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As advances in neurotechnology allow us to access the ensemble activity of multiple neurons simultaneously, many neurophys-
iologic studies have investigated how to decode neuronal ensemble activity. Neuronal ensemble activity from different brain
regions exhibits a variety of characteristics, requiring substantially different decoding approaches. Among various models, a
maximum entropy decoder is known to exploit not only individual firing activity but also interactions between neurons, extracting
informationmore accurately for the caseswith persistent neuronal activity and/or low-frequency firing activity.However, it does not
consider temporal changes in neuronal states and therefore would be susceptible to poor performance for nonstationary neuronal
information processing. To address this issue, we develop a novel decoder that extends a maximum entropy decoder to take time-
varying neural information into account. This decoder blends a dynamical system model of neural networks into the maximum
entropy model to better suit for nonstationary circumstances. From two simulation studies, we demonstrate that the proposed
dynamic maximum entropy decoder could cope well with time-varying information, which the conventional maximum entropy
decoder could not achieve. The results suggest that the proposed decoder may be able to infer neural information more effectively
as it exploits dynamical properties of underlying neural networks.

1. Introduction

Ensemble data derived from neuronal population activities
have been subject to numerous decoding attempts [1]. Tra-
ditional methods mainly focused on neural information of
a single neuron averaged over multiple trials, consequently
suffering from intertrial variations and neglecting ensemble
information stemming from interactions between multiple
neurons. Thus, decoding methods that directly tackle neu-
ronal ensemble activity as a whole aremore desirable in those
terms [2].

To this end, an ensemble decoding method called the
population vector (PV) model was proposed where the
ensemble state was represented as a weighted sum of the
preferred directions of individual neurons’ firing rates [3].
Originally aimed for the analysis of primary motor cortical
activity, the PV model was also utilized for the analysis of
data from various regions such as primary visual cortex [1, 4].

The idea of the vector representation of neuronal ensemble
activity was further extended in a form of the optimal linear
estimator (OLE) [5].

Both PV and OLE, categorized as structural analysis
methods for ensemble data, can be applied when covariate
events lie in a single space such as the direction of movement.
But in many real cases, where such a condition is not met,
a Bayesian decoding method may provide a better decoding
solution. Rather than simply merging the ensemble data
structurally, a Bayesian method chooses the event with the
maximum a posteriori probability. This recursive Bayesian
decoding method has been proposed for neuronal ensemble
decoding in various forms such as the point process [6],
the Kalman filter, or the Particle filter [7, 8]. By considering
the fact that neuronal ensemble data contain vital informa-
tion regarding correlations between multiple neurons [9],
different Bayesian decoding approaches utilize such correla-
tions directly for probability distribution estimation [10] via
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the statistical dynamics analysis [11–13], based on the maxi-
mum entropy principle. Being capable of extracting informa-
tion from the data with a temporal resolution of millisecond
[12], the maximum entropy decoding approach is known to
be robust even to the neural data with a low firing rate [11, 14].

The maximum entropy decoding method directly draws
upon the stability of neuronal states under certain condition
and is well known for its simplicity and consistent perfor-
mance. It is especially known to well represent collective
behavior of neural networks. However, it does not take
temporal patterns of neuronal ensemble activity into con-
sideration. Therefore, we propose a novel maximum entropy
decoder that can embrace information regarding temporal
dynamics of neuronal ensemble activity and thus enhance
decoding performance. Especially, our newmodel is expected
to play a vital role in the decoding of neuronal ensemble
signals in prefrontal regions of the brain where persistence
firing activity with a low firing rate is often observed.

The paper is organized as follows. First we illustrate the
basic concept of maximum entropy decoding for neuronal
ensemble data and the computational models to implement
this concept. Then, we describe an extended Ising decoder
that has been recently proposed as an effective maximum
entropy decoding method for various neuronal representa-
tions. Next, we propose a new decoder that incorporates
temporal dynamics of neuronal ensemble into the maximum
entropy decoding model. Simulation studies illustrating
advantages of using the proposed model follow. Finally, we
discuss advantages and limitations of the proposedmodel and
possible future research directions.

2. Methods

2.1. Maximum Entropy Decoding. Let multivariate neuronal
ensemble data 𝑅 be observed in response to stimuli 𝑆. Our
objective is to determine which stimulus 𝑠 ∈ 𝑆 was applied
by decoding a given neuronal data 𝑟 ∈ 𝑅. One possible
methodwould be to find 𝑠 ∈ 𝑆 thatmaximizes the conditional
probability of 𝑠 given 𝑟:

𝑠 = argmax
𝑠∈𝑆

𝑃 (𝑠 | 𝑟) . (1)

Due to the difficulty of completely describing such a
conditional probability, the Bayes Rule is applied to represent
the conditional probability in terms of likelihood and prior,

𝑠 = argmax
𝑠∈𝑆

𝑃 (𝑟 | 𝑠) 𝑃 (𝑠)

𝑃 (𝑟)
. (2)

In most cases, the likelihood of 𝑃(𝑟 | 𝑠) describing a
generative relationship between a specific stimulus and its
consequential response can be determined. Also, since 𝑃(𝑟)
is irrelevant to the inference of 𝑠 ∈ 𝑆, the equation above can
be reduced as follows:

𝑠 = argmax
𝑠∈𝑆

𝑃 (𝑟 | 𝑠) 𝑃 (𝑠) . (3)

When estimating 𝑃(𝑟 | 𝑠), not only individual neuronal
activity in response to a specific stimulus but also correlations

among neurons should carry important information. By
utilizing a measure that maximizes entropy, which can be
applied with the information regarding neuronal correla-
tions, we obtain a Bayesian model called the Ising model
[14] and a method of decoding neuronal ensemble activity
based on this model is called the Ising decoder [12].The Ising
decoder can be briefly described as follows.

Let us assume that the firing rate of the 𝑖th neuron at a
given time instant is represented in a binary form: 𝑟

𝑖
= +1

when fired and 𝑟
𝑖
= −1 when silent. With a correlation

between a specific stimulus 𝑠 and the firing rate (Hz) of
the 𝑖th neuron, denoted as {ℎ

𝑖
}, together with {𝐽

𝑖𝑗
} as the

Lagrange multiplier and ∑
𝑟∈𝑅

𝑃(𝑟 | 𝑠) = 1 as the constraint,
the probability that yields the maximum entropy is given by
[12, 14]

𝑃 (𝑟 | 𝑠) =
1

∑
𝑟∈𝑅

𝑒−𝐻(𝑟|𝑠)
𝑒
−𝐻(𝑟|𝑠)

. (4)

Here Hamiltonian𝐻 is defined by

𝐻(𝑟 | 𝑠) = −
1

2
∑

𝑖,𝑗

𝐽
𝑖𝑗
(𝑠) 𝑟
𝑖
𝑟
𝑗
−∑

𝑖

ℎ
𝑖
(𝑠) 𝑟
𝑖
. (5)

The denominator in (4) will be henceforth referred to as a
partition function denoted as 𝑍.

In order to solve (4) with the Ising model, the partition
function 𝑍 regarding 𝑠 for given {𝐽

𝑖𝑗
, ℎ
𝑖
} must be calculated

in advance. A direct approach, however, would require 2
𝑁

calculations for 𝑁 neurons, rendering it intractable with a
large number of neurons. Instead, one can use an approxi-
mation solution via theMarkov chainMonte Carlo (MCMC)
method [15, 16] or mean field approximation [17, 18]. In
particular, mean field approximation of 𝑍 for given {𝐽

𝑖𝑗
, ℎ
𝑖
}

can be expressed as [12]

log𝑍 = ∑

𝑖

log (2 cosh (ℎ
𝑖
+𝑊
𝑖
))

−∑

𝑖

𝑊
𝑖
⟨𝑟
𝑖
⟩ +∑

𝑖<𝑗

𝐽
𝑖𝑗
⟨𝑟
𝑖
⟩ ⟨𝑟
𝑗
⟩ .

(6)

Here, ⟨𝑟
𝑗
⟩ indicates themean firing rate of the 𝑗th neuron and

𝑊
𝑖
= ∑
𝑖 ̸= 𝑗

𝐽
𝑖𝑗
⟨𝑟
𝑗
⟩.

The next problemwould be to find {𝐽
𝑖𝑗
, ℎ
𝑖
} that minimizes

the Hamiltonian 𝐻 in order to obtain a maximum entropy
distribution. TheThouless-Anderson-Palmer method can be
utilized to approximate computation [11, 12, 18, 19]. Using this
method we can find 𝐽

𝑖𝑗
that satisfies

(𝐶
−1

)
𝑖𝑗

= −𝐽
𝑖𝑗
− 2𝐽
2

𝑖𝑗
⟨𝑟
𝑖
⟩ ⟨𝑟
𝑗
⟩ , (7)

where 𝐶
𝑖𝑗
= ⟨𝑟
𝑖
𝑟
𝑗
⟩ − ⟨𝑟
𝑖
⟩⟨𝑟
𝑗
⟩. Then, ℎ

𝑖
can be computed by

ℎ
𝑖
= tanh−1 ⟨𝑟

𝑖
⟩ −∑

𝑖

𝐽
𝑖𝑗
⟨𝑟
𝑗
⟩ + ⟨𝑟

𝑖
⟩∑

𝑗

𝐽
2

𝑖𝑗
(1 − ⟨𝑟

𝑗
⟩
2

) . (8)

2.2. Extended Ising Decoder. One of the biggest advantages
of using the Ising decoder is its temporal resolution of one-
thousandth of a second [12]. But there may be occasions
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where a bigger bin size than 1ms is required. In such cases,
there would be multiple firings of a neuron within a single
bin and thus resulting in information loss in the simple
binary representation of firing activity (i.e., {−1, +1}). Hence,
we should consider a system where a state of a neuron is
represented in more diverse classes. Since the Ising model
only takes binary states into consideration, a model with an
extended flexibility is required; one of such models can be
found in the Potts model.

The Potts model is a generalized version of the Ising
model that embraces a state space of∑ = {1, 2, . . . , 𝑞}

𝑉, where
an integer 𝑞 ≥ 2. Hamiltonian 𝐻 for an arbitrary 𝜎 ∈ ∑ is
defined as

𝐻(𝜎) = −𝐽 ∑

(𝑖,𝑗)∈𝐸

𝛿 (𝜎
𝑖
, 𝜎
𝑗
) − ℎ∑

𝑖∈𝑉

𝜎
𝑖
. (9)

Here, 𝛿 represents the kronecker delta function and 𝜎
𝑖
is the

firing state of a neuron 𝑖 in the neuronal ensemble 𝑉. The
subset of 𝑉, denoted as 𝐸, represents a set of neurons that
are correlated with others.The Ising model is a special case of
the Potts model with 𝑞 = 2, 𝜎

𝑖
, 𝜎
𝑗
∈ {−1, +1}, and 𝛿(𝜎

𝑖
, 𝜎
𝑗
) =

(1/2)(1 + 𝜎
𝑖
𝜎
𝑗
) [20]. We can generalize the equation even

further to reflect differing levels of interaction depending on
the class of state such as

𝐻(𝜎) = −
1

2
∑

𝑖,𝑗∈𝑉

𝑞

∑

𝑘,𝑙=1

𝐽
𝑘𝑙

𝑖𝑗
𝑚
𝜎𝑖 ,𝑘

𝑚
𝜎𝑗 ,𝑙

− ∑

𝑖∈𝑉

ℎ
𝑖
𝜎
𝑖
, (10)

where𝑚
𝜎𝑖 ,𝑟

= 𝑞𝛿(𝜎
𝑖
𝑟) − 1 [21].

Representation of a neuronal state as a variable for the
Potts model can be realized in multiple approaches: counting
the total number of firings within a bin or measuring the
ratio of a current firing rate with respect to a maximum firing
rate for each neuron. The state space size would be equal to
the maximum number of firings within a bin for the former,
whereas the latter would yield an arbitrary size depending on
a way of quantizing the firing rates.

In the same line with the Ising model, the Potts model
requires approximation of the partition function. Unfortu-
nately, it is not easy to provide a closed-form solution for the
partition function in the Potts model. Instead, we utilize the
MCMCmethod as follows [15, 16, 22].

Let 𝑠 represent a Hamiltonian parameter pair (𝐽, ℎ) and
let 𝐻(𝜎; 𝑠) be 𝐻(𝜎) conditioned on 𝑠; we would like to
approximate 𝑍(𝑠) via the MCMC method. Suppose that we
know the information of 𝑍(𝑠

0
) for 𝑠

0
= (0, 0) and we want to

estimate𝑍(𝑠
1
) from it. If we define𝐻(𝜎; 𝑠) = 𝐻(𝜎; 𝑠

0
+𝜆(𝑠
1
−

𝑠
0
)), 𝑍(𝑠

𝜆
) = 𝑍(𝑠

0
+ 𝜆(𝑠
1
− 𝑠
0
)), then

log𝑍 (𝑠
1
) = log𝑍 (𝑠

0
) + ∫

1

0

𝑑

𝑑𝜆
log𝑍 (𝑠

𝜆
) 𝑑𝜆. (11)

Taking a closer look inside the integral term:

𝑑

𝑑𝜆
log𝑍 (𝑠

𝜆
) =

1

𝑍 (𝑠
𝜆
)

𝑑

𝑑𝜆
𝑍 (𝑠
𝜆
)

=
1

𝑍 (𝑠
𝜆
)
∑

𝜎∈Σ

𝑑

𝑑𝜆
𝑒
−𝐻(𝜎;𝑠𝜆)

=
1

𝑍 (𝑠
𝜆
)
∑

𝜎∈Σ

𝑒
−𝐻(𝜎;𝑠𝜆)

𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝜆
))

= 𝐸(
𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝜆
))) .

(12)

We can apply themean ofMarkov chain generated by a Gibbs
sampler to obtain the expected value in (12). For a sufficiently
large 𝐾, the integral is approximated by the trapezoidal rule
as

∫

1

0

𝑑

𝑑𝜆
log𝑍 (𝑠

𝜆
) 𝑑𝜆 ≈

𝐾

∑

𝑛=0

𝑛

𝐾 + 1
𝐸(

𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝑛/𝐾
))) .

(13)

Therefore,

𝑍 (𝑠
1
) ≈ 𝑍 (𝑠

0
) exp(

𝐾

∑

𝑛=0

𝑛

𝐾 + 1
𝐸(

𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝑛/𝐾
)))) .

(14)

The extended Ising decoder based on the Potts model
will be henceforth referred to as the conventional maximum
entropy decoder.

2.3. Dynamical Maximum Entropy Decoder. One of the
neural network models exploiting statistical dynamics is the
Hopfield network [23, 24]. It shows a distinct difference
when compared to Perceptron [25, 26] models. Perceptron
is aimed at physical systems and does not consider abstract
population characteristics where the Hopfield model does.
Moreover, while Perceptron is focused on synchronized
systems, the Hopfield network can also be applied to more
general dynamical systems.

In the Hopfield network, a state of each neuron is
represented as 𝜎 ∈ {0, 1}, determined with a threshold 𝜃 and
a synaptic connection strength 𝐽:

𝜎
𝑖
=

{{{

{{{

{

1, if ∑
𝑗

𝐽
𝑖𝑗
𝜎
𝑗
+ ℎ
𝑖
≥ 𝜃
𝑖
,

0, if ∑
𝑗

𝐽
𝑖𝑗
𝜎
𝑗
+ ℎ
𝑖
< 𝜃
𝑖
,

(15)

where 𝑖 and 𝑗 are index neurons and ℎ represents an external
input. The synaptic strength 𝐽 is updated in a specific time
range 𝑠 as follows:

𝐽
𝑖𝑗
= ∑

𝑠

(2𝜎
𝑠

𝑖
− 1) (2𝜎

𝑠

𝑗
− 1) . (16)

In case of 𝑖 = 𝑗, 𝐽
𝑖𝑗
= 0.
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Themost important feature is that if we assume symmetry
such that 𝐽

𝑖𝑗
= 𝐽
𝑗𝑖
, the Lyapunov function exists for this neural

network.TheLyapunov function, also referred to as an energy
function, is given by

𝐿 (𝜎) = −
1

2
∑

𝑖,𝑗

𝐽
𝑖𝑗
𝜎
𝑖
𝜎
𝑗
−∑

𝑖

ℎ
𝑖
𝜎
𝑖
. (17)

The existence of the Lyapunov function is important
because it analytically presents how the state of a system
is likely to change. In such cases, the Lyapunov function is
identical to Hamiltonian of the Ising model.

The Hopfield network has been generalized based on the
Potts model [21]. In this case, along with various degrees of
interactions depending ondiverse neural states, the Lyapunov
function becomes

𝐿 (𝜎) = −
1

2
∑

𝑖,𝑗∈𝑉

𝑞

∑

𝑘,𝑙=1

𝐽
𝑘𝑙

𝑖𝑗
𝑚
𝜎𝑖 ,𝑘

𝑚
𝜎𝑗 ,𝑙

− ∑

𝑖∈𝑉

ℎ
𝑖
𝜎
𝑖
, (18)

where𝑚
𝜎𝑖 ,𝑟

= 𝑞𝛿(𝜎
𝑖
𝑟) − 1. Note that Hamiltonian in the Potts

model can be obtained from this Lyapunov function.
Now, we describe how to build a dynamical maximum

entropy decoder. First, let us consider some basic aspects
of a dynamical system. Let a dynamical system receiving an
external input 𝑠 be described by

𝑓
𝑠
: Σ → Σ, (19)

with a set of all possible neuronal states as Σ. We then make
two basic assumptions on this dynamical system as follows.

Assumption 1. The dynamical system is assumed to approach
a stable state over time with no input. Then, for every 𝑠 ∈ 𝑆,
𝜎 ∈ Σ, and time 𝑡 ∈ 𝑍

+,

𝐿 (𝑓
𝑡

𝑠
(𝜎)) ≤ 𝐿 (𝜎) . (20)

Assumption 2. Let Ω
𝑠
𝑓 ⊆ Σ be a pseudo-periodic set in

response to an external input 𝑠. Then, we assume that
Ω𝑠𝑓

 < ∞, 𝑓
𝑛

𝑠
(𝜎) ∈ Ω

𝑠
𝑓. (21)

Here 𝑛 is an integer and can be sufficiently small. We
also assume that an external stimulus 𝑠 is static during its
stimulation period.

Next, we consider two cases when there is sufficient time
for the system to be stabilized (Case 1) and when there is
not (Case 2). For both cases, we need to estimate Ω

𝑠
𝑓 with

the assumptions above, which allow us to conjecture that
any 𝜎

1
and 𝜎

2
are close to each other if 𝜎

1
= 𝑤 = 𝜎

2
for

𝑤 ∈ Ω
𝑠
𝑓. Here 𝑤 represents a pseudo-periodic discretized

set belonging to Ω
𝑠
𝑓.

2.3.1. Case 1. In this case, we first define a probability that a
state 𝜎 belongs to certain 𝑤:

𝑃 (𝜎 = 𝑤 ∈ Ω
𝑠
𝑓) . (22)

Using Hamiltonian based on the Lyapunov function, we can
compute a probability that 𝜎 belongs to 𝑤 as

𝑃 (𝜎 = 𝑤) =
𝑃
𝑤
(𝜎)

∑
𝑤
 𝑃
𝑤
 (𝜎)

. (23)

The next step is to define a statistical state transition
function. We represent every possible pair of states given a
change of input from 𝑠 to 𝑠

 as Σ̃; that is, ⟨𝜎
𝑡
, 𝜎
𝑡+1

⟩ = �̃� = Σ̃.
Then, the transition function is defined as

Φ
𝑤,𝑤
 (𝑤, 𝑤



) =
1


Σ̃


∑

𝜎∈Σ̃

𝑃 (𝜎
𝑡
= 𝑤)𝑃 (𝜎

𝑡+1
= 𝑤


) . (24)

Decoding an input 𝑆
𝑡+1

with the knowledge of 𝑆
𝑡
from

neuronal ensemble data is stated as the following problem:

𝑆
𝑡+1

= argmax
𝑠∈𝑆

𝑃 (𝑆
𝑡+1

= 𝑠 | 𝜎
𝑡
, 𝜎
𝑡+1

, 𝑆
𝑡
) . (25)

This problem can be solved using the transition function and
probabilities described above:

𝑃 (𝑆
𝑡+1

= 𝑠 | 𝜎
𝑡
, 𝜎
𝑡+1

, 𝑆
𝑡
)

= ∑

𝑤𝑡+1∈Ω𝑠𝑓

𝑃 (𝜎
𝑡+1

= 𝑤
𝑡+1

)

× ( ∑

𝑤𝑡∈Ω𝑠𝑓

𝑃 (𝜎
𝑡
= 𝑤
𝑡
)Φ
𝑆𝑡+1 ,𝑠

(𝑤
𝑡
, 𝑤
𝑡+1

)) .

(26)

Note that we can also use a simplified version of this
formula given by

𝑃 (𝑆
𝑡+1

= 𝑠 | 𝜎
𝑡
, 𝜎
𝑡+1

)

= ∑

𝑤𝑡+1 ,𝑤𝑡∈Ω𝑠𝑓

𝑃 (𝜎
𝑡
= 𝑤
𝑡
) 𝑃 (𝜎

𝑡+1
= 𝑤
𝑡+1

)Φ
𝑠
(𝑤
𝑡
, 𝑤
𝑡+1

) .

(27)

2.3.2. Case 2. Let∑ be a set of all possible neuronal ensemble
states. Suppose there is a function on ∑ such as

0 : ∑×𝑆 → ∑. (28)

0 can be seen as the restrictive function 𝑓|
∑
of a dynam-

ical system 𝑓 and also as a reconstruction of 𝑓 with
respect to ∑. What this entails is the fact that 𝑓(𝜎) =

⟨𝑓
1

(𝜎), 𝑓
2

(𝜎), . . . , 𝑓
𝑛+1

(𝜎)⟩ can be found if 𝑠 ∈ ∏
𝑛

𝑖=0
𝑆
𝑖
is given

for all 𝜎 ∈ ∑. Since solving the problem with every possible
𝜎 ∈ ∑ and 𝑠 ∈ 𝑆 is difficult, we use a technique that limits the
length of the sequence to𝑁.

Rather than estimating Ω
𝑠
𝑓 as defined, we estimate the

neural trajectory of a specific 𝜎. For a small enough 𝑁, we
substitute𝜔 for 𝑠 ∈ ∏

𝑛

𝑖=0
𝑆
𝑖
, therefore acquiring the probability

𝑃(𝜎 = 𝜔) from (23). Now let Ω = {𝜔}, a temporary set that
retains its elements but not further down the line. With this
set, we redefine the function 0 as

0 : Ω × 𝑆 → Ω (29)
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and also in terms of Φ as

0 (Ω, 𝑠 ∈ 𝑆) = Φ
𝑠∈𝑆

(Ω,Ω) ∈ [0, 1] , (30)

such that the condition of ∑
𝜔,𝜔

∈Ω

Φ
𝑠
(𝜔, 𝜔


) = 1 is satisfied.
Hence, now our goal is to find a dynamical function Φ over
time. The initial value of Φ can be assumed to follow the
uniform distribution.

As time elapses, 𝜎 = ⟨𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑁
⟩ and 𝑠 = 𝜔 turns into

𝜎 = ⟨𝜎
2
, . . . , 𝜎

𝑁
, 𝜎
𝑁+1

⟩ and 𝑠 = 𝜔
. Then, we update Φ with

the result of (26) as follows:

𝑑

𝑑𝑡
Φ
𝑠
(𝜔, 𝜔


) = 𝜂
1
(val − Φ

𝑠
(𝜔, 𝜔


)) . (31)

The “val” in above equation can be regarded as either 1 or 0.
OnceΦ

𝑠
is properly normalized, we accept and normalize the

transformationwith a probability 𝜂
2
if the updated𝑃(𝜎 = 𝜔



)

enhances the performance of (26). 𝜂
1
and 𝜂
2
introduced here

are time-varying and converge to 0 when 𝑡 → ∞.
This method is partially in line with the simulated

annealing technique. Hence, it is expected to approach to a
right solution but, on the other hand, can consume longer
computational time.Themain characteristic of thismethod is
that𝜔 is not limited only to stable states. If not enough time is
given to reach a stable state after each external input, it might
be better to consider the temporary states generated during
the process. The proposed method realizes such temporary
states. Even the trajectory of state transition as a result of
change in external input can be represented in 𝜔. Although
each 𝜔 does not necessarily represent the stable state of a
neural network in such cases, it can be advantageous for the
decoding system that involves temporal dynamics since it can
represent the most likely state in response to the change.

2.4. Simulation Procedure. A synthetic neuronal ensemble
data set was generated in order to test the new decoding
method for both cases, “Case 1” and “Case 2,” discussed above.

2.4.1. Case 1. A model capable of representing persistence
activity of neurons is generally complex [27]; thus, for the
sake of the simplicity of experiment, we generated neuronal
ensemble data with fixed firing rates of sixteen neurons for
each external stimulus, based on Poisson process. Stimuli
were limited to two classes, 𝑆

1
and 𝑆
2
, where two stable states

existed for each. In short, for each stimulus, 𝑆 = {𝑆
1
, 𝑆
2
}, stable

states Ω
𝑆1
𝑓 = {𝑤

1,1
, 𝑤
1,2
} and Ω

𝑆2
𝑓 = {𝑤

2,1
, 𝑤
2,2
} exist (see

Figure 2(a)).
While four out of sixteen neurons represented the actual

state, the rest were set to have random mean firing rates
between 0Hz to 10Hz to represent irrelevant activity in
the ensemble data. Those four state-representing neurons
were divided into two pairs with neurons that were assigned
the same mean firing rate. Thus, each state could be
expressed as the following pairs: 𝑤

1,1
:= (10, 10, 0, 0)Hz,

𝑤
1,2

:= (0, 0, 10, 10)Hz, 𝑤
2,1

:= (0, 0, 0, 0)Hz, and 𝑤
2,2

:=

(10, 10, 10, 10)Hz.

2.4.2. Case 2. In order to generate neuronal ensemble data
for Case 2, we utilized the orientation tuning model [28] that
represents a biological neural network model for directional
coding [29, 30]. Similar to an excitatory-inhibitory neural
network model, the model contains an ensemble of neurons
that respond to the angular direction 𝜃 and delivers excitatory
or inhibitory signals among neurons depending on the
directional similarity. In our simulation, we defined a signal
passed on from one population of direction 𝜃 to another
population of 𝜃 as

𝐽
𝜃

𝜃
= −𝐽
0
+ 𝐽
2
cos (𝜃 − 𝜃



) . (32)

Here, 𝐽
0
and 𝐽
2
as a balancing parameter were set as 𝐽

0
= 0.14

and 𝐽
2
= 0.5 for our simulation. The actual input that the

neurons tuned to 𝜃
 received from an external input with an

angle 𝜃 was given by

ℎ
ext
𝜃

𝜃
= 𝑐 (1 − 𝜖 + 𝜖 cos (𝜃 − 𝜃



)) , (33)

where 𝜖 and 𝑐 were parameters representing the degree of
input focus and overall intensity of the input, respectively.The
range of 𝜖 was given as [0, 1/2]; 𝜖 = 0 indicated that every
neuron received uniform input regardless of their inherent
direction, and 𝜖 = 1/2 indicated that less input was given if
𝜃
 was more distant from 𝜃. Hence, a condition |𝜃



− 𝜃| = 𝜋

left neurons of 𝜃 unaffected. For this simulation, 𝜖 = 0.5 and
𝑐 = 0.4 were used (see Figure 1).

A temporal change of a neural network was expressed as
a firing rate based on the neural network model. The firing
rate 𝑈

𝑖
of the 𝑖th neuron was

𝜏
𝑖

𝑑𝑈
𝑖

𝑑𝑡
= −𝑈
𝑖
+ 𝑆
𝑖
(∑

𝑖

𝐽
𝑗𝑖
𝑈
𝑗
) . (34)

Here, 𝜏
𝑖
was a time constant representing a synaptic delay

between neurons, 𝐽
𝑗𝑖
was the synaptic strength between the

𝑖th and 𝑗th neurons, and 𝑆
𝑖
was a threshold function [31].This

part of the simulation utilized a total of 29 = 512 neurons
as well as a synaptic delay constant, 𝜏 = 10ms. A threshold
function for the firing rate was defined with the scale of
10
2Hz:

𝑆 (𝑈) =

{{

{{

{

0, if 𝑈 < 0,

𝑈, if 0 ≤ 𝑈 ≤ 4,

4, if 𝑈 > 4.

(35)

The number of neurons for each of eight directions was equal
(2
9−3

= 64) and the synaptic strength 𝐽 and the external input
ℎ were identical to the setting of orientation tuning model
of Case 1.The probability that neuronal connections between
neurons exist was set below 0.5.

3. Results and Discussion

Performance of the decoders was assessed by means of
“decoding error rate” and “decoding uncertainty” for the
given dataset. Error rate calculated as a ratio of incorrectly



6 Journal of Applied Mathematics

0.4

0.2

0

Stimuli

Time

N
eu

ro
ns

(a)

N
eu

ro
ns

Response ×10
2

(H
z)

4

3

2

1

0
0𝜋 𝜋/4 𝜋/2 3𝜋/4 𝜋 5𝜋/4 3𝜋/2 2𝜋

(b)

Figure 1: Simulated data generated from the orientation tuningmodel. For each of 8 directional stimuli provided to each neuron (a), simulated
neuronal responses are generated (b). Horizontal axis for each box represents time-flow (for 200ms, from left to right), and vertical axis
represents single neurons. Magnitude of stimulation and neuronal response is represented by a greyscale colormap.
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Figure 3: (a) Decoding error rates and (b) uncertainty represented by entropy of decoding output using two decodingmodels from simulated
neural data (see text). The maximum entropy is 1 bit in this case since there are two possible external events. In both categories, there
is significant difference in error rates (𝑡-test, 𝑃 < 0.00001) between the dynamical maximum entropy decoder (new) and the traditional
maximum entropy decoder (traditional).

classified samples to the total number of samples tested
served as a directmeasure of decoder performance.Decoding
uncertainty was represented with the entropy of the normal-
ized distribution of Bayesian probabilities for each class gen-
erated by the decoder. Small amount of entropy indicates less
uncertainty of decoding performance, analogous to smaller
variance of estimates of a model. Using these performance
measures, we compared our proposed decoder (dynamical
maximum entropy decoder) with the conventional decoder
(the extended Ising decoder).

3.1. Case 1. The dynamical maximum entropy decoder esti-
matedΦ

𝑠,𝑠
(𝑤, 𝑤



) as the first step of decoding.We examin ed
whether this transition estimation was correctly represented
by the decoder. Figure 2(b) demonstrates that the estimation
results well represent state changes for a given external event
(see Figure 2(a)). When there were more than two stable
states for each event, the proposed method outperformed
the conventional maximum entropy decoder in terms of
both error rate and uncertainty (see Figure 3). The proposed
decoder generated approximately 0.25 error rate and 0.12
bit of entropy which is a significant improvement over 0.45
error rate and 0.78 bit entropy by the conventional decoder.
Superior performance of the dynamical maximum entropy
decoder was based on its ability to alleviate signals from those
neurons which were regarded as irrelevant to the event.

3.2. Case 2. The second study considered a case where the
external stimulus changes before the system converges to a
stable state. For each of 8 uniformly separated directions, the
stimuluswas changed after the first 200ms and then lasted for
another 200ms period.The succeeding direction could either

be different from or same as the former. A small number of
neurons were randomly chosen out of 512 total neurons and
were discretized within a bin size of 10ms (see Figure 4).

For these data with temporal changes of stimuli, the
proposed decoder was evidently superior compared to the
conventional decoder in terms of error rates with 0.07-,
0.07-, 0.01-, and 0.11-point advantage for respective scenarios
(see Figure 5(a)). However, decoding uncertainty was also
significantly (difference range 0.3∼0.8 bits; 𝑡-test, 𝑃 < 0.01)
higher in the proposed decoder than the conventional one in
all scenarios (Figure 5(b)).This issuewill be further discussed
below.

3.3. Discussion. Decoding neuronal ensemble activity
recorded from brain signals provides insights on how neural
networks process information. Decoding models based
on computational models for biological neural networks
can provide these insights to deepen our understanding of
neural network mechanisms. However, approaches directly
using neural network models are not easily realized because
it is challenging to know every synaptic strength between
neurons and to obtain full information of all the neurons in a
network.Therefore, the present study proposes an alternative
approach to leveraging dynamical and collective behavior
of an ensemble of neurons in response to various stimuli.
From simple assumptions on the model, we blend neural
dynamics into a decoder with which we are able to inspect
the functions and roles of a neural network.

To the assessment of the performance of a decoder, the
uncertainty of decoding outcome as well as the error rate is
crucial. This uncertainty measures how robust the decision
made by a decoder is regarding the information inferred
from neuronal activity. Our proposed decoder exhibited a
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significantly low error rate and small uncertainty in the first
case study (see Figure 3). However, it generated significantly
larger uncertainty than the conventional maximum entropy
decoder in the second case study despite its lower error rate
(Figure 5). We speculate that such larger uncertainty may
be due to model complexity in our decoder. More complex
decoding procedure in our model includes uniformly dis-
tributed transition probabilities that may in turn equalize
prior probabilities of individual stimuli, thus increasing
uncertainty of a decoded stimulus. However, it may not be
solely the result of model structure because the proposed
decoder could also reduce uncertainty in the first case.
Consequently, we suspect that increased uncertainty in the
second casemay indicate a particular outcome resulting from
specific data properties, which need further investigation in
the future.

Yet, we also recognize that there is plenty of room to
improve in our model. In particular, more rigorous ways of
obtaining information about neural dynamics may be neces-
sary. For instance, ourmethod to estimate stabilized states of a
neuronal ensemble may be suboptimal to many different real
data. Also, we need to apply our decoder to ensemble data
from many different brain regions to generalize it further.
Finally, continuous efforts to reduce computational loads in
the proposed decoder will be required.

4. Conclusions

A number of methods have been continuously developed to
decode neuronal ensemble activity. The design of decoding
models draws upon the properties of a target brain region,
a recording technique, neural signals, and the objectives of
decoding. Among them, the maximum entropy decoding
method takes into account correlations between neurons
as well as firing rates of individual neurons. In particular,
it produces good decoding performance when there exist
marginal but clear interactions between neurons. However,
the current maximum entropy decoder does not capture
time-varying characteristics of neuronal ensemble activity,
which often deliver essential information about underly-
ing brain functions. Hence, the present study addresses
this issue by developing a novel decoder that incorporates
dynamical properties of a neuronal ensemble in the model
while maintains the key functions of the maximum entropy
decoder. We demonstrate that more information can be
successfully decoded using the proposed decoder compared
to the conventional maximum entropy decoder.
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