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Let (𝑋, 𝑑) be a complex valued metric space and let 𝑆, 𝑇 be mappings from𝑋 to a set of all fuzzy subsets of𝑋. We present sufficient
conditions for the existence of a common 𝛼-fuzzy fixed point of 𝑆 and 𝑇. Our results improve and extend certain recent results in
literature. Moreover, we discuss an illustrative example to highlight the realized improvements.

1. Introduction

In 1981, Heilpern [1] used the concept of fuzzy set to introduce
a class of fuzzy mappings, which is a generalization of the
set-valued mapping, and proved a fixed point theorem for
fuzzy contraction mappings in a metric linear space. It is
worth noting that the result announced by Heilpern [1]
forms a fuzzy extension of the Banach contraction principle.
Subsequently, several other authors have studied existence of
fixed points of fuzzy mappings or in fuzzy metric spaces; for
example, see the work of Azam et al. [2, 3], Bose et al. [4],
Chang et al. [5], Cho and Petrot [6], Hussain et al. [7], Qiu
and Shu [8], Rashwan and Ahmed [9], and Zhang [10].

Recently, Azam et al. [11] introduced the concept of
complex valued metric space and obtained sufficient con-
ditions for the existence of common fixed points of a pair
of mappings satisfying contractive type condition involving
rational expressions. For more details on complex valued
metric space we refer the reader to [12–17].

In [18], Azam obtained some common fuzzy fixed points
for fuzzy mappings under a rational contractive condition on
a metric space in connection with the Hausdorff metric on
the family of fuzzy sets.

The aim of this paper is to obtain a common 𝛼-fuzzy fixed
point of a pair of fuzzy mappings 𝑆 and 𝑇 on a complete
complex valued metric space under a generalized rational

contractive condition for 𝛼-level sets. Our results generalize
the results proved by Azam et al. [11, 18].

2. Preliminaries

LetC be the set of complex numbers and 𝑧
1
, 𝑧
2
∈ C. Define

a partial order ≾ on C as follows:

𝑧
1
≾ 𝑧
2

iff Re (𝑧
1
) ⩽ Re (𝑧

2
) ,

Im (𝑧
1
) ⩽ Im (𝑧

2
) .

(1)

It follows that

𝑧
1
≾ 𝑧
2
, (2)

if one of the following conditions is satisfied:

(i) Re(𝑧
1
) = Re(𝑧

2
), Im(𝑧

1
) < Im(𝑧

2
),

(ii) Re(𝑧
1
) < Re(𝑧

2
), Im(𝑧

1
) = Im(𝑧

2
),

(iii) Re(𝑧
1
) < Re(𝑧

2
), Im(𝑧

1
) < Im(𝑧

2
),

(iv) Re(𝑧
1
) = Re(𝑧

2
), Im(𝑧

1
) = Im(𝑧

2
).
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In particular, we will write 𝑧
1
⋨ 𝑧
2
if 𝑧
1
̸= 𝑧
2
and one of (i),

(ii), and (iii) is satisfied and we will write 𝑧
1
≺ 𝑧
2
if only (iii)

is satisfied. Note that

0 ≾ 𝑧
1
⋨ 𝑧
2
⇒

𝑧1
 <

𝑧2
 ,

𝑧
1
⪯ 𝑧
2
, 𝑧
2
≺ 𝑧
3
⇒ 𝑧
1
≺ 𝑧
3
.

(3)

Definition 1. Let 𝑋 be a nonempty set. Suppose that the
mapping

𝑑 : 𝑋 × 𝑋 → C, (4)

satisfies

(1) 0 ≾ 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a complex valued metric on𝑋, and (𝑋, 𝑑) is
called a complex valued metric space. A point 𝑥 ∈ 𝑋 is called
interior point of a set 𝐴 ⊆ 𝑋 whenever there exists 0 ≺ 𝑟 ∈ C

such that

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐴. (5)

A point 𝑥 ∈ 𝑋 is called a limit point of 𝐴 whenever, for
every 0 ≺ 𝑟 ∈ C,

𝐵 (𝑥, 𝑟) ∩ (𝐴 \ {𝑥}) ̸= 𝜙. (6)

𝐴 is called openwhenever each element of𝐴 is an interior
point of 𝐴. Moreover, a subset 𝐵 ⊆ 𝑋 is called closed
whenever each limit point of 𝐵 belongs to 𝐵. The family

𝐹 = {𝐵 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, 0 ≺ 𝑟} (7)

is a subbasis for a Hausdorff topology 𝜏 on𝑋.
Let 𝑥
𝑛

be a sequence in 𝑋 and 𝑥 ∈ 𝑋. If for every
𝑐 ∈ C with 0 ≺ 𝑐 there is 𝑛

0
∈ N such that, for all

𝑛 > 𝑛
0
, 𝑑(𝑥
𝑛
, 𝑥) ≺ 𝑐, then {𝑥

𝑛
} is said to be convergent,

{𝑥
𝑛
} converges to 𝑥, and 𝑥 is the limit point of {𝑥

𝑛
}. We

denote this by lim
𝑛→∞

𝑥
𝑛
= 𝑥, or 𝑥

𝑛
→ 𝑥, as 𝑛 → ∞. If

for every 𝑐 ∈ C with 0 ≺ 𝑐 there is 𝑛
0
∈ N such that, for all

𝑛 > 𝑛
0
, 𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚

) ≺ 𝑐, where 𝑚 ∈ N, then {𝑥
𝑛
} is called

a Cauchy sequence in (𝑋, 𝑑). If every Cauchy sequence is
convergent in (𝑋, 𝑑), then (𝑋, 𝑑) is called a complete complex
valued metric space. We require the following lemmas.

Lemma 2 (see [11]). Let (𝑋, 𝑑) be a complex valued metric
space and let {𝑥

𝑛
} be a sequence in𝑋. Then {𝑥

𝑛
} converges to 𝑥

if and only if |𝑑(𝑥
𝑛
, 𝑥)| → 0 as 𝑛 → ∞.

Lemma 3 (see [11]). Let (𝑋, 𝑑) be a complex valued metric
space and let {𝑥

𝑛
} be a sequence in 𝑋. Then {𝑥

𝑛
} is a Cauchy

sequence if and only if |𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚

)| → 0 as 𝑛 → ∞, where
𝑚 ∈ N.

A fuzzy set in𝑋 is a functionwith domain𝑋 and values in
[0, 1]; 𝐼𝑋 is the collection of all fuzzy sets in𝑋. If 𝐴 is a fuzzy

set and 𝑥 ∈ 𝑋, then the function values 𝐴(𝑥) are called the
grade ofmembership of 𝑥 in𝐴.The𝛼-level set of𝐴 is denoted
by [𝐴]

𝛼
and is defined as follows:

[𝐴]𝛼 = {𝑥 : 𝐴 (𝑥) ≥ 𝛼} if 𝛼 ∈ (0, 1] ,

[𝐴]0 = {𝑥 : 𝐴(𝑥) > 0}.
(8)

Here 𝐵 denotes the closure of the set 𝐵. LetF(𝑋) be the
collection of all fuzzy sets in a metric space 𝑋. For 𝐴, 𝐵 ∈

F(𝑋), 𝐴 ⊂ 𝐵means 𝐴(𝑥) ≤ 𝐵(𝑥) for each 𝑥 ∈ 𝑋. We denote
the fuzzy set 𝜒

{𝑥}
by {𝑥} unless and until it is stated, where

𝜒
{𝐴}

is the characteristic function of the crisp set 𝐴. A fuzzy
set 𝐴 in a metric linear space 𝑉 is said to be an approximate
quantity if and only if [𝐴]

𝛼
is compact and convex in 𝑉 for

each 𝛼 ∈ [0, 1] and sup
𝑥∈𝑉

𝐴(𝑥) = 1. The collection of all
approximate quantities in 𝑉 is denoted by𝑊(𝑉).

Definition 4. Let 𝑋 be a nonempty set and let (𝑌, 𝑑) be a
complex valued metric space. A mapping 𝑇 is called fuzzy
mapping if 𝑇 is a mapping from𝑋 into (𝑌). A fuzzy mapping
𝑇 is a fuzzy subset on 𝑋 × 𝑌 with membership function
𝑇(𝑥)(𝑦). The function 𝑇(𝑥)(𝑦) is the grade of membership
of 𝑦 in 𝑇(𝑥).

Definition 5. Let (𝑋, 𝑑) be a complex valuedmetric space and
let 𝑆, 𝑇 be fuzzy mappings from𝑋 into (𝑋). A point 𝑧 ∈ 𝑋 is
called a fuzzy fixed point of 𝑇 if 𝑧 ∈ [𝑇𝑧]

𝛼
, for some 𝛼 ∈

[0, 1]. The point 𝑧 ∈ 𝑋 is called a common fuzzy fixed point
of 𝑆 and 𝑇 if 𝑧 ∈ [𝑆𝑧]

𝛼
∩ [𝑇𝑧]

𝛼
for some 𝛼 ∈ [0, 1]. When

𝛼 = 1, 𝑧 is called a common fixed point of fuzzy mappings.

3. Main Result

Let (𝑋, 𝑑) be a complex valued metric space. We denote the
family of all nonempty, closed and bounded subsets of a
complex valued metric space𝑋 by CB(𝑋).

From now on, we denote 𝑠(𝑧
1
) = {𝑧

2
∈ C : 𝑧

1
⪯ 𝑧
2
} for

𝑧
1
∈ C and 𝑠(𝑎, 𝐵) = ∪

𝑏∈𝐵
𝑠(𝑑(𝑎, 𝑏)) = ∪

𝑏∈𝐵
{𝑧 ∈ C : 𝑑(𝑎, 𝑏) ⪯

𝑧} for 𝑎 ∈ 𝑋 and 𝐵 ∈ CB(𝑋).
For 𝐴, 𝐵 ∈ CB(𝑋), we denote

𝑠 (𝐴, 𝐵) = (⋂
𝑎∈𝐴

𝑠 (𝑎, 𝐵)) ∩ (⋂
𝑏∈𝐵

𝑠 (𝑏, 𝐴)) . (9)

Lemma 6. Let (𝑋, 𝑑) be a complex valued metric space.

(i) Let 𝑝, 𝑞 ∈ C. If 𝑝 ⪯ 𝑞, then 𝑠(𝑞) ⊂ 𝑠(𝑝).
(ii) Let 𝑥 ∈ 𝑋 and 𝐴 ∈ 𝑁(𝑋). If 𝜃 ∈ 𝑠(𝑥, 𝐴), then 𝑥 ∈ 𝐴.
(iii) Let 𝑞 ∈ C and let 𝐴, 𝐵 ∈ CB(𝑋) and 𝑎 ∈ 𝐴. If 𝑞 ∈

𝑠(𝐴, 𝐵), then 𝑞 ∈ 𝑠(𝑎, 𝐵) for all 𝑎 ∈ 𝐴 or 𝑞 ∈ 𝑠(𝐴, 𝑏) for
all 𝑏 ∈ 𝐵.

Remark 7. If (𝑋, 𝑑) is a metric space, for 𝐴, 𝐵 ∈

CB(𝑋),𝐻(𝐴, 𝐵) = inf 𝑠(𝐴, 𝐵) is the Hausdorff distance
induced by the metric 𝑑.

Let (𝑋, 𝑑) be a complex valued metric space and C(𝑋)
be a collection of nonempty closed subsets of 𝑋. Let
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𝑇 : 𝑋 → CB(𝑋) be a multivalued map. For 𝑥 ∈ 𝑋 and
𝐴 ∈ CB(𝑋), define

𝑊
𝑥
(𝐴) = {𝑑 (𝑥, 𝑎) : 𝑎 ∈ 𝐴} . (10)

Thus for 𝑥, 𝑦 ∈ 𝑋

𝑊
𝑥
(𝑇𝑦) = {𝑑 (𝑥, 𝑢) : 𝑢 ∈ 𝑇𝑦} . (11)

Definition 8. Let (𝑋, 𝑑) be a complex valued metric space. A
subset 𝐴 of 𝑋 is called bounded from below if there exists
some 𝑧 ∈ 𝑋, such that 𝑧 ⪯ 𝑎 for all 𝑎 ∈ 𝐴.

Definition 9. Let (𝑋, 𝑑) be a complex valued metric space. A
multivalued mapping 𝐹 : 𝑋 → 2C is called bounded from
below if for each 𝑥 ∈ 𝑋 there exists 𝑧

𝑥
∈ C such that

𝑧
𝑥
⪯ 𝑢, (12)

for all 𝑢 ∈ 𝐹𝑥.

Definition 10. Let (𝑋, 𝑑) be a complex valued metric space.
The fuzzy mapping 𝑇 : 𝑋 → F(𝑋) is said to have lower
bound property (l.b property) on (𝑋, 𝑑), if, for any 𝑥 ∈ 𝑋

associatedwith some𝛼 ∈ (0, 1], themultivaluedmapping𝐹
𝑥
:

𝑋 → 2C defined by

𝐹
𝑥
(𝑦) = 𝑊

𝑥
([𝑇𝑦]

𝛼
) (13)

is bounded from below. That is, for 𝑥, 𝑦 ∈ 𝑋 there exists an
element 𝑙

𝑥
([𝑇𝑦]
𝛼
) ∈ C such that

𝑙
𝑥
([𝑇𝑦]

𝛼
) ⪯ 𝑢, (14)

for all 𝑢 ∈ 𝑊
𝑥
([𝑇𝑦]
𝛼
), where 𝑙

𝑥
([𝑇𝑦]
𝛼
) is called lower bound

of 𝑇 associated with (𝑥, 𝑦).

Definition 11. Let (𝑋, 𝑑) be a complex valued metric space.
The fuzzy mapping 𝑇 : 𝑋 → F(𝑋) is said to have greatest
lower bound property (g.l.b property) on (𝑋, 𝑑), if for any
𝑥 ∈ 𝑋 and any 𝛼 ∈ (0, 1], greatest lower bound of𝑊

𝑥
([𝑇𝑦]
𝛼
)

exists in C for all 𝑦 ∈ 𝑋. One denotes 𝑑(𝑥, [𝑇𝑦]
𝛼
) by the g.l.b

of𝑊
𝑥
([𝑇𝑦]
𝛼
). That is,

𝑑 (𝑥, [𝑇𝑦]
𝛼
) = inf {𝑑 (𝑥, 𝑢) : 𝑢 ∈ [𝑇𝑦]

𝛼
} . (15)

3.1. Banach Type Fuzzy Fixed Point Result

Theorem 12. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for each
𝑥 ∈ 𝑋, [𝑆𝑥]

𝛼
and [𝑇𝑥]

𝛼
are nonempty closed bounded subsets

of𝑋; greatest lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
), 𝑊
𝑥
([𝑆𝑦]
𝛼
) exists in

C for all 𝑦 ∈ 𝑋 and

𝜁𝑑 (𝑥, 𝑦)

+
𝜅𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼) + 𝜍𝑑 (𝑦, [𝑆𝑥]𝛼) 𝑑 (𝑥, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(16)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜁, 𝜅, 𝜍 are nonnegative real numbers
with 𝜁 + 𝜅 + 𝜍 < 1. Then there exists some 𝑢 ∈ [𝑆𝑢]

𝛼
∩ [𝑇𝑢]

𝛼
.

Proof. Let 𝑥
0
be an arbitrary point in 𝑋. By assumption, we

can find 𝑥
1
∈ [𝑆𝑥
0
]
𝛼
. So, we have

𝜁𝑑 (𝑥
0
, 𝑥
1
) + ( (𝜅𝑑 (𝑥

0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜍𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
))

× (1 + 𝑑 (𝑥
0
, 𝑥
1
))
−1

) ∈ 𝑠 ([𝑆𝑥
0
]
𝛼
, [𝑇𝑥
1
]
𝛼
) .

(17)

By Lemma 6(iii), we have

𝜁𝑑 (𝑥
0
, 𝑥
1
) + ( (𝜅𝑑 (𝑥

0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜍𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
))

× (1 + 𝑑 (𝑥
0
, 𝑥
1
))
−1

) ∈ 𝑠 (𝑥
1
, [𝑇𝑥
1
]
𝛼
) .

(18)

By definition there exists some 𝑥
2
∈ [𝑇𝑥

1
]
𝛼
, such that

𝜁𝑑 (𝑥
0
, 𝑥
1
) + ( (𝜅𝑑 (𝑥

0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

+𝜍𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
))

× (1 + 𝑑 (𝑥
0
, 𝑥
1
))
−1

) ∈ 𝑠 (𝑑 (𝑥
1
, 𝑥
2
)) .

(19)

That is,

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝜁𝑑 (𝑥

0
, 𝑥
1
) + ( (𝜅𝑑 (𝑥

0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜍𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
))

× (1 + 𝑑 (𝑥
0
, 𝑥
1
))
−1

) .

(20)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝜁𝑑 (𝑥

0
, 𝑥
1
)

+
𝜅𝑑 (𝑥
0
, 𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
) + 𝜍𝑑 (𝑥

1
, 𝑥
1
) 𝑑 (𝑥
0
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

= 𝜁𝑑 (𝑥
0
, 𝑥
1
) +

𝜅𝑑 (𝑥
0
, 𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

,

(21)

which implies that

𝑑 (𝑥1, 𝑥2)
 ≤ 𝜁

𝑑 (𝑥0, 𝑥1)
 +

𝜅
𝑑 (𝑥0, 𝑥1)


𝑑 (𝑥1, 𝑥2)


1 + 𝑑 (𝑥0, 𝑥1)



= 𝜁
𝑑 (𝑥0, 𝑥1)

 + 𝜅
𝑑 (𝑥1, 𝑥2)





𝑑 (𝑥
0
, 𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)


,

𝑑 (𝑥1, 𝑥2)
 ≤ 𝜁

𝑑 (𝑥0, 𝑥1)
 + 𝜅

𝑑 (𝑥1, 𝑥2)
 ,

(1 − 𝜅)
𝑑 (𝑥1, 𝑥2)

 ≤ 𝜁
𝑑 (𝑥0, 𝑥1)

 ,

(22)
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where

ℎ =
𝜁

1 − 𝜅
< 1. (23)

Inductively, we can construct a sequence {𝑥
𝑛
} in𝑋 such that,

for 𝑛 = 0, 1, 2, . . .,
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 ≤ ℎ
𝑛 𝑑 (𝑥0, 𝑥1)

 , (24)
with ℎ = 𝜁/(1 − 𝜅) < 1, for 𝑥

2𝑛+1
∈ [𝑆𝑥

2𝑛
]
𝛼
and 𝑥

2𝑛+2
∈

[𝑇𝑥
2𝑛+1

]
𝛼
.

Now for𝑚 > 𝑛, we get
𝑑 (𝑥𝑛, 𝑥𝑚)

 ≤
𝑑 (𝑥𝑛, 𝑥𝑛+1)



+
𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + ⋅ ⋅ ⋅ +
𝑑 (𝑥𝑚−1, 𝑥𝑚)



≤ [ℎ
𝑛
+ ℎ
𝑛+1

+ ⋅ ⋅ ⋅ + ℎ
𝑚−1

]
𝑑 (𝑥0, 𝑥1)



≤ [
ℎ𝑛

1 − ℎ
]
𝑑 (𝑥0, 𝑥1)

 ,

(25)

and so
𝑑 (𝑥𝑛, 𝑥𝑚)

 ≤
ℎ𝑛

1 − ℎ

𝑑 (𝑥0, 𝑥1)
 → 0, as𝑚, 𝑛 → ∞.

(26)

This implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, so there exists 𝑢 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑢 as 𝑛 →

∞. We now show that 𝑢 ∈ [𝑇𝑢]
𝛼
and 𝑢 ∈ [𝑆𝑢]

𝛼
. From (16),

we have
𝜁𝑑 (𝑥
2𝑘
, 𝑢) + ( (𝜅𝑑 (𝑥

2𝑘
, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑢, [𝑇𝑢]

𝛼
)

+ 𝜍𝑑 (𝑢, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑥
2𝑘
, [𝑇𝑢]

𝛼
))

× (1 + 𝑑 (𝑥
2𝑘
, 𝑢))
−1

) ∈ 𝑠 ([𝑆𝑥
2𝑘
]
𝛼
, [𝑇𝑢]

𝛼
) .

(27)

By Lemma 6(iii), we have

𝜁𝑑 (𝑥
2𝑘
, 𝑢) + ( (𝜅𝑑 (𝑥

2𝑘
, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑢, [𝑇𝑢]

𝛼
)

+𝜍𝑑 (𝑢, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑥
2𝑘
, [𝑇𝑢]

𝛼
))

× (1 + 𝑑 (𝑥
2𝑘
, 𝑢))
−1

) ∈ 𝑠 (𝑥
2𝑘+1

, [𝑇𝑢]
𝛼
) .

(28)

By definition there exists some 𝑢
𝑘
∈ [𝑇𝑢]

𝛼
such that

𝜁𝑑 (𝑥
2𝑘
, 𝑢) + ( (𝜅𝑑 (𝑥

2𝑘
, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑢, [𝑇𝑢]

𝛼
)

+ 𝜍𝑑 (𝑢, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑥
2𝑘
, [𝑇𝑢]

𝛼
))

× (1 + 𝑑 (𝑥
2𝑘
, 𝑢))
−1

) ∈ 𝑠 (𝑑 (𝑥
2𝑘+1

, 𝑢
𝑘
)) .

(29)

That is,

𝑑 (𝑥
2𝑘+1

, 𝑢
𝑘
) ⪯ 𝜁𝑑 (𝑥

2𝑘
, 𝑢)+( (𝜅𝑑 (𝑥

2𝑘
, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑢, [𝑇𝑢]𝛼)

+ 𝜍𝑑 (𝑢, [𝑆𝑥
2𝑘
]
𝛼
) 𝑑 (𝑥
2𝑘
, [𝑇𝑢]𝛼))

× (1 + 𝑑 (𝑥
2𝑘
, 𝑢))
−1

) .

(30)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
2𝑘+1

, 𝑢
𝑘
) ⪯ 𝜁𝑑 (𝑥

2𝑘
, 𝑢)

+
𝜅𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1

) 𝑑 (𝑢, 𝑢
𝑘
) + 𝜍𝑑 (𝑢, 𝑥

2𝑘+1
) 𝑑 (𝑥
2𝑘
, 𝑢
𝑘
)

1 + 𝑑 (𝑥
2
𝑘
𝑢
)

.

(31)

Since by triangle inequality, we get

𝑑 (𝑢, 𝑢
𝑘
) ⪯ 𝑑 (𝑢, 𝑥

2𝑘+1
) + 𝑑 (𝑥

2𝑘+1
, 𝑢
𝑘
) . (32)

So using (31) in (32), we get

𝑑 (𝑢, 𝑢
𝑘
) ⪯ 𝑑 (𝑢, 𝑥

2𝑘+1
) + 𝜁𝑑 (𝑢, 𝑥

2𝑘+1
)

+
𝜅𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1

) 𝑑 (𝑢, 𝑢
𝑘
) + 𝜍𝑑 (𝑢, 𝑥

2𝑘+1
) 𝑑 (𝑥
2𝑘
, 𝑢
𝑘
)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

,

𝑑 (𝑢, 𝑢𝑘)
 ≤

𝑑 (𝑢, 𝑥2𝑘+1)
 + 𝜁

𝑑 (𝑢, 𝑥2𝑘+1)


+
𝜅
𝑑 (𝑥2𝑘, 𝑥2𝑘+1)


𝑑 (𝑢, 𝑢𝑘)

+𝜍
𝑑 (𝑢, 𝑥2𝑘+1)


𝑑 (𝑥2𝑘, 𝑢𝑘)


1 + 𝑑 (𝑥2𝑘, 𝑢)


.

(33)

Taking the limit as 𝑘 → ∞, we get |𝑑(𝑢, 𝑢
𝑘)
| → 0 as 𝑘 →

∞. By Lemma 2 [11], we have 𝑢
𝑘
→ 𝑢 as 𝑘 → ∞. Since

[𝑇𝑢]
𝛼
is closed, so 𝑢 ∈ [𝑇𝑢]

𝛼
. Similarly, it follows that 𝑢 ∈

[𝑆𝑢]
𝛼
. Thus 𝑆 and 𝑇 have a common fuzzy fixed point.

By setting 𝜍 = 0 in Theorem 12, we get the following
corollary.

Corollary 13. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for each
𝑥 ∈ 𝑋,[𝑆𝑥]

𝛼
and [𝑇𝑥]

𝛼
are nonempty closed bounded subsets

of 𝑋; greatest lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
),𝑊
𝑥
([𝑆𝑦]
𝛼
) exists in

C for all 𝑦 ∈ 𝑋 and

𝜁𝑑 (𝑥, 𝑦) +
𝜅𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)
∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(34)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜁 and 𝜅 are nonnegative real numbers
with 𝜁 + 𝜅 < 1. Then there exists some 𝑢 ∈ [𝑆𝑢]

𝛼
∩ [𝑇𝑢]

𝛼
.

By setting 𝑆 = 𝑇 in Theorem 12, we get the following
corollary.

Corollary 14. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 be fuzzy mapping from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for
each 𝑥 ∈ 𝑋, [𝑇𝑥]

𝛼
is nonempty closed bounded subset of 𝑋;
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greatest lower bound of 𝑊
𝑥
([𝑇𝑦]
𝛼
) exists in C for all 𝑦 ∈

𝑋 and

𝜁𝑑 (𝑥, 𝑦)

+
𝜅𝑑 (𝑥, [𝑇𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼) + 𝜍𝑑 (𝑦, [𝑇𝑥]𝛼) 𝑑 (𝑥, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑇𝑥]𝛼, [𝑇𝑦]𝛼) ,

(35)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜁, 𝜅, and 𝜍 are nonnegative real numbers
with 𝜁 + 𝜅 + 𝜍 < 1. Then there exists some 𝑢 ∈ [𝑇𝑢]

𝛼
.

By Definition 11, one can have the following corollaries
easily fromTheorem 12.

Corollary 15. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋) with
g.l.b property such that, for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1] and
[𝑆𝑥]
𝛼
, [𝑇𝑦]

𝛼
are nonempty closed bounded subsets of𝑋 and

𝜁𝑑 (𝑥, 𝑦)

+
𝜅𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼) + 𝜍𝑑 (𝑦, [𝑆𝑥]𝛼) 𝑑 (𝑥, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(36)

for all 𝑥, 𝑦 ∈ 𝑋, and 𝜁, 𝜅, and 𝜍 are nonnegative real numbers
with 𝜁 + 𝜅 + 𝜍 < 1. Then there exists some 𝑢 ∈ [𝑆𝑢]

𝛼
∩ [𝑇𝑢]

𝛼
.

Corollary 16. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋) with
g.l.b property such that, for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1] and
[𝑆𝑥]
𝛼
, [𝑇𝑦]

𝛼
are nonempty closed bounded subsets of𝑋 and

𝜁𝑑 (𝑥, 𝑦) +
𝜅𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)
∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(37)

for all 𝑥, 𝑦 ∈ 𝑋, and 𝜁 and 𝜅 are nonnegative real numbers with
𝜁 + 𝜅 < 1. Then there exists some 𝑢 ∈ [𝑆𝑢]

𝛼
∩ [𝑇𝑢]

𝛼
.

Corollary 17. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 be fuzzy mapping from𝑋 intoF(𝑋) with g.l.b
property such that, for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1], [𝑇𝑦]

𝛼
is

nonempty closed bounded subset of𝑋 and

𝜁𝑑 (𝑥, 𝑦)

+
𝜅𝑑 (𝑥, [𝑇𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼) + 𝜍𝑑 (𝑦, [𝑇𝑥]𝛼) 𝑑 (𝑥, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑇𝑥]𝛼, [𝑇𝑦]𝛼) ,

(38)

for all 𝑥, 𝑦 ∈ 𝑋, and 𝜁, 𝜅, and 𝜍 are nonnegative real numbers
with 𝜁 + 𝜅 + 𝜍 < 1. Then there exists some 𝑢 ∈ [𝑇𝑢]

𝛼
.

Corollary 18 (see [19]). Let (𝑋, 𝑑) be a complete complex
valuedmetric space and let𝐹, 𝐺 : 𝑋 → 𝐶𝐵(𝑋) bemultivalued
mappings with g.l.b property such that

𝜁𝑑 (𝑥, 𝑦)

+
𝜅𝑑 (𝑥, 𝐹𝑥) 𝑑 (𝑦, 𝐺𝑦) + 𝜍𝑑 (𝑦, 𝐹𝑥) 𝑑 (𝑥, 𝐺𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝐹𝑥, 𝐺𝑦) ,

(39)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜁, 𝜅, and 𝜍 are nonnegative real numbers
with 𝜁 + 𝜅 + 𝜍 < 1. Then there exists some 𝑢 ∈ 𝐹𝑢 ∩ 𝑇𝑢.

Proof. Consider a pair of fuzzy mappings 𝑆, 𝑇 : 𝑋 → F(𝑋)

defined by

𝑆 (𝑥) (𝑡) = {
𝛼, 𝑡 ∈ 𝐹𝑥

0, 𝑡 ∉ 𝐹𝑥,

𝑇 (𝑥) (𝑡) = {
𝛼, 𝑡 ∈ 𝐺𝑥

0, 𝑡 ∉ 𝐺𝑥,

(40)

where 𝛼 ∈ (0, 1]. Then

[𝑆𝑥]𝛼 = {𝑡 : 𝑆 (𝑥) (𝑡) ≥ 𝛼} = 𝐹𝑥, [𝑇𝑥]𝛼 = 𝐺𝑥. (41)

Thus, Theorem 12 can be applied to obtain 𝑢 ∈ 𝑋 such that

𝑢 ∈ [𝑆𝑢]
𝛼
∩ [𝑇𝑢]𝛼 = 𝐹𝑢 ∩ 𝐺𝑢. (42)

3.2. Kannan Type Fuzzy Fixed Point Result

Theorem 19. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for each
𝑥 ∈ 𝑋, [𝑆𝑥]

𝛼
and [𝑇𝑥]

𝛼
are nonempty closed bounded subsets

of 𝑋; greatest lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
),𝑊
𝑥
([𝑆𝑦]
𝛼
) exists in

C for all 𝑦 ∈ 𝑋 and

𝛽𝑑 (𝑥, [𝑆𝑥]𝛼) + 𝛾𝑑 (𝑦, [𝑇𝑦]𝛼)

+ 𝜂
𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(43)

for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative real numbers 𝛽, 𝛾, and 𝜂 with
𝛽 + 𝛾 + 𝜂 < 1. Then there exists some V ∈ [𝑆V]

𝛼
∩ [𝑇V]

𝛼
.

Proof. Let 𝑥
0
be an arbitrary point in 𝑋. By assumption, we

can find 𝑥
1
∈ [𝑆𝑥
0
]
𝛼
. So, we have

𝛽𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) + 𝛾𝑑 (𝑥

1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜂
𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 ([𝑆𝑥
0
]
𝛼
, [𝑇𝑥
1
]
𝛼
) .

(44)
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By Lemma 6(iii), we have

𝛽𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) + 𝛾𝑑 (𝑥

1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜂
𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥
1
, [𝑇𝑥
1
]
𝛼
) .

(45)

By definition there exists some 𝑥
2
∈ [𝑇𝑥

1
]
𝛼
, such that

𝛽𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) + 𝛾𝑑 (𝑥

1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜂
𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑑 (𝑥
1
, 𝑥
2
)) .

(46)

That is,

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝛽𝑑 (𝑥

0
, [𝑆𝑥
0
]
𝛼
) + 𝛾𝑑 (𝑥

1
, [𝑇𝑥
1
]
𝛼
)

+ 𝜂
𝑑 (𝑥
0
, [𝑆𝑥
0
]
𝛼
) 𝑑 (𝑥
1
, [𝑇𝑥
1
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

.

(47)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝛽𝑑 (𝑥

0
, 𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑥
2
)

+ 𝜂
𝑑 (𝑥
0
, 𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

,
(48)

which implies that
𝑑 (𝑥1, 𝑥2)

 ≤ 𝛽
𝑑 (𝑥0, 𝑥1)

 + 𝛾
𝑑 (𝑥1, 𝑥2)



+ 𝜂

𝑑 (𝑥0, 𝑥1)

𝑑 (𝑥1, 𝑥2)


1 + 𝑑 (𝑥0, 𝑥1)


.

(49)

Thus
𝑑 (𝑥1, 𝑥2)

 ≤ 𝑙
𝑑 (𝑥0, 𝑥1)

 , (50)

where 𝑙 = 𝛽/(1 − 𝛾 − 𝜂) < 1. Inductively, we can construct a
sequence {𝑥

𝑛
} in𝑋 such that, for 𝑛 = 0, 1, 2, . . .,
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 ≤ 𝑙
𝑛 𝑑 (𝑥0, 𝑥1)

 , (51)

with 𝑙 = 𝛽/(1 − 𝛾 − 𝜂) < 1, for 𝑥
2𝑛+1

∈ [𝑆𝑥
2𝑛
]
𝛼
and 𝑥

2𝑛+2
∈

[𝑇𝑥
2𝑛+1

]. Now for𝑚 > 𝑛, we get
𝑑 (𝑥𝑛, 𝑥𝑚)

 ≤
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 +
𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + ⋅ ⋅ ⋅

+
𝑑 (𝑥𝑚−1, 𝑥𝑚)



≤ [𝑙
𝑛
+ 𝑙
𝑛+1

+ ⋅ ⋅ ⋅ + 𝑙
𝑚−1

]
𝑑 (𝑥0, 𝑥1)



≤ [
𝑙𝑛

1 − 𝑙
]
𝑑 (𝑥0, 𝑥1)

 ,

(52)

and so

𝑑 (𝑥𝑛, 𝑥𝑚)
 ≤

𝑙𝑛

1 − 𝑙

𝑑 (𝑥0, 𝑥1)
 → 0 as 𝑚, 𝑛 → ∞.

(53)

This implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, there exists 𝜐 ∈ 𝑋 such that 𝑥
𝑛
→ 𝜐 as 𝑛 → ∞.

We now show that 𝜐 ∈ [𝑇𝜐]
𝛼
and 𝜐 ∈ [𝑆𝜐]

𝛼
. From (43), we

get

𝛽𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) + 𝛾𝑑 (𝜐, [𝑇𝜐]𝛼)

+ 𝜂
𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) 𝑑 (𝜐, [𝑇𝜐]𝛼)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 ([𝑆𝑥
2𝑛
]
𝛼
, [𝑇𝜐]𝛼) .

(54)

By Lemma 6 (iii), we have

𝛽𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) + 𝛾𝑑 (𝜐, [𝑇𝜐]𝛼)

+ 𝜂
𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) 𝑑 (𝜐, [𝑇𝜐]𝛼)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑥
2𝑛+1

, [𝑇𝜐]𝛼) .

(55)

By definition there exists some 𝜐
𝑛
∈ [𝑇𝜐]

𝛼
such that

𝛽𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) + 𝛾𝑑 (𝜐, [𝑇𝜐]𝛼)

+ 𝜂
𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) 𝑑 (𝜐, [𝑇𝜐]𝛼)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑑 (𝑥
2𝑛+1

, 𝜐
𝑛
)) .

(56)

That is,

𝑑 (𝑥
2𝑛+1

, 𝜐
𝑛
) ⪯ 𝛽𝑑 (𝑥

2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) + 𝛾𝑑 (𝜐, [𝑇𝜐]𝛼)

+ 𝜂
𝑑 (𝑥
2𝑛
, [𝑆𝑥
2𝑛
]
𝛼
) 𝑑 (𝜐, [𝑇𝜐]𝛼)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

.

(57)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
2𝑛+1

, 𝜐
𝑛
) ⪯ 𝛽𝑑 (𝑥

2𝑛
, 𝑥
2𝑛+1

) + 𝛾𝑑 (𝜐, 𝜐
𝑛
)

+ 𝜂
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) 𝑑 (𝜐, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

.
(58)

Now by using (58) and the triangular inequality, we get

𝑑 (𝜐, 𝜐
𝑛
) ⪯ 𝑑 (𝜐, 𝑥

2𝑛+1
) + 𝑑 (𝑥

2𝑛+1
, 𝜐
𝑛
)

⪯ 𝑑 (𝜐, 𝑥
2𝑛+1

) + 𝛽𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝛾𝑑 (𝜐, 𝜐
𝑛
)

+ 𝜂
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) 𝑑 (𝜐, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

,

(59)
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which implies that

(1 − 𝛾)
𝑑 (𝜐, 𝜐𝑛)

 ≤
𝑑 (𝜐, 𝑥2𝑛+1)



+ 𝛽
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)



+ 𝜂



𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) 𝑑 (𝜐, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)


,

𝑑 (𝜐, 𝜐𝑛)
 ≤

1

(1 − 𝛾)

𝑑 (𝜐, 𝑥2𝑛+1)


+
𝛽

(1 − 𝛾)

𝑑 (𝑥2𝑛, 𝑥2𝑛+1)


+
𝜂

(1 − 𝛾)

𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

𝑑 (𝜐, 𝜐𝑛)


1 + 𝑑 (𝑥2𝑛, 𝜐)


.

(60)

By letting 𝑛 → ∞ in above inequality, we get
𝑑 (𝜐, 𝜐𝑛)

 → 0 as 𝑛 → ∞. (61)

By Lemma 2 [11], we have 𝜐
𝑛
→ 𝜐 as 𝑛 → ∞. Since [𝑇𝜐]

𝛼

is closed, so 𝜐 ∈ [𝑇𝜐]
𝛼
. Similarly, it follows that 𝜐 ∈ [𝑆𝜐]

𝛼
.

Thus there exists some V ∈ [𝑆V]
𝛼
∩ [𝑇V]

𝛼
.

By setting 𝜂 = 0 and 𝑘 = 𝛽 = 𝛾 in Theorem 19, we get the
following corollary.

Corollary 20. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for each
𝑥 ∈ 𝑋, [𝑆𝑥]

𝛼
and [𝑇𝑥]

𝛼
are nonempty closed bounded subsets

of 𝑋; greatest lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
),𝑊
𝑥
([𝑆𝑦]
𝛼
) exists in

C for all 𝑦 ∈ 𝑋 and

𝑘 (𝑑 (𝑥, [𝑆𝑥]𝛼) + 𝑑 (𝑦, [𝑇𝑦]𝛼)) ∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) (62)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝑘 < 1/2. Then there exists some
V ∈ [𝑆V]

𝛼
∩ [𝑇V]

𝛼
.

By setting 𝑆 = 𝑇 in Theorem 19, we get the following
corollary.

Corollary 21. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 be fuzzy mapping from 𝑋 into F(𝑋). Assume
that there exists some 𝛼 ∈ (0, 1], such that, for each 𝑥 ∈

𝑋, [𝑇𝑥]
𝛼
is nonempty closed bounded subset of 𝑋; greatest

lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
) exists in C for all 𝑦 ∈ 𝑋 and

𝛽𝑑 (𝑥, [𝑇𝑥]𝛼) + 𝛾𝑑 (𝑦, [𝑇𝑦]𝛼)

+ 𝜂
𝑑 (𝑥, [𝑇𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑇𝑥]𝛼, [𝑇𝑦]𝛼) ,

(63)

for all𝑥, 𝑦 ∈ 𝑋 andnonnegative reals𝛽, 𝛾, and 𝜂with𝛽+𝛾+𝜂 <
1. Then there exists some V ∈ [𝑇V]

𝛼
.

By Definition 11, one can have the following corollaries
easily fromTheorem 19.

Corollary 22. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋) with
g.l.b property such that, for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1], [𝑆𝑥]

𝛼

and [𝑇𝑦]
𝛼
are nonempty closed bounded subsets of𝑋 and

𝛽𝑑 (𝑥, [𝑆𝑥]𝛼) + 𝛾𝑑 (𝑦, [𝑇𝑦]𝛼)

+ 𝜂
𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(64)

for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative real numbers 𝛽, 𝛾, and 𝜂 with
𝛽 + 𝛾 + 𝜂 < 1. Then there exists some V ∈ [𝑆V]

𝛼
∩ [𝑇V]

𝛼
.

Remark 23. By Definition 11, one can have a host of corol-
laries of Kannan type contractive fuzzy mappings with g.l.b
property easily fromTheorem 19.

Corollary 24 (see[20]). Let (𝑋, 𝑑) be a complete complex
valuedmetric space and let𝐹, 𝐺 : 𝑋 → 𝐶𝐵(𝑋) bemultivalued
mappings with g.l.b property such that

𝛽𝑑 (𝑥, 𝐹𝑥) + 𝛾𝑑 (𝑦, 𝐺𝑦)

+ 𝜂
𝑑 (𝑥, 𝐹𝑥) 𝑑 (𝑦, 𝐺𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝐹𝑥, 𝐺𝑦) ,

(65)

for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative real numbers 𝛽, 𝛾, and 𝜂 with
𝛽 + 𝛾 + 𝜂 < 1. Then there exists some V ∈ 𝐹V ∩ 𝐺V.

Proof. Consider a pair of fuzzy mappings 𝑆, 𝑇 : 𝑋 → F(𝑋)

defined by

𝑆 (𝑥) (𝑡) = {
𝛼, 𝑡 ∈ 𝐹𝑥

0, 𝑡 ∉ 𝐹𝑥,

𝑇 (𝑥) (𝑡) = {
𝛼, 𝑡 ∈ 𝐺𝑥

0, 𝑡 ∉ 𝐺𝑥,

(66)

where 𝛼 ∈ (0, 1]. Then

[𝑆𝑥]𝛼 = {𝑡 : 𝑆 (𝑥) (𝑡) ≥ 𝛼} = 𝐹𝑥, [𝑇𝑥]𝛼 = 𝐺𝑥. (67)

Thus, Theorem 19 can be applied to obtain V ∈ 𝑋 such that

V ∈ [𝑆V]𝛼 ∩ [𝑇V]𝛼 = 𝐹V ∩ 𝐺V. (68)

3.3. Chatterjea Type Fuzzy Fixed Point Result

Theorem 25. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for each
𝑥 ∈ 𝑋, [𝑆𝑥]

𝛼
, and [𝑇𝑥]

𝛼
are nonempty closed bounded subsets
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of𝑋; greatest lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
),𝑊
𝑥
([𝑆𝑦]
𝛼
) exists inC

for all 𝑦 ∈ 𝑋 and

𝑎𝑑 (𝑥, [𝑇𝑦]
𝛼
) + 𝑏𝑑 (𝑦, [𝑆𝑥]𝛼)

+ 𝑐
𝑑 (𝑥, [𝑇𝑦]

𝛼
) 𝑑 (𝑦, [𝑆𝑥]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(69)

for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative reals 𝑎, 𝑏, and 𝑐 with 𝑎 + 𝑏 +

𝑐 < 1. Then there exists some 𝑤 ∈ [𝑆𝑤]
𝛼
∩ [𝑇𝑤]

𝛼
.

Proof. Let 𝑥
0
be an arbitrary point in 𝑋. By assumption, we

can find 𝑥
1
∈ [𝑆𝑥
0
]
𝛼
. So, we have

𝑎𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
0
]
𝛼
)

+ 𝑐
𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 ([𝑆𝑥
0
]
𝛼
, [𝑇𝑥
1
]
𝛼
) .

(70)

By Lemma 6(iii), we have

𝑎𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
0
]
𝛼
)

+ 𝑐
𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥
1
, [𝑇𝑥
1
]
𝛼
) .

(71)

By definition there exists some 𝑥
2
∈ [𝑇𝑥

1
]
𝛼
, such that

𝑎𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
0
]
𝛼
)

+ 𝑐
𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑑 (𝑥
1
, 𝑥
2
)) .

(72)

That is,

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑎𝑑 (𝑥

0
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
0
]
𝛼
)

+ 𝑐
𝑑 (𝑥
0
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
0
]
𝛼
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

.
(73)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑎𝑑 (𝑥

0
, 𝑥
2
) + 𝑏𝑑 (𝑥

1
, 𝑥
1
)

+𝑐
𝑑 (𝑥
0
, 𝑥
2
) 𝑑 (𝑥
1
, 𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

,

(74)

which implies that

𝑑 (𝑥1, 𝑥2)
 ≤

𝑎

1 − 𝑎

𝑑 (𝑥0, 𝑥1)
 . (75)

Similarly from (69), we have

𝑎𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
2
]
𝛼
)

+ 𝑐
𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
2
]
𝛼
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

∈ 𝑠 ([𝑇𝑥
1
]
𝛼
, [𝑆𝑥
2
]
𝛼
) .

(76)

By Lemma 6(iii), we have

𝑎𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
2
]
𝛼
)

+ 𝑐
𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
2
]
𝛼
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

∈ 𝑠 (𝑥
2
, [𝑆𝑥
2
]
𝛼
) .

(77)

By definition there exists some 𝑥
3
∈ [𝑆𝑥
2
]
𝛼
, such that

𝑎𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
2
]
𝛼
)

+𝑐
𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
2
]
𝛼
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

∈ 𝑠 (𝑑 (𝑥
2
, 𝑥
3
)) .

(78)

That is,

𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝑎𝑑 (𝑥

2
, [𝑇𝑥
1
]
𝛼
) + 𝑏𝑑 (𝑥

1
, [𝑆𝑥
2
]
𝛼
)

+ 𝑐
𝑑 (𝑥
2
, [𝑇𝑥
1
]
𝛼
) 𝑑 (𝑥
1
, [𝑆𝑥
2
]
𝛼
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

.
(79)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝑎𝑑 (𝑥

2
, 𝑥
2
) + 𝑏𝑑 (𝑥

1
, 𝑥
3
)

+ 𝑐
𝑑 (𝑥
2
, 𝑥
2
) 𝑑 (𝑥
1
, 𝑥
3
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

,
(80)

which implies that

𝑑 (𝑥2, 𝑥3)
 ≤

𝑏

1 − 𝑏

𝑑 (𝑥1, 𝑥2)
 . (81)

Inductively, we can construct a sequence {𝑥
𝑛
} in𝑋 such that,

for 𝑛 = 0, 1, 2, . . .,
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 ≤ 𝑞
𝑛 𝑑 (𝑥0, 𝑥1)

 , (82)

with 𝑞 = max{𝑎/(1 − 𝑎), 𝑏/(1 − 𝑏)} < 1, 𝑥
2𝑛+1

∈ [𝑆𝑥
2𝑛
]
𝛼
, and

𝑥
2𝑛+2

∈ [𝑇𝑥
2𝑛+1

]
𝛼
. Now for𝑚 > 𝑛, we get

𝑑 (𝑥𝑛, 𝑥𝑚)
 ≤

𝑑 (𝑥𝑛, 𝑥𝑛+1)
 +

𝑑 (𝑥𝑛+1, 𝑥𝑛+2)


+ ⋅ ⋅ ⋅ +
𝑑 (𝑥𝑚−1, 𝑥𝑚)



≤ [𝑞
𝑛
+ 𝑞
𝑛+1

+ ⋅ ⋅ ⋅ + 𝑞
𝑚−1

]
𝑑 (𝑥0, 𝑥1)



= [
𝑞𝑛

1 − 𝑞
]
𝑑 (𝑥0, 𝑥1)

 ,

(83)
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and so

𝑑 (𝑥𝑛, 𝑥𝑚)
 ≤

𝑞𝑛

1 − 𝑞

𝑑 (𝑥0, 𝑥1)
 → 0 as 𝑚, 𝑛 → ∞.

(84)

This implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, there exists 𝑤 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑤 as 𝑛 → ∞.

We now show that 𝑤 ∈ [𝑇𝑤]
𝛼
and 𝑤 ∈ [𝑆𝑤]

𝛼
. From (69), we

get

𝑎𝑑 (𝑥
2𝑛
, [𝑇𝑤]

𝛼
) + 𝑏𝑑 (𝑤, [𝑆𝑥

2𝑛
]
𝛼
)

+ 𝑐
𝑑 (𝑥
2𝑛
, [𝑇𝑤]

𝛼
) 𝑑 (𝑤, [𝑆𝑥

2𝑛
]
𝛼
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

∈ 𝑠 ([𝑆𝑥
2𝑛
]
𝛼
, [𝑇𝑤]

𝛼
) .

(85)

By Lemma 6(iii), we have

𝑎𝑑 (𝑥
2𝑛
, [𝑇𝑤]

𝛼
) + 𝑏𝑑 (𝑤, [𝑆𝑥

2𝑛
]
𝛼
)

+ 𝑐
𝑑 (𝑥
2𝑛
, [𝑇𝑤]

𝛼
) 𝑑 (𝑤, [𝑆𝑥

2𝑛
]
𝛼
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

∈ 𝑠 (𝑥
2𝑛+1

, [𝑇𝑤]
𝛼
) .

(86)

By definition there exists some 𝑤
𝑛
∈ [𝑇𝑤]

𝛼
, such that

𝑎𝑑 (𝑥
2𝑛
, [𝑇𝑤]

𝛼
) + 𝑏𝑑 (𝑤, [𝑆𝑥

2𝑛
]
𝛼
)

+ 𝑐
𝑑 (𝑥
2𝑛
, [𝑇𝑤]

𝛼
) 𝑑 (𝑤, [𝑆𝑥

2𝑛
]
𝛼
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

∈ 𝑠 (𝑥
2𝑛+1

, [𝑇𝑤]𝛼) ∈ 𝑠 (𝑑 (𝑥2𝑛+1, 𝑤𝑛)) .

(87)

That is,

𝑑 (𝑥
2𝑛+1

, 𝑤
𝑛
) ⪯ 𝑎𝑑 (𝑥

2𝑛
, [𝑇𝑤]𝛼) + 𝑏𝑑 (𝑤, [𝑆𝑥2𝑛]𝛼)

+ 𝑐
𝑑 (𝑥
2𝑛
, [𝑇𝑤]𝛼) 𝑑 (𝑤, [𝑆𝑥2𝑛]𝛼)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

.
(88)

By the meaning of𝑊
𝑥
([𝑇𝑦]
𝛼
) and𝑊

𝑥
([𝑆𝑦]
𝛼
) for 𝑥, 𝑦 ∈ 𝑋, we

get

𝑑 (𝑥
2𝑛+1

, V
𝑛
) ⪯ 𝑎𝑑 (𝑥

2𝑛
, 𝑤
𝑛
) + 𝑏𝑑 (𝑤, 𝑥

2𝑛+1
)

+ 𝑐
𝑑 (𝑥
2𝑛
, 𝑤
𝑛
) 𝑑 (𝑤, 𝑥

2𝑛+1
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

.
(89)

Now by using the triangular inequality, we get

𝑑 (𝑥
2𝑛+1

, 𝑤
𝑛
) ⪯ 𝑎𝑑 (𝑥

2𝑛
, 𝑥
2𝑛+1

)

+ 𝑎𝑑 (𝑥
2𝑛+1

, 𝑤
𝑛
) + 𝑏𝑑 (𝑤, 𝑥

2𝑛+1
)

+ 𝑐
𝑑 (𝑥
2𝑛
, 𝑤
𝑛
) 𝑑 (𝑤, 𝑥

2𝑛+1
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

,

(90)

and it follows that

𝑑 (𝑥
2𝑛+1

, 𝑤
𝑛
) ⪯

𝑎

1 − 𝑎
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) +
𝑏

1 − 𝑎
𝑑 (𝑤, 𝑥

2𝑛+1
)

+
𝑐

1 − 𝑎

𝑑 (𝑥
2𝑛
, 𝑤
𝑛
) 𝑑 (𝑤, 𝑥

2𝑛+1
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

.

(91)

By using again triangular inequality, we get

𝑑 (𝑤,𝑤
𝑛
) ⪯ 𝑑 (𝑤, 𝑥

2𝑛+1
) + 𝑑 (𝑥

2𝑛+1
, 𝑤
𝑛
)

⪯ 𝑑 (𝑤, 𝑥
2𝑛+1

) +
𝑎

1 − 𝑎
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

+
𝑏

1 − 𝑎
𝑑 (𝑤, 𝑥

2𝑛+1
)

+
𝑐

1 − 𝑎

𝑑 (𝑥
2𝑛
, 𝑤
𝑛
) 𝑑 (𝑤, 𝑥

2𝑛+1
)

1 + 𝑑 (𝑥
2𝑛
, 𝑤)

,

(92)

and it follows that
𝑑 (𝑤, 𝑤𝑛)

 ≤
𝑑 (𝑤, 𝑥2𝑛+1)

 +
𝑎

1 − 𝑎

𝑑 (𝑥2𝑛, 𝑥2𝑛+1)


+
𝑏

1 − 𝑎

𝑑 (𝑤, 𝑥2𝑛+1)


+
𝑐

1 − 𝑎

𝑑 (𝑥2𝑛, 𝑤𝑛)

𝑑 (𝑤, 𝑥2𝑛+1)


1 + 𝑑 (𝑥2𝑛, 𝑤)


.

(93)

By letting 𝑛 → ∞ in above inequality, we get |𝑑(𝑤, 𝑤
𝑛
)| → 0

as 𝑛 → ∞. By Lemma 2 [11], we have 𝑤
𝑛
→ 𝑤 as 𝑛 → ∞.

Since [𝑇𝑤]
𝛼
is closed, so 𝑤 ∈ [𝑇𝑤]

𝛼
. Similarly, it follows

that 𝑤 ∈ [𝑆𝑤]
𝛼
. Thus there exists some 𝑤 ∈ [𝑆𝑤]

𝛼
∩ [𝑇𝑤]

𝛼
.

Corollary 26. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋).
Assume that there exists some 𝛼 ∈ (0, 1], such that, for each
𝑥 ∈ 𝑋, [𝑆𝑥]

𝛼
and [𝑇𝑥]

𝛼
are nonempty closed bounded subsets

of 𝑋; greatest lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
),𝑊
𝑥
([𝑆𝑦]
𝛼
) exists in

C for all 𝑦 ∈ 𝑋 and
ℎ (𝑑 (𝑥, [𝑇𝑦]

𝛼
) + 𝑑 (𝑦, [𝑆𝑥]𝛼)) ∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) , (94)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ ℎ < 1/2. Then there exists some
𝑤 ∈ [𝑆𝑤]

𝛼
∩ [𝑇𝑤]

𝛼
.

By taking 𝑆 = 𝑇 in Theorem 25, we get the following
corollary.

Corollary 27. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 be fuzzy mapping from 𝑋 into F(𝑋). Assume
that there exists some 𝛼 ∈ (0, 1] such that, for each 𝑥 ∈

𝑋, [𝑇𝑥]
𝛼
is nonempty closed bounded subset of 𝑋; greatest

lower bound of𝑊
𝑥
([𝑇𝑦]
𝛼
) exists in C for all 𝑦 ∈ 𝑋 and

𝑎𝑑 (𝑥, [𝑇𝑦]
𝛼
) + 𝑏𝑑 (𝑦, [𝑇𝑥]𝛼)

+ 𝑐
𝑑 (𝑥, [𝑇𝑦]

𝛼
) 𝑑 (𝑦, [𝑇𝑥]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑇𝑥]𝛼, [𝑇𝑦]𝛼) ,

(95)
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for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative reals 𝑎, 𝑏, and 𝑐with 𝑎+𝑏+𝑐 <
1. Then there exists some 𝑤 ∈ [𝑇𝑤]

𝛼
.

Corollary 28. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 be fuzzy mappings from 𝑋 into F(𝑋) with
g.l.b property such that, for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1], [𝑆𝑥]

𝛼

and [𝑇𝑦]
𝛼
are nonempty closed bounded subsets of𝑋 and

𝑎𝑑 (𝑥, [𝑇𝑦]
𝛼
) + 𝑏𝑑 (𝑦, [𝑆𝑥]𝛼)

+ 𝑐
𝑑 (𝑥, [𝑇𝑦]

𝛼
) 𝑑 (𝑦, [𝑆𝑥]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(96)

for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative reals 𝑎, 𝑏, and 𝑐with 𝑎+𝑏+𝑐 <
1. Then there exists some 𝑤 ∈ [𝑆𝑤]

𝛼
∩ [𝑇𝑤]

𝛼
.

Remark 29. By Definition 11, one can have a host of corollar-
ies of Chatterjea type contractive fuzzy mappings with g.l.b
property easily fromTheorem 25.

Corollary 30 (see [20]). Let (𝑋, 𝑑) be a complete complex
valuedmetric space and let𝐹, 𝐺 : 𝑋 → 𝐶𝐵(𝑋) bemultivalued
mappings with g.l.b property such that

𝑎𝑑 (𝑥, 𝐺𝑦) + 𝑏𝑑 (𝑦, 𝐹𝑥) + 𝑐
𝑑 (𝑥, 𝐺𝑦) 𝑑 (𝑦, 𝐹𝑥)

1 + 𝑑 (𝑥, 𝑦)
∈ 𝑠 (𝐹𝑥, 𝐺𝑦) ,

(97)

for all 𝑥, 𝑦 ∈ 𝑋 and nonnegative reals 𝑎, 𝑏, and 𝑐with 𝑎+𝑏+𝑐 <
1. Then there exists some 𝑤 ∈ 𝐹𝑤 ∩ 𝐺𝑤.

Proof. Consider a pair of fuzzy mappings 𝑆, 𝑇 : 𝑋 → F(𝑋)

defined by

𝑆 (𝑥) (𝑡) = {
𝛼, 𝑡 ∈ 𝐹𝑥

0, 𝑡 ∉ 𝐹𝑥,

𝑇 (𝑥) (𝑡) = {
𝛼, 𝑡 ∈ 𝐺𝑥

0, 𝑡 ∉ 𝐺𝑥,

(98)

where 𝛼 ∈ (0, 1]. Then

[𝑆𝑥]
𝛼
= {𝑡 : 𝑆 (𝑥) (𝑡) ≥ 𝛼} = 𝐹𝑥, [𝑇𝑥]𝛼 = 𝐺𝑥. (99)

Thus, Theorem 25 can be applied to obtain 𝑤 ∈ 𝑋 such that

𝑤 ∈ [𝑆𝑤]𝛼 ∩ [𝑇𝑤]𝛼 = 𝐹𝑤 ∩ 𝐺𝑤. (100)

Remark 31. Consider the following.

(i) By setting 𝜁, 𝜅, and 𝜍 in Corollary 18, 𝛽, 𝛾, and 𝜂 in
Corollary 24, and 𝑎, 𝑏, and 𝑐 in Corollary 30 with
different combinations, one can get corresponding
results in [19, 20] as corollaries.

(ii) By Remark 7 and Corollaries 18, 24, and 30, one can
easily get the results of [13, 18–21].

Example 32. Let 𝑋 = [0, 1] and let C be the set of
complex numbers; define 𝑑 : 𝑋 × 𝑋 → C as follows:

𝑑 (𝑥, 𝑦) =
𝑥 − 𝑦

 𝑒
𝑖𝜃, where 𝜃 = Arg (𝑧) ,

𝑧 = 𝑥 + 𝑖𝑦, and |⋅| is modulus function.
(101)

Then (𝑋, 𝑑) is a complete complex valued metric space.
Define a pair of mappings 𝑆, 𝑇 : 𝑋 → (𝑋), for 𝛼 ∈ (0, 1] as
follows.

For 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≤ 𝑦, we have

𝑆 (𝑥) (𝑡) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝛼 if 0 ≤ 𝑡 ≤ 𝑥

40
𝛼

2
if 𝑥

40
< 𝑡 ≤

𝑥

30

𝛼

3
if 𝑥

30
< 𝑡 ≤

𝑥

20

𝛼

5
if 𝑥
20

< 𝑡 ≤ 1,

(102)

𝑇 (𝑥) (𝑡) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝛼 if 0 ≤ 𝑡 ≤ 𝑥

20
𝛼

3
if 𝑥

20
< 𝑡 ≤

𝑥

10

𝛼

4
if 𝑥

10
< 𝑡 ≤

𝑥

5

𝛼

7
if 𝑥

5
< 𝑡 ≤ 1,

(103)

such that

[𝑇𝑥]
𝛼
= [0,

𝑥

20
] , [𝑆𝑥]𝛼 = [0,

𝑥

40
] , (104)

and then

𝑊
𝑥
([𝑇𝑦]

𝛼
) = {𝑑 (𝑥, 𝑢) : 𝑢 ∈ [0,

𝑦

20
]} ,

𝑊
𝑦
([𝑆𝑥]𝛼) = {𝑑 (𝑦, V) : V ∈ [0,

𝑥

40
]} .

(105)

Denote 𝑑(𝑥, [𝑇𝑥]
𝛼
) and 𝑑(𝑥, [𝑆𝑥]

𝛼
) by the greatest

lower bounds of𝑊
𝑥
([𝑇𝑥]
𝛼
) and𝑊

𝑥
([𝑆𝑥]
𝛼
). Then

𝑑 (𝑥, [𝑇𝑦]
𝛼
) (𝑧) =

{{

{{

{

0 if 𝑥 <
𝑦

20

(𝑥 −
𝑦

20
) 𝑒𝑖𝜃 if 𝑥 >

𝑦

20
,

𝑑 (𝑦, [𝑆𝑥]𝛼) (𝑧) = {(𝑦 −
𝑥

40
) 𝑒𝑖𝜃, as 𝑦 > 𝑥

40
,

(106)

and also

𝑑 (𝑦, [𝑇𝑦]
𝛼
) (𝑧) = (

19𝑦

20
) 𝑒
𝑖𝜃
,

𝑑 (𝑥, [𝑆𝑥]𝛼) (𝑧) = (
39𝑥

40
) 𝑒
𝑖𝜃
.

(107)
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Moreover, if 𝑤
𝑦𝑥
∈ C such that

𝑤
𝑦𝑥
=


𝑦

20
−
𝑥

40


𝑒
𝜃
, (108)

then

𝑠 ([𝑇𝑦]
𝛼
, [𝑆𝑥]𝛼) = {𝑤 ∈ C : 𝑤

𝑥𝑦
⪯ 𝑤} . (109)

For 𝑥 > 𝑦/20, we have

𝑑 (𝑦, [𝑇𝑦]
𝛼
) + 𝑑 (𝑥, [𝑆𝑥]𝛼)

3
(𝑧)

=
1

3
(
19𝑦

20
+
39𝑥

40
) 𝑒
𝑖𝜃

=
1

3
(𝑦 −

𝑦

20
+ 𝑥 −

𝑥

40
) 𝑒
𝑖𝜃

=
1

3
(𝑦 −

𝑥

40
+ 𝑥 −

𝑦

20
) 𝑒
𝑖𝜃

=
1

3
(𝑦 −

𝑥

40
) 𝑒
𝑖𝜃
+ (𝑥 −

𝑦

20
) 𝑒
𝑖𝜃

=
𝑑 (𝑦, [𝑆𝑥]𝛼) + 𝑑 (𝑥, [𝑇𝑦]𝛼)

3
(𝑧)

=
1

3
(
6𝑦

20
+
13𝑦

20
+
6𝑥

40
+
33𝑥

40
) 𝑒
𝑖𝜃

=
1

3
(
6𝑦

20
+
6𝑥

40
) 𝑒
𝑖𝜃
+ (

13𝑦

20
+
33𝑥

40
) 𝑒
𝑖𝜃

≻
1

3
(
6𝑦

20
+
6𝑥

40
) 𝑒
𝑖𝜃

= (
2𝑦

20
+
2𝑥

40
) 𝑒
𝑖𝜃
> (

𝑦

20
+
𝑥

40
) 𝑒
𝑖𝜃

≻


𝑦

20
−
𝑥

40


𝑒
𝑖𝜃
= 𝑤
𝑥𝑦
,

(110)

also as

1

2
𝑑 (𝑥, 𝑦) =

1

2

𝑥 − 𝑦
 𝑒
𝑖𝜃
⪰


𝑦

20
−
𝑥

40


𝑒
𝑖𝜃
. (111)

It follows that, with 𝜁 = 𝜅 = 1/3, 𝜍 ̸= 0, such that 𝜁 + 𝜅 + 𝜍 < 1,
we have

𝜁𝑑 (𝑥, [𝑆𝑥]𝛼) + 𝜅𝑑 (𝑦, [𝑇𝑦]𝛼)

+ 𝜍
𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(112)

𝜁𝑑 (𝑥, [𝑇𝑦]
𝛼
) + 𝜅𝑑 (𝑦, [𝑆𝑥]𝛼)

+ 𝜍
𝑑 (𝑥, [𝑇𝑦]

𝛼
) 𝑑 (𝑦, [𝑆𝑥]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) ,

(113)

and for 𝜁 = 1/2 with 𝜅 ̸= 0 and 𝜍 ̸= 0, such that 𝜁 + 𝜅 + 𝜍 < 1,
we have

𝜁𝑑 (𝑥, 𝑦)

+
𝜅𝑑 (𝑥, [𝑆𝑥]𝛼) 𝑑 (𝑦, [𝑇𝑦]𝛼) + 𝜍𝑑 (𝑦, [𝑆𝑥]𝛼) 𝑑 (𝑥, [𝑇𝑦]𝛼)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 ([𝑆𝑥]𝛼, [𝑇𝑦]𝛼) .

(114)

Hence 𝑇 and 𝑆 satisfy all the conditions of our main
Theorem 12 to obtain 0 ∈ [𝑆0]

𝛼
∩ [𝑇0]

𝛼
.
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