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This paper introduces a novel quay crane design, double girder bridge crane (DGBC). DGBC is capable of handling containers of
two adjacent bays simultaneously, avoiding crane collisions, saving travelling and reposition cost, and eventually improving terminal
efficiency. This problem is formulated as a resource-constrained project scheduling with objective to minimize the maximum
completion time. A two-stage heuristic algorithm is proposed in which an operating sequences on each bay is obtained by double
cycling, and the integrated timetable for both bays is constructed by solving resource conflicts using the proposed minimum cost
strategy. We examine effectiveness and performance of applying DGBC with double cycling. A case study is presented to illustrate
how DGBC works with the two-stage method. Three extreme cases with respective conflict types are investigated to develop the
performance bounds of DGBC with double cycling. The results show that DGBC can significantly improve terminal productivity,
and outperforms single girder crane in both makespan and the lift operation percentage. The highest DGBC efficiency does not
require maximum double cycles in two bay schedules; rather the integrated timetable for two bays is the main contribution to the
DGBC performance as it yields better cooperation between two spreaders and the driver.

1. Introduction

The rapid growth in global trade has led to remarkably
higher shipping volumes and increased vessel carrying capac-
ity. Technological innovations and high-efficient scheduling
strategies are required to meet the demand of increasing
throughput in container terminals, especially in managing
larger capacity vessels while reducing operating cost and
maintaining service reliability. It is important to ensure their
operating efficiency by incorporating new technologies and
operating strategies when developing infrastructures.

Limited by the current technologies of transportation,
the previous work has been mainly focused on the operating
strategies for the existing equipment, that is, the traditional
single girder quay crane (SG). The crane productivity is
greatly improved by those researches; for example, double
cycling which is well established in Goodchild and Daganzo
[1] enables the crane to perform unloading and loading

simultaneously. However, SG serves each bay individually,
being constrained by safety distance and crane collisions.
Usually, cranes are costly as they consume a great deal of
power to travel and position between bays which leads to
a less economical manner for terminals. If cranes can be
deployed in a multiple girders, the efficiency of terminal
would be greatly enhanced.

Having this assumption in mind, we propose a new
crane-based design method in this paper, double girder
bridge crane (DGBC). The availability of double girders
would considerably increase the crane’s handling capacity
while reducing its travelling cost, because this method
enables DGBC to serve two adjacent bays at the same time
with only one driver. Two girders share the infrastructure,
DGBC is therefore operated closer to the economic purpose
of the terminals, and its benefits can be obtained with
limited investments, such as equipping SG with double
girders.
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Figure 1: Comparing DGBC with SG.

DGBC can be installed in a terminal as shown in Figure 1.
Compared with SG, DGBC is equipped with two girders;
each of them has one independent spreader working on the
containers of adjacent bays simultaneously with no change to
the safety distance constraints. The DGBC-based scheduling
problem is described by a directed graph [2], with the
objective to minimize the makespan (maximum completion
time of two bays) which is measured by processing time.
The performance of DGBC is carefully examined in this
work. Double cycling reduces the empty movement in each
cycle, but increases the processing time of one cycle, since
the traverse and hoist have to move more slowly when a
spreader carries a full container. Therefore, the effectiveness
of applying double cycling on DGBC is also discussed in this
paper.

The main contribution of this work is that a DGBC-
based scheduling design in shoreside is proposed, which
identifies its benefits including the capabilities to serve two
bays simultaneously and save crane travel and reposition cost.
Based on double cycling, a two-stage heuristic algorithm is
developed to demonstrate how DGBC is implemented. It is
found from the comparison that DGBC outperforms SG, and
double cycling plays less important effect on DGBC than SG.

This paper is organized as follows. Section 2 intro-
duces the related literature. The DGBC framework and its
scheduling problem description are given in Section 3. The
model is discussed in detail throughout Section 4. Section 5
presents a two-stage heuristic algorithm, including making
the operating sequence for each bay and acquiring the
integrated timetable for two bays. Section 6 evaluates DGBC
performance and double cycling effectiveness by comparing
with SG problems. Conclusions are given in Section 7.

2. Literature Review

The quay crane is a key bottleneck for overall terminal
efficiency [3]. Daganzo [4] first investigated the quay crane
scheduling problem to minimize the total weighted comple-
tion time of vessels. An exact method was proposed for a
simple static case and an approximate one for the dynamic
case. Bierwirth andMeisel [5] classified the literature on quay
crane scheduling problems into four classes.The classification
scheme is based on the container storage strategy, that is,
stacks or area within a bay [6], single bays [7], contiguous
groups [8], and each single container [9]. However, there

are only a few papers focusing on the problem with each
single container [9]. They addressed the internal reshuffling
problem for each container. In this paper, we also consider
DGBC scheduling on single containers. These problems have
much larger problem scale than those addressed using the
paradigm [6].

A drawback of the traditional problemsmentioned above
is that there are many empty movements existing in crane
operating cycles due to the use of single cycling, which would
significantly affect the crane serving efficiency. However, it is
reported that double cycling can reduce empty movements
and improve the utilization of quay cranes [1]. On average,
double cycling can reduce 40% of operating cycles over single
cycling without hatches. Besides, Meisel and Wichmann [9]
addressed the internal reshuffles based on double cycling.
Zhang and Kim [10] considered double cycling quay crane
scheduling problem with hatches, whose results showed that
this proposal could get better solutions than human planners.

Many works existed in the literature focusing on the dif-
ferent mathematical formulas for the quay crane scheduling
problem. A rich model given by Legato et al. [11] intended
to cover practical constraints like service rates, ready times,
due dates, and safety requirements. Recent studies focus on
cooperation between different facilities. Yuan et al. [12] for-
mulated amathematical model combining cranes with trucks
and then solved it by using a job grouping approach. Chen
et al. [13] examined the interactions between crane handling
and truck transportation by addressing them simultaneously.
Ding et al. [14] used a multidisciplinary variable coupling
optimization method to coordinate different equipment. In
addition, two cooperating craneswere investigated byVis and
Carlo [15] so as to work on the same stack together. With
their method, the container serving time can be reduced, but
the large running costs still remain because of two separate
cranes. Most research in this area aims at minimizing crane
cycles; however, the processing time, which will be discussed
in this paper, is of ultimate interest.

3. Problem Description

In order to demonstrate the DGBC-based scheduling prob-
lem, we first introduce the framework of DGBC and then
give the problem description and settings, as well, and the
application of double cycling to DGBC is discussed.

3.1. DGBC. DGBC is a quay crane equipped with twin
container spreaders on double girders. Each girder is posi-
tioned on one bay with the spreader handling the containers
in this area, while another serves the adjacent bay. They
are able to work on adjacent bays simultaneously. Both
handling concepts are supported by common frame, cable,
and power drives. Although this design increases the energy
requirements compared with two single girder cranes, the
savings on mechanical consumption and maintenance cost
are worth more consideration. Furthermore, only one driver
is required for two spreaders’ operations.

The mechanical structure of DGBC is depicted in
Figure 2. Two spreaders, specifically spreader 1(2) works
on bay 1(2), are controlled by only one driver. Linkages
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Figure 2: Top view of DGBC.

enable the driver to manage two spreaders to conduct the
lifting concept, where the driver controls the spreader to lift
containers with different heights and positions, but he/she
cannot work until the spreader automaticallymoves along the
girder and arrives at the desired destination. Because the two
spreaders perform work simultaneously, the time used for lift
is increased compared with the makespan; thus the driver’s
waiting time is reduced.

3.2. Definition. The problem is described by a directed graph
𝐺(𝑉, 𝐸) with node set 𝑉 and edge set 𝐸. The node set 𝑉

corresponds to |𝑉| = 𝑛 activities. The nodes can be further
divided into two subsets 𝑉

𝐵
; that is, |𝑉

𝐵
| = 𝑛

𝐵
(𝐵 =

1, 2), where 𝑉
𝐵

is the node set of bay 𝐵, 𝐵 = 1, 2; then
𝑉
1

∪ 𝑉
2

= 𝑉 and 𝑉
1

∩ 𝑉
2

= 0. Each node is one
unloading/loading activity which refers to exactly one lift.
Edge set 𝐸 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉; 𝑖 → 𝑗} represents the
temporal precedence constraints between two activities; that
is, 𝑖 → 𝑗 if activity 𝑖 must finish before activity 𝑗 starts.
According to the physical layout of the vessel stowage plan
which satisfies the stability of the vessel, unloading operations
of a stack must precede its loading operations. All container-
unloading above a hatch must be finished before performing
loadings below the hatch. Container-loading above a hatch
cannot start until the loading operations below the same
hatch are completed. Adjacent lifts are separated by a series of
spreader movements. The movement between the lifts 𝑖 and
𝑗 is sequence-dependent, denoted by 𝑜

𝑖,𝑗
which is required

by the sequentially scheduled activities in the same bay. In
addition, dummy activities 0 and 𝑛+1 with zero duration are
added to make sure there are only one starting and finishing
node in 𝐺.

Take a simple case as an example where the side view
of the stowage plan for bays 𝐵

1
and 𝐵

2
is given in Figure 3.

Each bay has one hatch with stacks above and below the
deck. Containers are indexed by number and stored one
by one as stacks. According to the definition, graph 𝐺 can
be constructed as shown in Figure 4. Each node represents
the processing of a container indexed by numbers with the
processing time and resource requests (spreader, driver).
The precedence relations between activities are characterized
by directed edges. Each bay corresponds to a subgraph
connected by the dummy nodes 0 and 24.

3.3. Resources. There are three resources: one driver (𝐻) and
two spreaders (𝑄

1
and 𝑄

2
). All resources are unary resources
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Figure 3: Stowage plan for two bays.
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with the available capacity of 1 [16–19]. Generally, one
unloading/loading operation has its resource requirement
denoted by 𝑟

𝑖𝑘
, where 𝑖 is the operation and 𝑘 is the resource.

There are two types of operations: movement and lift; the
former can be executed automatically by the spreader itself
while the latter requires the driver to control the spreader
manually. Different from the role of driver, which is the
dedicated resource only involved in lifting, spreaders are the
allocatable resources in lift and movement; that is, 𝑄

1
/𝑄
2

serves bay 𝐵
1
/𝐵
2
. Specifically, each spreader of DGBC works

analogously to one SG, but the lifts of two spreaders must
cooperate with each other in the charge of one driver. If the
driver has not completed the lift on the current bay, the other
spreader has to wait although it has already arrived at the
appointed location on the other bay. As a result, there will be
blocking time between two sequential activities in different
bays.
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Table 1: Four modes of movement combination.

𝑜
𝑖𝑗

Lift 𝑖 Movements Lift 𝑗

𝑂
1 U {𝑉𝑌, 𝑌𝑉} U

𝑂
2 L {𝑉𝑌, 𝑌𝑉} L

𝑂
3 U {𝑉𝑌, 𝑌𝑉} L

𝑂
4 L {𝑉𝑉} U

3.4. Double Cycling for DGBC. Double cycling is considered
in the operating strategy to improve processing efficiency,
in which DGBC performs the unloading when the spreader
carries an import container from the vessel to the shore and
then conducts the loading when the spreader moves from
the shore to the vessel with an export container. Then the
empty movement in single cycling is replaced by the full
movement resulting from double cycling, and the number
of operating cycles is reduced. However, the processing
time of a double cycle is longer than that of a single cycle
as the spreader has to move slower while carrying a full
container.

A series of movements must be executed between the
adjacent lift activities in the same bay, because the spreader
mustmove to the assigned location before raising or lowering
a container. In other words, each 𝑜

𝑖,𝑗
relates to the immedi-

ately precedent activity 𝑖 and the immediately successive 𝑗.
For this reason, 𝑜

𝑖,𝑗
is sequence-dependent [20] and has four

modes (𝑂1 ∼ 𝑂
4) as listed in Table 1.

Unloading (𝑈)/loading (𝐿) in single or double cycling
yields different combinations of the movements in Ψ, which
is the set of movement type. The full movement 𝑌𝑉 denotes
that the spreader carrying the container moves from the
shore (𝑌) to the vessel (𝑉) while 𝑉𝑌 denotes the reverse
movement. Then the empty movements 𝑌𝑉 and 𝑉𝑌 imply
that only the spreader itself moves between the yard and
vessel. 𝑉𝑉 represents the empty movement within the vessel
in the double cycling strategy. Furthermore, one movement
conducted by 𝑄

1
/𝑄
2
may overlap with another movement on

𝑄
2
/𝑄
1
, because 𝑄

1
and 𝑄

2
can move in parallel.

4. Model

In this section, assumptions and major notations are given,
and the DGBC scheduling problem model is presented.

4.1. Assumptions. In order to model the DGBC problem, we
make the following assumptions. All the containers can be
implemented by DGBC. The processes within shoreside are
simplified by ignoring 𝑌𝑌, because it relies on the efficiency
on the shoreside. For traditional cranes, drivers move with
the spreaders; actually they participate in the spreader lift
operations. The movement of the driver is neglected here, as
we focus on the spreader operations of DGBC. Reshuffles will
be unloaded and then reloaded. By choosing the time unit
sufficiently small, we can always assume that the processing
times are nonnegative integers. Each activity cannot be
interrupted until it is completed. Moreover, all activities and
resources are available from the start of the project.

4.2. Notations. The major notations used in the remainder of
this paper are summarized as follows.

𝐵: bay, 𝐵 = 1, 2

𝑛
𝐵
: number of activities in bay 𝐵

𝑛: total number of activities 𝑛 = 𝑛
1
+ 𝑛
2

Ψ: set of movement type, Ψ = {𝑌𝑉,𝑉𝑌,𝑉𝑉,𝑉𝑌, 𝑌𝑉}

Φ: set of lift type, Φ = {𝑈, 𝐿}

𝑝
𝑙
: moving time of type 𝑙 ∈ Ψ

𝑝
𝑖
: processing time of lift 𝑖

𝜋: lifts permutation
𝜋
𝐵: permutation of the lifts in bay 𝐵

𝐴
𝑡
: set of operation in work at time instant 𝑡

𝑠
𝑖
: start time of the activity 𝑖

𝑂: set of movements
𝑉: set of lifts, |𝑉| = 𝑛

𝑜
𝑖,𝑗
: movement of a spread between lift 𝑖 and 𝑗

𝐸: set of edges in graph 𝐺

𝑏
𝑖
: blocking time of lift 𝑖

𝐶
𝐵

max: makespan of bay 𝐵

𝜎: a large number which serves as infinity
𝑅: set of all resources 𝑅 = {𝑄

1
, 𝑄
2
, 𝐻}

𝑟
𝑖𝑘
: requirement of resource 𝑘 ∈ 𝑅 by operation 𝑖.

4.3. Mathematical Model. DGBC cannot finish the project
until all the activities on two bays have been completed, so the
makespan is the maximum completion time of all activities.
The optimization objective is to minimize the makespan,
whose function can be expressed as

Min 𝑠
𝑛+1

. (1)

The constraints are as follows.

(1) Precedence Constraints. Two lifts cannot be processed by
the driver simultaneously, nomatter whether they are located
on the same bay or two bays, respectively:

𝜎 (1 − 𝑍
𝑖𝑗
) + 𝑠
𝑗
≥ 𝑠
𝑖
+ 𝑝
𝑖
+ 𝑜
𝑖,𝑗

, (2)

where 𝑖, 𝑗 ∈ 𝑉
𝐵
, 𝐵 = 1, 2. The decision variable 𝑍

𝑖𝑗
equals 1 if

the lift 𝑖 precedes the lift 𝑗; otherwise, 𝑍
𝑖𝑗

= 0.
All activities and resources are available from the start of

the project. Consider

𝑠
0
= 0. (3)

(2) LiftConstraints.Each activity has exactly one lift. Consider

∑

𝑙∈Φ

𝑌
𝑙

𝑖
= 1, ∀𝑖 ∈ 𝑉, (4)

where 𝑌
𝑐

𝑖
is the decision variable and 𝑌

𝑐

𝑖
= 1 if the lift 𝑖 is of

the type 𝑐 ∈ Φ; otherwise, 𝑌𝑐
𝑖

= 0.
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One lift handles one container at a time:

∑

𝑖∈𝑉

𝑌
𝑙

𝑖
= 1, ∀𝑙 ∈ Φ. (5)

(3) Resource Constraints. Resource limitation should be
ensured during each time period, where the requirement for
every resource cannot exceed the available capacity:

∑

𝑖∈𝐴
𝑡

𝑟
𝑖𝑑

≤ 1, 𝑖 ∈ 𝑂 ∪ 𝑉, 𝑑 ∈ 𝑅. (6)

The spreader remains occupied from the start of the move-
ment to the end of the lift on bay 𝐵, and two spreaders can
move in parallel. Consider

0 ≤ 𝑟
𝑖𝑄
1

+ 𝑟
𝑖𝑄
2

≤ 2, 𝑖 ∈ 𝑂 ∩ 𝐴
𝑡
. (7)

The lift can only be conducted by the driver controlling the
spreader. Consider

𝑟
𝑖𝑄
𝐵

≥ 𝑟
𝑖𝐻

, 𝑖 ∈ 𝑉
𝐵

∩ 𝐴
𝑡
. (8)

(4) Movement Constraints. Movements are considered
between every pair of sequential lifts. As mentioned in
Section 3.4, the movement combination is sequence-
dependent. Consider

𝑜
𝑖,𝑗

= ∑

𝑙∈Ψ

𝑝
𝑙
𝑋
𝑙

𝑖𝑗
𝑍
𝑖𝑗
, 𝑖, 𝑗 ∈ 𝑉

𝐵
, 𝐵 = 1, 2, (9)

where𝑋
𝑙

𝑖𝑗
is the decision variable and𝑋

𝑙

𝑖𝑗
= 1 if themovement

between lift 𝑖 and 𝑗 is of the type 𝑙 ∈ Ψ; otherwise, 𝑋𝑙
𝑖𝑗

= 0.
The spreader is blocked after its movement if the driver is

still performing another spreader. Consider

𝑏
𝑗
= max {0, 𝑠

𝑖
+ 𝑝
𝑖
− 𝑠
𝑗
} , (10)

where 𝑍
𝑖𝑗

= 1, 𝑖 ∈ 𝑉
𝐵
, and 𝑗 ∈ 𝑉 − 𝑉

𝐵
indicate that the

sequential lifts are located on two bays.
Related to constraint (9), the movement type is also se-

quence-dependent:

𝑋
𝑉𝑌

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝑈

𝑖
𝑌
𝑈

𝑗
, 𝑋

𝑌𝑉

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝑈

𝑖
𝑌
𝑈

𝑗
(11)

𝑋
𝑌𝑉

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝐿

𝑖
𝑌
𝐿

𝑗
, 𝑋

𝑉𝑌

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝐿

𝑖
𝑌
𝐿

𝑗
(12)

𝑋
𝑉𝑌

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝑈

𝑖
𝑌
𝐿

𝑗
, 𝑋

𝑌𝑉

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝑈

𝑖
𝑌
𝐿

𝑗
(13)

𝑋
𝑉𝑉

𝑖𝑗
= 𝑍
𝑖𝑗
𝑌
𝐿

𝑖
𝑌
𝑈

𝑗
. (14)

Specifically, (11)/(12) imply single cycles where the move-
ments 𝑉𝑌 and 𝑌𝑉/𝑌𝑉 and 𝑉𝑌 occur between two unload-
ing/loading operations. Likewise, (13) and (14) show double
cycles in which two full movements 𝑉𝑌 and 𝑌𝑉 connect an
unloading and a loading operation, and an empty movement
𝑉𝑉 happens between the loading and unloading operations.

Special movements are defined for the dummy nodes 0
and 𝑛 + 1:

𝑜
0,1

= 𝑝
𝑌𝑉

𝑌
𝑈

1
+ 𝑝
𝑌𝑉

𝑌
𝐿

1
,

𝑜
𝑛,𝑛+1

= 𝑝
𝑉𝑌

𝑌
𝐿

𝑛
+ 𝑝
𝑉𝑌

𝑌
𝑈

𝑛
.

(15)

5. Methodology

The proposed model cannot obtain the optimum in accept-
able time by the existing mathematical programming solver.
Naturally, DGBC can be implemented by a two-stage frame-
work, where the first stage problem schedules the containers
loading and unloading in each bay, and the second stage
handles the coordination between the two spreaders’ opera-
tion under the driver constraint; thus a two-stage heuristic
algorithm is proposed to solve the problem. The proposed
approach decomposes the DGBC problem into two stages,
which can be solved in sequence.

5.1. Stage 1: Single Bay Scheduling (Double Cycling). First of
all, each spreader is regarded as an independent crane to
handle each bay. It is a traditional quay crane scheduling
problem for single bay.The target of this problem is to find the
best (un)loading sequence for each bay with minimum oper-
ating cycles. To achieve better crane processing efficiency,
double cycling is introduced, which permits a quay crane to
perform the unloading and loading in one operating cycle.
The objective function of this problem is to minimize cycles
required for loading and unloading, and the constraints are
corresponding to constraints (2), (3), and (4)–(6) of the
DGBC problem.

The double cycling procedure is constructed according
to our previous work [21]. A two-stage composite heuristic
based on the 2-machine flow shop scheduling problem is
presented. In the first stage, stacks in a hatch are scheduled
by the Johnson rule but we introduce a gap-shifting strategy.
A reconstructive Johnson rule is further applied to the inter-
hatch sequencing in the second stage. Then a (un)loading
container permutation with minimum operating cycles can
be obtained. Since only one bay is considered in that problem,
there is no resource (spreader or driver) constraint in the
timetabling procedure. Therefore, the permutation can be
easily transformed into a processing timetable to perform
operations as early as possible.

5.2. Stage 2: Timetable for Two Bays. Lifts require the driver’s
participation in controlling the spreaders to pick up and drop
off containers. However, there is only one driver in charge of
two spreaders for DGBC. As a result, there would be resource
conflicts between two bays, in which one spreader cannot
perform lifting directly after moving and has to wait for the
driver to be released from the previous lifting with the other
spreader. Based on the single bay scheduling results from
Stage 1, a compact timetable for two bays is obtained in which
the resource (driver) conflicts are solved by minimum cost
strategy.

5.2.1. Conflict Type. Although the objective of single bay
scheduling is to obtain as many double cycles as possible,
there would still exist single cycles. To help distinguish
different conflicts, SU is defined hereafter as the interval
during which only unloading operations exist, SL is the
interval only involving loading operations, and DUAL is
the double cycling part. In an operation cycle Gantt chart
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Figure 6: Time Gantt chart (a)–(d).

Table 2: Conflicts type.

Conflict Single cycle Double cycle
Single cycle SS SD
Double cycle SD DD

(OCGC); see Figures 5(b) and 5(d) in Section 5.4; single
cycles are included in SU and SL while double cycles exist in
DUAL.

The overlap between two lifts on different bays is defined
as a conflict. There are three types of conflict between single
cycles and double cycles; SS, DD, and SD. As listed in Table 2,
we employ SS to represent the conflict between two single
cycles, DD to denote the conflict within two double cycles,
and SD to show the conflict between a single and a double
cycle which is more complicated than SS/ DD.

5.2.2.MinimumCost Strategy. To remove those three kinds of
conflicts, theminimum cost strategy which aims tominimize
the increment in the makespan of two bays is developed.
In order to settle a conflict, we have two options; that is,
either the overlapped lift on 𝐵

1
or the one on 𝐵

2
is delayed.

Obviously, the blocking time (also the delayed time as shown
by the grid box in Figure 7) will be directly added to the
makespan of the delayed schedule and may change the final
makespan of two bays. According to the minimum cost
strategy, the bay with the smallest makespan will be chosen
to delay. The three conflicts are solved as follows.

(1) SS: take the SS conflict between lifting containers
1 and 12 in Section 4.3 case study (Figure 7) as an
example; 𝐶1max < 𝐶

2

max as shown in Figures 6(b) and
6(d). If container 1 is delayed, the completion time
of 𝐵
1
will be 𝐶

1

max + 𝑏
1
, and the final makespan is

max{𝐶1max + 𝑏
1
, 𝐶
2

max}. However, the final makespan
is max{𝐶1max, 𝐶

2

max + 𝑏
12

} when delaying container 12,
which is larger than max{𝐶1max + 𝑏

1
, 𝐶
2

max} as 𝑏
1

=

𝑏
12
. Therefore, container 1 in 𝐵

1
will be delayed as

shown in Figure 7. Because the single cycles have the
similar timetable, and all the sequential SS conflicts
have the same overlap, the subsequent SS conflicts
can therefore be solved at the same time, such as
containers 2 and 17.

(2) DD: DD can also be tackled by the minimum cost
strategy, for example, containers 8 and 16 in Figure 7.
And all the DDs can be removed at once if they are in
serial.

(3) SD: SD cannot be resolved by one delaying operator.
Due to the different movements required in sin-
gle/double cycles, SD conflicts can be distinguished
by the various overlaps as depicted in Figure 8. For
example, the SD conflict (between the single cycle of
unloading container 3 and the double cycle consisting
of loading container 21 and unloading container 15) is
the SD4 type; see Figures 7 and 8(4).Theoverlap of the
succeeding SD conflicts will be changed while solving
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Figure 8: Nine types of SD conflicts.

the current one. Hence, the minimum cost strategy
must be applied to each SD case.

5.3. Two-Stage Heuristic Algorithm. A two-stage heuristic
algorithm is developed in order to solve the DGBC problem.
Firstly, double cycling is used to achieve a better spreader
processing schedule for each bay. The critical thing is that the
two spreaders cannot be treated as two independent cranes
as there is only one driver available. Then, we present a
heuristic for two bays to pursue an integrated timetable, in
which three types of conflicts are settled by theminimumcost
strategy. The two-stage heuristic algorithm is described as in
Algorithm 1.

Suppose there are at most 𝐴 stacks in every hatch and
𝐵 hatches for bays 1 and 2. According to the result in
[21], the time complexity of the double cycling method is
max{𝑂(𝐴𝐵 log𝐴), 𝑂(𝐵 log𝐵)}. Due to the time complexity
of timetabling as 𝑂(max{𝑛

1
, 𝑛
2
}), the final time complexity is

max{𝑂(𝐴𝐵 log𝐴), 𝑂(𝐵 log𝐵), 𝑂(max{𝑛
1
, 𝑛
2
})}.

5.4. Case Study. In this section, we provide a case study to
illustrate howDGBCworks and the performance of the given
two-stage heuristic algorithm. Assume the stowage plan is
given as the example in Figure 3.

In the first stage, the operating schedule for each bay is
obtained independently and depicted by OCGC in Figure 5.
Only the lift is shown in OCGC. The unit of the horizontal
axis is one cycle. Specifically, white boxes relate to the unload-
ing operations while black ones are loading operations. The
number in each box is the index of the processed container.

The solutions obtained by single cycling and double
cycling are provided, respectively, to compare their perfor-
mance. All the cycles in Figures 5(a) and 5(c) are single
cycles, because no unloading operation is performed with

any loading operation in a single cycle. The results for double
cycling on𝐵

1
/𝐵
2
are given in Figures 5(b)/5(d). Asmentioned

above, the single cycles exist in SU and SL, as well as two
double cycles shown inDUAL. For example, one double cycle
is unloading container 4 and loading container 8, and another
is that container 5 is unloaded while container 9 is loaded.
Likewise, there are four double cycles for 𝐵

2
in Figure 5(d).

Comparing the total number of operating cycles for 𝐵
1
(see

Figures 5(a) and 5(b)) and 𝐵
2
(see Figures 5(c) and 5(d)), it

is found that double cycling outperforms single cycling with
less operating cycles because the empty movement in single
cycle is replaced by full movement in double cycle.

However, OCGC cannot describe the exact processing
time as movements are not displayed. In this paper, each
bay’s schedule is represented in time Gantt chart (TGC)
(see Figure 6), in which both the lifts and the necessary
movements are shown. The horizontal axis represents the
time usage of the spreader including themovements and lifts.
Apart from the spreader, the lift also requires a driver, which
is represented by a box with the processed container index.
TGC is assumed to start from a lift for brevity.

Figure 6(a) shows the TGC of 𝐵
1
of single cycling. Taking

𝑜
1,2

as an example, the spreader brings container 1, after
lifting it from the vessel to the shoreside which is a full
movement 𝑉𝑌, and then the spreader itself goes back to the
vessel, preparing for lifting container 2 which corresponds
to the empty movement 𝑌𝑉. The combination of these two
movements 𝑌𝑉 and VY belongs to mode 𝑂

1. Analogously,
the movements required between loading containers 7 and 8
are the full movement 𝑌𝑉 and the empty one 𝑉𝑌; then 𝑜

7,8

is of mode 𝑂
2. Because there are two full movements, that

is, 𝑌𝑉 and VY, between unloading container 6 and loading
container 7, 𝑜

6,7
is of mode 𝑂

3 as shown in Figure 6(a).
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(1) Scheduling 𝐵
1
and 𝐵

2
in double cycling. Obtain 𝜋

𝐵. //single bay scheduling
(2) Compute the timetable and makespan 𝐶

𝐵

max for each 𝜋
𝐵.

(3) While (there is any activity in 𝜋
𝐵) //two bays timetabling

(3.1) Pick the earliest activities 𝑖 and 𝑗 in 𝜋
1 and 𝜋

2 respectively.
(3.2) If there is no conflict between activities 𝑖 and 𝑗

(3.2.1) If 𝑠
𝑖
< 𝑠
𝑗

(3.2.1.1) Add activities (𝑖, 𝑗) into 𝜋 and perform.
(3.2.1.2) Remove activities 𝑖 and 𝑗 from 𝜋

𝐵.
(3.2.2) Else //𝑠

𝑖
≥ 𝑠
𝑗
.

(3.2.2.1) Add activities (𝑗, 𝑖) into 𝜋 and perform.
(3.2.2.2) Remove activities 𝑖 and 𝑗 from 𝜋

𝐵.
(3.3) Else //there exist a conflict between activities 𝑖 and 𝑗

(3.3.1) Calculate the blocking time 𝑏
𝑖
/𝑏
𝑗
on 𝜋
1/𝜋2. //delay one lifting

(3.3.2) If max {𝐶
1

max + 𝑏
𝑖
, 𝐶
2

max} < max {𝐶
1

max, 𝐶
2

max + 𝑏
𝑗
} //minimum cost strategy

(3.3.2.1) Add activity j into 𝜋 and perform.
(3.3.2.2) Remove activity 𝑗 from 𝜋

2.
(3.3.2.3) Right shift activity 𝑖 and update makespan 𝐶

1

max.
(3.3.3) Else

(3.3.3.1) Add activity 𝑖 into 𝜋 and perform.
(3.3.3.2) Remove activity 𝑖 from 𝜋

1.
(3.3.3.3) Right shift activity j and update makespan 𝐶

2

max.
(4) 𝐶 = max {𝐶

1

max, 𝐶
2

max}.
(5) Return 𝜋.

Algorithm 1

In contrast, all four modes appear in Figure 6(b) when
applying double cycling to bay 𝐵

1
. Modes 𝑂

1 and 𝑂
2 are

related to single cycles such as 𝑜
3,6

and 𝑜
10,7

. The mode 𝑂
4

is the empty movement within the vessel which may only
exist after the mode 𝑂

3; for instance, 𝑜
6,8

is followed by 𝑜
8,4

.
One double cycle includes one unloading lifting, one loading
lifting and three movements, that is, 𝑌𝑉, 𝑉𝑌, and 𝑉𝑉. In
fact, each movement (𝑌𝑉/𝑉𝑌/𝑉𝑉) is a pair of movement
combination ofmodesO3 andO4. For example, a double cycle
consisting of loading container 8 and unloading container 4
is identified in Figure 6(b). Specifically, the spreader carries
container 8 from the shoreside to the vessel and lays it down
under the control of the driver; then the spreader will not go
back to the shoreside but move toward container 4 within
the vessel, after that the spreader is managed by the driver
to pick container 4 up and move back to the shoreside.
As well, Figures 6(c) and 6(d) depict the TGC of bay 𝐵

2

with both single cycling and double cycling, respectively.
Throughout Figure 6, the performance of double cycling on
one bay is better than that of single cycling. Besides, the
improvements shown in OCGC and TGC are different. The
former is characterized by operating cycles while the latter,
used in our method, is characterized by time.

In the second stage, the timetable for two bays will be
constructed under the driver constraint, since each lift is set
to be as early as possible in the obtained single bay schedules
(see Figures 6(b) and 6(d)); then the need for a single driver in
two bays yields the conflict, as shown in Figure 7, for example,
the SS conflicts (unloading containers 1 and 12 and loading
containers 7 and 18), the DD conflicts (unloading container
16 and loading container 8), and the SD conflicts (loading

Table 3: The parameters of processing time.

𝑐 ∈ Φ U L 𝑙 ∈ Ψ 𝑌𝑉 𝑉𝑌 𝑉𝑉 𝑌𝑉 𝑉𝑌

𝑝
𝑐
(s) 60 60 𝑝

𝑙
40 40 20 80 80

container 21 and unloading containers 3 and 15). According
to the proposed heuristic algorithm, the conflicts are resolved
by the minimum cost strategy. The timetable for two bays is
presented in Figure 7 with the blocking time described in the
grid boxes.

6. Evaluations and Discussion

This section examines the DGBC performance by testing
the problem in three extreme cases. The performance of
DGBC improvement can be bounded by those three extreme
cases; each of them is compared with the SG problem. The
effectiveness of double cycling applied on DGBC is also
discussed.

6.1. Evaluation Parameters. In DGBC evaluation, assume
there are 𝑛 activities where 𝑛 = 𝑛

1
+𝑛
2
and 𝑛
1
/𝑛
2
is the number

of the processing containers in 𝐵
1
/𝐵
2
. In purposes of DGBC

analysis, the parameters are set according to the data of the
quay crane found in Stahlbock and Voss [3] which is listed in
Table 3.

In the following discussion, SG-SS/SG-SD denotes SG
using single cycling/double cycling. The objective of this
problem is to minimize the makespan (measured in seconds)
of the crane serving two bays. Besides, there are twomeasures
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Table 4: Blocking time of DG-SS, DG-DD, and DG-SD.

Crane DGBC

Case DG-SS DG-DD DG-SD
SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9

Block(s) 60 140 20 40 100 80 60 40 60 40 20

corresponding to makespan. One is makespan percentage
(MP) which is the current makespan as a percentage of the
SG-SS makespan. MP can be calculated as 100∗M/MSG-SS%,
which can quantify the improvement of the case compared
to SG-SS, the lower the better. Another is lifting operation
percentage (LP) used to represent howmuch of themakespan
is used for lift. It can be computed by 100 ∗ 60 ∗ 𝑛/M%, in
which the lifting time is determined by the lift number. The
higher the LP is, themore the lift can be performed efficiently,
and the driver’s waiting time is consequently reduced.

6.2. Three Extreme Cases. There are three extreme cases
with respect to three types of conflicts, respectively; they
are considered independently to examine the performance of
DGBC.

6.2.1. DG-SS, DG-DD, and DG-SD. Suppose there is only one
type of conflicts in Stage 2; the DGBC problem is regarded as
an extreme case. There are three extreme cases with SS, DD,
and SD conflicts, respectively.

DG-SS is an extreme case which has only SS conflicts in
the timetable. If single cycling is applied, the DGBC problem
is a DG-SS case.

DG-DD is the one with only DD conflicts. DG-DD is the
most effective case with maximum double cycles.

DG-SD is more complicated than the above two cases,
because the timetable has various overlaps between the
double and single cycles. One SD conflict can be classified
into 9 types, as shown in Figure 8. A single cycle is assumed
to be an unloading operation, represented by a white box. A
double cycle is combined with one loading (a black box) and
one unloading (a white box) operation.

6.2.2. Blocking Time. For each extreme case, the blocking
time can be determined by solving SS, DD, and SD conflicts
separately, as showed in Table 4.

SS conflict occurs between two single cycles, which have
the same timetable. Then delaying one lift to remove the first
SS conflict in one DG-SS part can solve all the remaining
SS conflicts consequently, and the total blocking time is 60 s.
Similarly, all the DD conflicts in one DG-DD part can be
removed by delaying one lift with the blocking time 140 s.

However, each SD conflict in a DG-SD part must be
addressed by the minimum cost strategy individually, and
the successive SDs are transferred to another type while
dealing with the current SD. All SD conflicts are rescheduled
into the feasible timetables with the different blocking time
depicted by the grid boxes in Figure 8. For example, both SD1
and SD2 delay the double cycles and transfer into the same
timetable, but the blocking time is different, that is, 20 s and
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Figure 9: Comparison between SG-SS and DG-SS.

40 s, respectively. Likewise, SD3–SD6 are rescheduled into
the same result while SD7–SD9 are modified into another
timetable. As listed in Table 4, the blocking time is various;
that is, SD3 needs the maximum blocking time (100 s) while
SD1 and SD9 have the minimum blocking time (20 s).

6.3. Comparison Results. Through the two-stage method, all
conflicts are examined and addressed sequentially, and the
DGBC problem can be separated into several parts each of
which is of one extreme case. Generally, the adjacent two bays
cannot be served at the same time because SGs have to keep
safe distance with others; however, in order to conduct the
comparison betweenDGBCand SG in the same scenario, one
SG is assigned to serve two bays sequentially. In this section,
both DGBC and SG are evaluated on 𝑛 activities of two bays,
and the three extreme cases of DGBC problem are compared
with SG in which SG-SS is set as the reference.

6.3.1. SG. As shown in Figure 9, the makespan of SG-SS is
𝑛 ∗ 180 s, including 𝑛 ∗ 120 s for the spreader movement and
𝑛 ∗ 60 s for the lift. Since SG-SS is the basis of makespan
comparison, its MP is 100%, and LP is 33.33% which means
the driver has to wait for 66.67% of the completion time.

6.3.2. DG-SS. To make it clear, DG-SS is divided into two
scenarios: 𝑛

1
= 𝑛
2
and 𝑛

1
̸= 𝑛
2
. According to the presented

algorithm, the makespan of DG-SS can be calculated as
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Figure 10: Comparison between SG-SS and DG-DD.

max{𝑛
1
, 𝑛
2
} ∗ 180 s when 𝑛

1
̸= 𝑛
2
or (𝑛/2) ∗ 180 + 60 s when

𝑛
1
= 𝑛
2
. As illustrated in Figure 9, DG-SS outperforms SG-SS

by reducing the makespan to 50% of SG-SS at the best case,
and the minimum improvement of MP in 𝑛

1
= 𝑛
2
is 16.67%.

Since the lifting time is fixed at 𝑛∗60 s, then the LP of DG-SS
is higher than or equal to that of SG-SS in all cases. In detail,
the best LP is as high as 66.67% which is twice that in SG-SS.
For 𝑛
1
= 𝑛
2
, DG-SS always gets betterMP and LP than SG-SS.

Figure 9 depicts that DGBC contributes to better makespan
and higher LP than SG in the case of single cycling.

6.3.3. DG-DD. DG-DD can also be separated into two
scenarios: 𝑛

1
= 𝑛
2
and 𝑛
1

̸= 𝑛
2
.Themakespan ismax{𝑛

1
, 𝑛
2
}∗

150 s when 𝑛
1

̸= 𝑛
2
and (𝑛/2) ∗ 150 + 140 s when 𝑛

1
=

𝑛
2
, in which 𝑛

1
, 𝑛
2

≥ 2 (to guarantee at least one double
cycle). From Figure 10, we can see that DG-DD achieves
bettermakespan than SG-SS.TheMP ofDG-DD ranges from
41.67% to 61.11% when 𝑛

1
= 𝑛
2
and from 41.67% to 83.33%

when 𝑛
1

̸= 𝑛
2
.The lifting time remains 𝑛∗60 s; thenLPofDG-

DD falls within (52.17%, 80%) and (40%, 80%) for 𝑛
1
= 𝑛
2
and

𝑛
1

̸= 𝑛
2
, respectively. All the MP and LP values of DG-DD

outperform that of SG-SS.
However, DG-DD does not always lead to a better result

than DG-SS. For example, the outcomes with DG-DD and
DG-SS are overlapped. In other words, more double cycles
cannot always result in the better DGBC makespan. The
results in Figure 10 describe the improvement of DGBC
on makespan and LP. Specifically, DG-DD obtains better
efficiency than DG-SS because of the effectiveness of double
cycling.

6.3.4. DG-SD. Different from the SS/DD conflicts which
can be solved by one time block in one DG-SS/DG-DD
part, each SD conflict in a DG-SD part must be handled
individually.Therefore, the performance of each DG-SD case
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Figure 11: Comparison between SG-SS, SG-SD, and DG-SD.

with different SD conflict is compared with both SG-SS and
SG-SD; see Figure 11.

We assume that there are three lifts in this comparison
which simplifies the conflict detection and makes evaluation
tractable. For SG-SS, the three lifts are supposed to be pro-
cessed sequentially in single cycles. Therefore, the makespan
is 540 s; the lifting time is 180 s; then the LP is 33.33%.

In contrast, SGperforms the three operations sequentially
in one single cycle and one double cycle, denoted by SG-SD.
The makespan is computed as 480 s, which is 88.89% of that
in SG-SS.With the same lifting time 180 s, the LP is improved
to 37.5% higher than SG-SS.

As shown in Figure 8, SD1 and SD2 result in the same
timetable with the makespan of 320 s which is 59.26% of SG-
SS. It is the best makespan among 9 SD types as depicted in
Figure 11. SD3–SD6 cases have the same makespan of 340 s,
which is as 62.96% as that of SG-SS.Their LP is 52.94%which
is lower than SD1 and SD2 by 56.25%. For SD7–SD9, the
makespan is 360 s, 66.67% of that in SG-SS. The LP is the
lowest among all DG-SD cases which is 50% but still higher
than SG-SS and SG-SD. Figure 10 summarizes all the SD cases
involved in operating DGBC for three lifts compared with SG
in single cycling and double cycling. Then we can quantify
the performance of DGBC on the makespan and LP, both of
which are significantly improved than SG.

6.4.Makespan Boundary. Although the bounds of theDGBC
performance is not quantified, the time complexity of the
heuristic is closely related to the conflicts type, number and
position. However, the makespan of the DGBC problem can
be bounded by comparing three extreme cases against SGs.

In Stage 2 of the proposed algorithm, the timetable of the
DGBC problem is splitted into several parts; each of them has
one type of conflicts. For example, in Figure 7, part 1 begins
from the start of container 12 to the start of container 21. Since
there is a SS conflict in part 1, it is related to DG-SS. Part 2
is from the start of container 21 to the start of container 16,
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Figure 12: Full movement percentage of double cycling.

which belongs to DG-SD. Part 3 from the start of container
16 to the start of container 18 is related to DG-DD, and part
4 from the start of container 18 to the end corresponds to
DG-SD. All the parts can be included in those three extreme
cases; for example, both parts 1 and 4 are related to DG-SS.
Therefore, the makespan of DGBC can be bounded by the
performance of three extreme cases.

The comparisons show that DGBC outperforms SG on
the three measures. MP of DGBC can be improved to 41.67%
ofDG-DDat the best case.Thebest LP can be obtained for the
DG-DDas 80%while the lowest one (33.33%)may come from
the DG-SS with 𝑛

1
̸= 𝑛
2
. In both MP and LP, the scenario

of 𝑛
1

̸= 𝑛
2
yields the larger maximal value and the smaller

minimal value than the one with 𝑛
1
= 𝑛
2
.

6.5. Double Cycling on DGBC. The effect of double cycling
on reducing the empty movement and increasing the crane
processing efficiency is well established for SG. As shown in
Figure 11, the makespan of SG-SD is 480 s, which is 11.11%
better than that of SG-SS with 540 s. Meanwhile, double
cycling enhances the DGBC performance. According to
Figure 10, the lower bound of the DG-DD makespan domain
is less than that of DG-SS. For some instances, DG-DD can
obtain better makespan than DG-SS does. In the case of 𝑛

1
̸=

𝑛
2
, DG-DD outperforms DG-SS by 16.67% in makespan.
According to the full movement proportion of the total

moving time, double cycling and single cycling are compared
in Figure 12. Both DG-SS and SG-SS adopt single cycling
as the scheduling strategy; the full movement takes 66.67%
of the total moving time. Double cycling reduces empty
movements and therefore yields more full movements in the
crane operations; that is, the full movement proportion is
raised from 66.67% (SG-SS and DG-SS) to 88.89% (DG-DD)
which is improved by almost 33.3%. Moreover, all the DG-
SD cases and SG-SD result in 80% full moving proportion. As
shown in Figure 12, double cycling can significantly enhance
the performance of DGBC by increasing the full movements.

However, the better makespan does not necessarily
include the most double cycles, because the makespan
domains of DG-SS and DG-DD are overlapped. Even in the
case of the same number of double cycles, the efficiency of the
double cycling is varied from the position of double cycles,
such as SD1 and SD2 in Figure 11 which lead to the best
makespan among all SD types.

Why does double cycling make less effective impact on
the DGBC scheduling problem as it does for SG? Because

the DGBC problem is sensitive to instances, and the conflicts
are propagable. Double cycling only works in Stage 1 to get
a good operating sequence for each single bay. An integrated
timetable should be constructed for twobays in Stage 2,which
has a larger effect on themakespan; amore compact timetable
will enable the driver to handle the two spreaders more
simultaneously and cooperatively. Double cycling reduces
the number of operating cycle for each bay individually;
new conflicts would exist for later containers. Therefore, the
impact of double cycling is less significant on DGBC.

7. Conclusion

This paper describes how to implement DGBC and examines
its performance. In addition to the reduction in cranes
collisions, the crane travelling, and reposition cost, the crane
serving efficiency can be improved significantly by DGBC
with its capability to serve two adjacent bays simultaneously.

Based on the proposed two-stage heuristic algorithm,
the makespan of the DGBC problem is bounded by three
extreme cases (DG-SS, DG-DD, and DG-SD), and the best
makespan takes 41.67% of that for SG-SS. LP is improved
from 33.33% (SG-SS) to 66.67% (DG-SS), even 80% (DG-
DD). As a result, the driver can perform the lifts more
efficiently and productively.

In conjunction with double cycling, the makespan of
the DGBC problem can be further improved with the
full movement percentages increased to 66.67%, 80%, and
88.89% for DG-SS, DG-SD, and DG-DD, respectively, all
of which are better than or equal to SG-SS with 66.67%.
Therefore, the effectiveness of double cycling on DGBC is
verified throughout the evaluation.

On a more ambitious scale, DGBC can be implemented
in the rail-mounted container terminals. The horizontal
movement of the driver will be taken into account in future
work.
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