemented as a succession of optimization problems
aiding to find the Pareto frontier. However, these procedures
do not necessarily allow detecting the whole set of efficient
solutions. As an illustration, let us consider Table 4, where the
informationmatrix of an instance composed of eight projects
and eight requirements is presented. This problem has three
solutions, each one equaling a redundancy value of 3: 𝑝

1
𝑝
7
,

𝑝
2
𝑝
7
, and 𝑝

6
𝑝
8
. In this case, any of the exhaustive algorithms

we have proposed above allows identifying these portfolios,
while an optimization problem finds just one of them.

Our main purpose is to identify interesting solutions,
before expending resources and time for information con-
cerning projects and portfolios. Thus, the problem we have
established here consists of having a reduced number of
portfolios and projects to which limited resources may be
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Table 4: A sample instance of projects covering requirements.

𝑟
1

𝑟
2

𝑟
3

𝑟
4

𝑟
5

𝑟
6

𝑟
7

𝑟
8

𝑝
1

1 1 1 1 1
𝑝
2

1 1 1 1 1
𝑝
3

1 1
𝑝
4

1 1 1 1
𝑝
5

1 1 1
𝑝
6

1 1 1 1 1 1
𝑝
7

1 1 1 1 1 1
𝑝
8

1 1 1 1 1

destined for more exhaustive analysis. Indeed, we could
classify interesting projects as follows [9]:

(i) core: which are projects present in every nondomi-
nated portfolio,

(ii) borderline: projects present in some of the nondomi-
nated portfolios,

(iii) exterior: projects excluded from any nondominated
portfolio.

For instance, in the previous example, no project in
nondominated portfolios is core but borderline. In general,
we assume that the best is to use resources and time for better
information on core and borderline projects. In other words,
the portfolio problem posed by Markowitz could be applied
on these interesting projects.

Efficiency is a critical issue for algorithms. As observed in
Table 3, the WUB/Ord method works very well whether an
information matrix is not sparse, or equivalently, it is filled
at least at 50. In [9] 50 projects were analyzed using the
original algorithmwe adapted here. In that case, projects were
evaluatedwith regard to four criteria, subject to a budget con-
straint. They showed that the resolution of this problem was
time consuming, but if an initial interesting nondominated
portfolio was introduced early in the algorithm, the time
of resolution improved. This idea is used in the WUB/Ord
method, finding the upper limit for the redundancy value,
which confirms that such strategy works fine even for the
discrete model proposed in this paper.

6. Conclusions

A portfolio constructive model has been proposed, for-
mulated in terms of satisfaction of a given set of techni-
cal requirements, with the minimum number of projects
and minimum redundancy. The approach aids to support
exploratory search of an analyst, aiding him/her to identify
a restricted list of nondominated interesting portfolios from
a project set, satisfying the whole set of requirements. It is
argued that the approach is applicable in situations where
detailed business information regarding projects is poor or
difficult to obtain, given resources available. Nondominated
interesting portfolios could be analyzed in further stages of
development, when better information is obtainable.

Resolution of an integer linear program allows finding
a first optimal solution, used as a feasible result aiding to

construct new nondominated solutions. Numerical examples
show that this process improves the computational efficiency
of an original algorithm. We have found that the ratio of
zeroes in the information matrix appears as a critical issue
because it determines that the time passing before the first
feasible solution is found by the algorithm. Therefore, a
sorting process is proposed, which improves time to find
solutions.

Further research needs to be done in order to test pruning
with different distributions of zero in the informationmatrix.
Additional research also includes analytical and simulation
studies concerning the effect of metaheuristics (or hybrid
methods) [17] and hyperheuristics [18] on quality and time
to solution.
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