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Correspondence should be addressed to M. P. Vassileva; maria.vassilev@gmail.com

Received 4 February 2014; Accepted 7 April 2014; Published 5 May 2014

Academic Editor: Ioannis K. Argyros

Copyright © 2014 S. Artidiello et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design
them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm
the theoretical results and to compare the new methods with other known ones.

1. Introduction

The rapid advances in the development of digital computer
have established the need to design newmethods with higher
computational efficiency for solving problems of practical
relevance for applied mathematics, engineering, biology, and
so forth. A variety of problems in different fields of science
and technology require finding the solution of a nonlinear
equation. Iterative methods for approximating solutions are
the most used technique. The interest in the multipoint
iterative methods has been renewed in the first decade of the
21st century as they are of great practical importance because
they exceed the theoretical limits of the methods of a point
on the order of convergence and computational efficiency.

Throughout this paper we consider multipoint iterative
methods to find a simple root 𝜉 of a nonlinear equation
𝑓(𝑥) = 0, where 𝑓 : 𝐼 ⊂ R → R, restricted to real
functions with a unique solution inside an open interval 𝐼.
Many modified schemes of Newton’s method, probably the
most widely used iterative method, have been proposed to
improve the local order of convergence and the efficiency
index over the last years. The efficiency index, introduced by
Ostrowski in [1] as 𝐼 = 𝑝1/𝑑, where 𝑝 is the order of conver-
gence and 𝑑 the number of functional evaluations per step,
establishes the effectiveness of the iterative method. In this
sense, Kung and Traub conjectured in [2] that a multipoint
iterative scheme without memory, requiring 𝑑 + 1 functional
evaluations per iteration, has order of convergence at most

2𝑑. The schemes which achieve this bound are called optimal
methods.

A common way to increase the convergence order in
multipointmethods is to useweight functions that are applied
to construct families of iterative methods for nonlinear
equations. See, for example, the text by Petković et al. [3]
and the references therein. The main goal and motivation
in the construction of new methods is to attain as high as
possible computational efficiency. Optimal methods of order
four were discussed, for example, in [4, 5]. Many optimal
methods of order eight have been suggested and compared
in the literature; see, for instance, the recent results obtained
by Kim in [6], Khan et al. in [7], Džunić and Petković in [8],
and Soleymani et al. in [9]. Recently, by usingweight function
method some sixteenth-order iterative schemes have been
also published as [10, 11].

The outline of the paper is as follows. In Section 2 the
families of optimal sixteenth-order methods are constructed
and the convergence analysis is discussed. In Section 3
numerical experiments are performed and the proposed
methods of order sixteen are compared with the mentioned
sixteenth-order schemes on academic test functions. Finally,
in Section 4, the problem of preliminary orbit determination
of artificial satellites is studied by using the classical fixed
point method and numerical experiments on the modified
Gaussian preliminary orbit determination are performed and
the proposed methods are compared with recent optimal
known schemes.
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2. Description of the Family of
Optimal Multipoint Methods

Our starting point is Traub’s scheme (see [12], also known as
Potra-Pták’s method) whose iterative expression is
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where 𝑦
𝑘
is Newton’s step. This method has order three but

it requires three functional evaluations, so it is not optimal
according to Kung-Traub conjecture and our purpose is to
design optimal methods.

So, we begin the process from the iterative scheme (see
[13])
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where 𝛽 is a real parameter and 𝐻(𝑢) is a real function with
𝑢 = 𝑓(𝑦)/𝑓(𝑥).

The method defined by (2) has order four if 𝛽 = 1 and
a function 𝐻 is chosen so that the conditions 𝐻(0) = 1,
𝐻(0) = 2, and |𝐻(0)| < ∞ are fulfilled. Some known
iterative schemes are obtained as particular cases of this
family. Choosing 𝐻(𝑢) = 1/(1 − 𝑢)2, we obtain the fourth-
order method described by Kung and Traub in [2]. King’s
family [14] of fourth-order methods is obtained when we
choose 𝐻(𝑢) = (1 + 𝛽𝑢)/(1 + (𝛽 − 2)𝑢). Also, if we take
𝐻(𝑢) = (1 + 2𝑢 + 𝛽𝑢2)/(1 + (𝛽 − 5)𝑢2), we obtain the family
of fourth-order methods defined by Zhao et al. in [15].

Recently, taking (2) with 𝛽 = 1 as the first two steps and
adding a new step, Džunić et al. in [16] designed the following
three-step method:
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(3)

where 𝑦
𝑘
is Newton’s step and 𝐺(𝑢, V) is a function of two

variables: 𝑢 = 𝑓(𝑦)/𝑓(𝑥) and V = 𝑓(𝑧)/𝑓(𝑦).
They proved in [16] that the method defined by (3) has

optimal eighth-order of convergence, if sufficiently differen-
tiable functions𝐻 and 𝐺 are chosen so that the conditions
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and 𝐺
𝑢𝑢𝑢
(0, 0) = −24 + 6𝐻(0) + 𝐻(0) are satisfied. The

iterative method resulting from introducing these conditions
and the simplest form for 𝐻 and 𝐺, obtained by using the

Taylor polynomial of the functions: 𝐻(𝑢) = 1 + 2𝑢 and
𝐺(𝑢, V) = 1 + 2𝑢 + V + 𝑢2 + 4𝑢V − 4𝑢3, is denoted by𝑀8.

Now, we wonder if it is possible to find a sixteenth-order
iterative method by adding a new step with the same settings
accompanied with a weight function 𝑇 that depends on three
variables 𝑢, V, and 𝑤 = 𝑓(𝑠)/𝑓(𝑧), where 𝑠 is the last step of
the eighth-order method (3). The iterative expression of the
new scheme is
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where 𝑦
𝑘
and 𝑧

𝑘
are the same steps as in method (3). The

following result can be proved that establishes the sixteenth-
order of family (5).

Theorem 1. Let 𝜉 ∈ 𝐼 be a simple zero of a sufficiently
differentiable function 𝑓 : 𝐼 ⊂ R → R in an open interval
𝐼 and 𝑥

0
an initial guest close to 𝜉. The method defined by (5)

has optimal sixteenth-order convergence if sufficiently differen-
tiable functions𝐻, 𝐺, and 𝑇 are chosen so that the conditions
on method (3) (proved in [16]) and the following requirements
are satisfied:
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where
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one, two, and three of the weight functions 𝐺 and 𝑇 at zero.

Proof. The proof is based on Taylor’s expansion of the ele-
ments appearing in the iterative expression (5). We only
show the necessary elements of the expressions in order
to determine the conditions needed to attain the order of
convergence. The Taylor expansion of the weight functions
used is developed around zero but, for the sake of simplicity,
we will omit the zero in the Taylor expansion of𝐻, 𝐺, and 𝑇.
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four equations determine that 𝑇u𝑢V(0, 0, 0) = 2 + 𝐺𝑢𝑢V(0, 0),
𝑇VV(0, 0, 0) = 𝐺VV(0, 0), and 𝑇𝑤(0, 0, 0) = 1 and the error
equation is

𝑒
𝑘+1
=
16

∑
𝑗=13

𝑁
5,𝑗
𝑒
𝑗

𝑘
+ O (𝑒

17

𝑘
) , (13)

where

𝑁
5,13

= 𝑛𝑐
2
[𝑛
13,1
𝑐
4

2
+ 𝑛
13,2
𝑐
2

2
𝑐
3
+ 𝑛
13,3
𝑐
2

3

−24 (𝑇
𝑢𝑤
(0, 0, 0) − 2) 𝑐

2
𝑐
4
] ,

𝑛
13,1

= 3254 − 2𝛼𝐺
𝑢𝑢𝑢V (0, 0) − 384𝐻


(0)

+ 2𝐻
(4)
(0) − 6𝛼𝐺

𝑢𝑢V (0, 0) (𝑇𝑢𝑤 (0, 0, 0) − 2)

+ 16𝑇
𝑢𝑢𝑢
(0, 0, 0)

+ 3 (100 − 20𝐻

(0) + 𝐻


(0)
2
)𝐺
𝑢VV (0, 0)

− 6 (100 − 20𝐻

(0) + 𝐻


(0)
3
)𝐺VV (0, 0)

− (1278 + 300𝐺VV (0, 0) + 156𝐻

(0)

−60𝐺VV (0, 0)𝐻

(0) − 8𝑇

𝑢𝑢𝑢
(0, 0, 0))

× 𝑇
𝑢𝑤
(0, 0, 0)

+ (36𝐺VV (0, 0)𝐻

(0) − 𝐻

(4)
(0)) 𝑇

𝑢𝑤
(0, 0, 0) ,

𝑛
13,2

= 4 [𝐺
𝑢𝑢𝑢V (0, 0)

+ 3 (𝐺
𝑢𝑢V (0, 0) + 𝛼𝐺VV (0, 0)) (𝑇𝑢𝑤 (0, 0, 0) − 2)

+ 3 (108 − 𝛼𝐺
𝑢VV (0, 0) − 4𝐻


(0)

− (38 − 𝐻

(0)) 𝑇

𝑢V (0, 0, 0)) ] ,

𝑛
13,3

= 12 [8 + 𝐺
𝑢VV (0, 0) + 𝐺VV (0, 0)

× (𝑇
𝑢𝑤
(0, 0, 0) − 2) − 2𝑇

𝑢𝑤
(0, 0, 0)] .

(14)

For obtaining order of convergence of at least fourteen it is
necessary that 𝑛

13,1
= 𝑛
13,2

= 𝑛
13,3

= 0 and𝑇
𝑢𝑤
(0, 0, 0)−2 = 0.

This gives us the conditions: 𝑇
𝑢V(0, 0, 0) = 2, 𝐺𝑢VV(0, 0) = −4,

and 𝐺
𝑢𝑢𝑢V(0, 0) = −6(𝐻

(0) − 4) and the error equation is

𝑒
𝑘+1
=
16

∑
𝑗=14

𝑁
6,𝑗
𝑒
𝑗

𝑘
+ O (𝑒

17

𝑘
) , (15)

where

𝑁
6,13

= 𝑛 [𝑛
14,1
𝑐
6

2
− 2𝑛
14,2
𝑐
4

2
𝑐
3
− 12𝑛

14,3
𝑐
2

2
𝑐
2

3

+ 8𝑛
14,4
𝑐
3

3
− 24𝑛

14,5
𝑐
3

2
𝑐
4

−48 (𝑇V𝑤 (0, 0, 0) − 2) 𝑐2𝑐3𝑐4] .

(16)

If 𝑇V𝑤(0, 0, 0) = 2,

𝑛
14,1

= 2976 − 2400𝐺VV (0, 0)

− 100𝐺V𝑤 (0, 0) − 3𝛼
2
𝐺
𝑢𝑢VV (0, 0)

− (2112 − 1080𝐺VV (0, 0) − 300𝐺VVV (0, 0))𝐻

(0)

+ (216 − 144𝐺VV (0, 0) − 30𝐺VVV (0, 0))𝐻

(0)
2

+ (6𝐺VV (0, 0) + 𝐺VVV (0, 0))𝐻

(0)
3
+ 8𝐻
(4)
(0)

− 𝐻

(0)𝐻
(4)
(0) − 6𝛼𝐺

𝑢𝑢V (0, 0)

× (8 − 2𝐻

(0) + 𝑇

𝑢𝑢𝑤
(0, 0, 0))

+ (1272 − 300𝐺VV (0, 0) − 156𝐻

(0)

+ 60𝐺VV (0, 0)𝐻

(0)

−3𝐺VV (0, 0)𝐻

(0)
2
+ 𝐻
(4)
(0)) 𝑇

𝑢𝑢𝑤
(0, 0, 0)

− 8 (2 + 𝐻

(0) − 𝑇

𝑢𝑢𝑤
(0, 0, 0)) 𝑇

𝑢𝑢𝑢
(0, 0, 0)

+ (1000 − 300𝐻

(0) + 3𝐻


(0)
2
− 𝐻

(0)
3
)

× 𝑇VV (0, 0, 0) ,

𝑛
14,2

= 10176 − 780𝐺VV (0, 0)

− 300𝐺VVV (0, 0) − 6𝛼𝐺𝑢𝑢VV (0, 0)

− (144 − 228𝐺VV (0, 0) + 60𝐺VVV (0, 0))𝐻

(0)

+ (12 − 15𝐺VV (0, 0) − 3𝐺VVV (0, 0))𝐻

(0)
2

+ 𝐻
(4)
(0) − 6𝐺

𝑢𝑢V (0, 0)

× (18 − 3𝐻

(0) + 𝑇

𝑢𝑢𝑤
(0, 0, 0))

+ 6 (38 + 𝛼𝐺VV (0, 0) − 𝐻

(0)) 𝑇

𝑢𝑢𝑤
(0, 0, 0)

+ 3 (100 − 20𝐻

(0) + 𝐻


(0)
2
) 𝑇VVV (0, 0, 0) ,

𝑛
14,3

= − 52 + 2𝐺
𝑢𝑢V (0, 0) + 𝐺𝑢𝑢VV (0, 0)

+ 6𝐻

(0) + 4𝐺VV (0, 0) (7 − 𝐻


(0))

− 𝛼𝐺VVV (0, 0) + 𝛼𝑇VVV (0, 0, 0)

+ 𝑇
𝑢𝑢𝑤
(0, 0, 0) (𝐺VV (0, 0) − 2) ,

𝑛
14,4

= 6 − 3𝐺VV (0, 0) − 𝐺VVV (0, 0) + 𝑇VVV (0, 0, 0) ,

𝑛
14,5

= 2 + 𝐻

(0) − 𝑇

𝑢𝑢𝑤
(0, 0, 0) .

(17)

Now, if we demand 𝑛
14,1

= 𝑛
14,2

= 𝑛
14,3

= 𝑛
14,4

= 𝑛
14,5

= 0,
the order of convergence is at least fifteen, and the necessary
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conditions are 𝑇
𝑢𝑢𝑤
(0, 0, 0) = 2 + 𝐻(0), 𝐺VVV(0, 0, 0) =

6 − 3𝐺VV(0, 0) + 𝑇VVV(0, 0, 0), 𝐺𝑢𝑢VV(0, 0) = −2(2 + 𝐺𝑢𝑢V(0, 0) −
𝐻(0)),𝐻(4)(0) = 12(𝐻(0) − 6). Taking into account these
conditions, the error equation is

𝑒
𝑘+1
= 𝑁
7,15
𝑒
15

𝑘
+ 𝑁
7,16
𝑒
16

𝑘
+ O (𝑒

17

𝑘
) , (18)

where 𝑁
7,15

= −(1/6)𝑛𝑐
2
[(𝑛
15,2
𝑐6
2
− 𝑛
15,3
𝑐4
2
𝑐
3
+ 𝑛
15,4
𝑐2
2
𝑐2
3
+

24𝑛
15,5
𝑐3
3
− 𝑛
15,6
𝑐3
2
𝑐
4
− 144(𝑇

𝑢V𝑤(0, 0, 0) − 8)𝑐2𝑐3𝑐4]. By taking
𝑇
𝑢V𝑤(0, 0, 0) = 8 and simplifying the error equation, we

obtain

𝑒
𝑘+1
= −

1

6912
𝑐
2

2
(𝛼𝑐
2

2
+ 2𝑐
3
)

× [𝑛
15,7
− 24𝑐
2
𝑐
4
] [𝑛
15,8
− 24𝑇

𝑢𝑢𝑢
(0, 0, 0) 𝑐

3

2
𝑐
4
]

× 𝑒
15

𝑘
+ 𝑁
8,16
𝑒
16

𝑘
+ O (𝑒

17

𝑘
)

(19)

and 𝑇
𝑢𝑢𝑢
(0, 0, 0) = 0; we have

𝑒
𝑘+1
= −

1

768
𝑐
2

2
(𝛼𝑐
2

2
+ 2𝑐
3
)
2

× [𝑛
15,9
− 8𝑐
2
𝑐
4
] [𝑛
15,10

𝑐
4

2
+ 4𝑛
15,11

𝑐
2

2
𝑐
3
+ 4𝑛
15,12

𝑐
2

3
]

+ 𝑁
8,16
𝑒
16

𝑘
+ O (𝑒

17

𝑘
) .

(20)

By solving the system

𝑛
15,10

= −12𝛼𝐺
𝑢𝑢V (0, 0) + 𝛼

2
𝐺
𝑢VVV (0, 0)

+ 6 [𝛼
2
𝐺VV (0, 0) − 4 (180 − 3𝐻


(0) + 𝐻


(0)
2
)

= 0,

𝑛
15,11

= 396 − 6𝐺
𝑢𝑢V (0, 0)

− 10𝐺
𝑢VVV (0, 0) − 60𝐺VV (0, 0)

− (30 − 𝐺
𝑢VVV (0, 0) − 6𝐺VV (0, 0))𝐻


(0) = 0,

𝑛
15,12

= 𝐺
𝑢VV (0, 0) + 6 (𝐺VV (0, 0) − 6) = 0,

(21)

we obtain 𝐺
𝑢VVV(0, 0) = −6(−6 + 𝐺VV(0, 0)),𝐻

(0, 0) = 0, and
𝐺
𝑢𝑢V(0, 0) = 6. Finally, the error equation is

𝑒
𝑘+1
=
1

48
𝑐
2
(5𝑐
2

2
− 𝑐
3
) [𝛼
1
− 2𝑐
2
𝐶
3
] [𝛼
2
+ 6𝐶
3
𝑐
5
] 𝑒
16

𝑘

+ O (𝑒
17

𝑘
) .

(22)

This finishes the proof.

A particular element of family (5), denoted by M16, is
obtained by choosing the weight functions:

𝐻(𝑢) = 1 + 2𝑢 + 4𝑢
3
− 3𝑢
4
,

𝐺 (𝑢, V) = 1 + 2𝑢 + V + 𝑢2 + 4𝑢V

+ 3𝑢
2V + 4𝑢V2 + 4𝑢3V − 4𝑢2V2,

𝑇 (𝑢, V, 𝑤) = 1 + 2𝑢 + V + 𝑤 + 𝑢2 + 4𝑢V

+ 2𝑢𝑤 + 4𝑢
2V + 𝑢2𝑤 + 6𝑢V2

+ 8𝑢V𝑤 − V3 + 2V𝑤,

(23)

which we will use in the following sections.

3. Numerical Tests for
Sixteenth-Order Methods

The proposed iterative scheme with order of convergence
sixteen M16 is employed to estimate the simple solution of
someparticular nonlinear equations. It will be comparedwith
some known methods existing in the literature. In particular,
the iterative scheme of the sixteenth-order scheme designed
byThukral in [10] is

𝑧
𝑘
= 𝑦
𝑘
−
𝑓 [𝑤
𝑘
, 𝑥
𝑘
]

𝑓 [𝑤
𝑘
, 𝑦
𝑘
]

𝑓 (𝑦
𝑘
)

𝑓 [𝑥
𝑘
, 𝑦
𝑘
]
,

𝑎
𝑘
= 𝑧
𝑘
−

1

(1 + 2𝑢
3
𝑢2
4
) (1 − 𝑢

2
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑦
𝑘
, 𝑧
𝑘
] − 𝑓 [𝑥

𝑘
, 𝑦
𝑘
] + 𝑓 [𝑥

𝑘
, 𝑧
𝑘
]
,

𝑥
𝑘+1
= 𝑎
𝑘
− 𝑇𝑓 (𝑎

𝑘
)

𝑓 [𝑦
𝑘
, 𝑧
𝑘
]

𝑓 [𝑦
𝑘
, 𝑎
𝑘
] 𝑓 [𝑧
𝑘
, 𝑎
𝑘
]
,

(24)

where 𝑦
𝑘
is Steffensen’s step, 𝑤

𝑘
= 𝑥
𝑘
+ 𝑓(𝑥

𝑘
), 𝑢
1
= 𝑓(𝑧

𝑘
)/

𝑓(𝑥
𝑘
), 𝑢
2
= 𝑓(𝑧

𝑘
)/𝑓(𝑤

𝑘
), 𝑢
3
= 𝑓(𝑦

𝑘
)/𝑓(𝑥

𝑘
), 𝑢
4
= 𝑓(𝑦

𝑘
)/

𝑓(𝑤
𝑘
), 𝑢
5
= 𝑓(𝑎

𝑘
)/𝑓(𝑥

𝑘
), 𝑢
6
= 𝑓(𝑎

𝑘
)/𝑓(𝑤

𝑘
), and 𝑇 = 1 +

𝑢
1
𝑢
2
− 𝑢
1
𝑢
3
𝑢2
4
+ 𝑢
5
+ 𝑢
6
+ 𝑢2
1
𝑢
4
+ 𝑢2
2
𝑢
3
+ 3𝑢
1
𝑢2
4
((𝑢2
3
−

𝑢2
4
)/𝑓[𝑥

𝑘
, 𝑦
𝑘
]). We will denote this scheme by T16.

We will also use the sixteenth-order procedure designed
by Sharma et al. in [11] that will be denoted by S16, whose
iterative expression is

𝑧
𝑘
= 𝑤
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
) − 2𝑓 (𝑤

𝑘
)

𝑓 (𝑤
𝑘
)

𝑓 (𝑥
𝑘
)
,

𝑡
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
) (𝑝 + 𝑞 + 𝑟)

𝑝𝑓 [𝑧
𝑘
, 𝑥
𝑘
] + 𝑞𝑓 (𝑥

𝑘
) + 𝑟𝑓 [𝑤

𝑘
, 𝑥
𝑘
]
,

𝑥
𝑘+1
= 𝑥
𝑘
−
𝑝
1
𝑓 [𝑧
𝑘
, 𝑤
𝑘
] + 𝑞
1
𝑓 [𝑤
𝑘
, 𝑥
𝑘
] + 𝑟𝑓 [𝑡

𝑘
, 𝑤
𝑘
]

𝑝
1
𝑙 + 𝑞
1
𝑚 + 𝑟𝑛

× 𝑓 (𝑥
𝑘
) ,

(25)
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where 𝑤
𝑘
is Newton’s step and

𝑝 = (𝑥
𝑘
− 𝑤
𝑘
) 𝑓 (𝑥

𝑘
) 𝑓 (𝑤

𝑘
) ,

𝑞 = (𝑤
𝑘
− 𝑧
𝑘
) 𝑓 (𝑧
𝑘
) 𝑓 (𝑤

𝑘
) ,

𝑟 = (𝑧
𝑘
− 𝑥
𝑘
) 𝑓 (𝑧
𝑘
) 𝑓 (𝑥

𝑘
) ,

𝑝
1
= (𝑥
𝑘
− 𝑡
𝑘
) 𝑓 (𝑥

𝑘
) 𝑓 (𝑡
𝑘
) ,

𝑞
1
= (𝑡
𝑘
− 𝑧
𝑘
) 𝑓 (𝑡
𝑘
) 𝑓 (𝑧
𝑘
) ,

𝑙 =
𝑓 (𝑤
𝑘
) 𝑓 [𝑧
𝑘
, 𝑥
𝑘
] − 𝑓 (𝑧

𝑘
) 𝑓 [𝑤

𝑘
, 𝑥
𝑘
]

𝑤
𝑘
− 𝑧
𝑘

,

𝑚 =
𝑓 (𝑤
𝑘
) 𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘
) 𝑓 [𝑤

𝑘
, 𝑥
𝑘
]

𝑤
𝑘
− 𝑥
𝑘

,

𝑛 =
𝑓 (𝑤
𝑘
) 𝑓 [𝑥

𝑘
, 𝑡
𝑘
] − 𝑓 (𝑡

𝑘
) 𝑓 [𝑤

𝑘
, 𝑥
𝑘
]

𝑤 − 𝑡
.

(26)

The numerical behavior will be analyzed by means of
the test functions and the corresponding simple roots listed
below:

(a) 𝑓
1
(𝑥) = log𝑥2 + 1 + exp(𝑥) sin(𝑥), 𝜉 = 0,

(b) 𝑓
2
(𝑥) = 1 + exp(𝑥3 − 𝑥) − cos(1 − 𝑥2) + 𝑥3, 𝜉 = −1,

(c) 𝑓
3
(𝑥) = (𝑥 − 2)(𝑥10 + 𝑥 + 1) exp(−𝑥 − 1), 𝜉 = 2.

All the computations have been carried out by using
variable precision arithmetics with 4000 digits of mantissa.
The exact solution of the nonlinear equations is known, so
the exact absolute error of the first three iterations of each
procedure is listed in Table 1, joint with the computational
order of convergence 𝐶𝑂𝐶 (see [17]), for different initial
estimations 𝑥

0
.

From results shown in Table 2, it can be deduced that
the proposed scheme is, at least, as competitive as recently
published methods of the same order of convergence, being
better in some cases.

4. Preliminary Orbit Determination

A classical reference in preliminary orbit determination is F.
Gauss (1777–1855), who deduced the orbit of theminor planet
Ceres, discovered in 1801 and afterwards lost. The so-called
Gauss’ method is based on the rate 𝑦 between the triangle
and the ellipse sector defined by two position vectors from
astronomical observations. This proportion is related to the
geometry of the orbit and the observed position by

𝑦 = 1 + 𝑋 (𝑙 + 𝑥) , (27)

where 𝑙 = (𝑟
1
+ 𝑟
2
)/4√𝑟1𝑟2 cos((]2 − ]

1
)/2) − (1/2), 𝑥 =

sin2((𝐸
2
−𝐸
1
)/4), and𝑋 = (𝐸

2
−𝐸
1
− sin(𝐸

2
−𝐸
1
))/sin3((𝐸

2
−

𝐸
1
)/2). The angles 𝐸

𝑖
, ]
𝑖
, 𝑖 = 1, 2, are the eccentric and

true anomalies, respectively, associated with the observed
positions →𝑟

1
and →𝑟
2
(let us denote by 𝑟

𝑖
the modulus of vector

→𝑟
𝑖
, 𝑖 = 1, 2).

Equation (27) is, actually, the composition of the First and
Second Gauss Equation

𝑦
2
=

𝑚

𝑙 + 𝑥
, 𝑦

2
(𝑦 − 1) = 𝑚𝑋, (28)

where 𝑚 = 𝜇𝜏2/[2√𝑟1𝑟2 cos((]2 − ]1)/2)]
3, 𝜇 is the gravi-

tational parameter of the motion, and 𝜏 is a modified time
variable.

The original iterative procedure used to solve the nonlin-
ear Gauss equation (27) is the fixed point method (see, e.g.,
[18]) and is described in the following scheme.

(i) From the initial estimation 𝑦
0
= 1, 𝑥

0
= 𝑚/𝑦2

0
− 𝑙 is

obtained (it is possible to calculate 𝑚 and 𝑙 from the
observed positions →𝑟

1
and →𝑟
2
and the time 𝜏.

(ii) From 𝑥
0
and cos((𝐸

2
− 𝐸
1
)/2) = 1 − 2𝑥

0
, sin((𝐸

2
−

𝐸
1
)/2) = +√4𝑥

0
(1 − 𝑥

0
), we calculate 𝐸

2
− 𝐸
1
. Then,

we obtain 𝑋
0
= (𝐸
2
− 𝐸
1
− sin(𝐸

2
− 𝐸
1
))/sin3((𝐸

2
−

𝐸
1
)/2).

(iii) By using the combined Gauss equation (27), a new
iteration 𝑦

1
is calculated and the process starts again.

The iterative process follows as described above, getting
new estimations of the ratio, until it does not vary within a
given tolerance. Once the method has converged, the semi-
major axis 𝑎 can be calculated by means of equation

𝑦 =
√𝜇𝑝 ⋅ 𝜏

𝑟
2
𝑟
1
sin (]
2
− ]
1
)

=
√𝜇 ⋅ 𝜏

2√𝑎√𝑟2𝑟1 sin ((𝐸2 − 𝐸1) /2) cos ((]2 − ]1) /2)
,

(29)

from the last estimations of ratio and difference of eccentric
anomalies, and the last phase is then initiated, to determine
velocity and orbital elements.

Let us note that the original Gauss’ scheme has a restric-
tion when the angle formed by the two position vectors is
greater than 𝜋/4, since in this case the areas of the triangle
and the ellipse sector are not similar.

Now, we are going to compare schemes M8 and M16
with other known ones of orders 8 and 16, respectively. In
particular, we analyze the behavior of thesemethods to obtain
the preliminary orbit of an artificial satellite.

All the iterative schemes introduced in the following are
optimal in the sense of Kung-Traub’s conjecture and have
been designed with the weight function technique, so they
are fully comparablewith the newones designed in this paper.
Let us refer now to the procedure that Kim presents in [6]: a
three-step eighth-ordermethod, whose iterative expression is

𝑧
𝑘
= 𝑦
𝑘
−
1 + 𝑢
𝑘
+ 2/3𝑢2

𝑘

1 − 𝑢
𝑘
− 2𝑢2
𝑘

𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

𝑥
𝑘+1
= 𝑧
𝑘
−
1 − 2𝑢

𝑘
+ V
𝑘

1 − 3𝑢
𝑘
− 2V
𝑘

×
𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
) + 𝑓 [𝑦

𝑘
, 𝑥
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑥
𝑘
)
,

(30)
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Table 1: Comparison of sixteenth-order schemes.

Test functions 𝑥
0

T16 S16 M16

𝑓
1
(𝑥) 0.3

|𝑥
1
− 𝜉| 2.079𝑒 − 5 5.991𝑒 − 8 5.987𝑒 − 5

|𝑥
2
− 𝜉| 5.195𝑒 − 67 3.791𝑒 − 112 3.613𝑒 − 58

|𝑥
3
− 𝜉| 1.202𝑒 − 1052 1.74𝑒 − 1779 1.125𝑒 − 909

COC 16.0 16.0 16.0

𝑓
1
(𝑥) 1

|𝑥
1
− 𝜉| 0.05729 7.143𝑒 − 4 1.549𝑒 − 2

|𝑥
2
− 𝜉| 7.02𝑒 − 14 6.056𝑒 − 47 4.122𝑒 − 20

|𝑥
3
− 𝜉| 1.483𝑒 − 202 4.408𝑒 − 736 9.269𝑒 − 301

COC 16.0 16.0 16.0

𝑓
2
(𝑥) −2

|𝑥
1
− 𝜉| 0.1511 6.887𝑒 − 3 7.588𝑒 − 5

|𝑥
2
− 𝜉| 4.801 2.374𝑒 − 38 5.508𝑒 − 65

|𝑥
3
− 𝜉| 0.8086 1.299𝑒 − 605 3.5019𝑒 − 1023

COC — 16.0 16.0

𝑓
2
(𝑥) −3

|𝑥
1
− 𝜉| 0.1002 0.3238 8.93𝑒 − 3

|𝑥
2
− 𝜉| 1.153𝑒 − 5 3.062𝑒 − 8 8.602𝑒 − 32

|𝑥
3
− 𝜉| 6.83𝑒 − 75 7.209𝑒 − 224 7.042𝑒 − 496

COC 16.0 16.0 15.99

𝑓
3
(𝑥) 2.1

|𝑥
1
− 𝜉| 2.365𝑒 − 5 4.299𝑒 − 11 3.28𝑒 − 6

|𝑥
2
− 𝜉| 2.087𝑒 − 51 1.015𝑒 − 159 4.371𝑒 − 74

|𝑥
3
− 𝜉| 2.859𝑒 − 788 9.445𝑒 − 2538 4.319𝑒 − 1160

COC 16.0 16.0 16.0

Table 2: Comparison of modified-Gauss schemes for Orbit I.

|(𝑥
1
− 𝑥
0
)| |𝐹(𝑥

1
)| |(𝑥

2
− 𝑥
1
)| |𝐹(𝑥

2
)| |(𝑥

3
− 𝑥
2
)| |𝐹(𝑥

3
)| ACOC

FP 0.6450𝑒 − 2 — 0.8288𝑒 − 4 — 0.1055𝑒 − 5 — 1.002
K8 0.6368𝑒 − 2 0.2059𝑒 − 21 0.2033𝑒 − 21 0.6553𝑒 − 158 0.647𝑒 − 158 0.2164𝑒 − 1113 7.001
S8 0.6368𝑒 − 2 0.1377𝑒 − 23 0.1359𝑒 − 23 0.5565𝑒 − 197 0.5495𝑒 − 197 0.3967𝑒 − 1584 8.001
M8 0.6368𝑒 − 2 0.1382𝑒 − 23 0.1365𝑒 − 23 0.5791𝑒 − 197 0.5718𝑒 − 197 0.5488𝑒 − 1584 8.000
T16 0.6368𝑒 − 2 0.2662𝑒 − 63 0.2628𝑒 − 63 0.1642𝑒 − 1045 NaN NaN —
S16 0.6368𝑒 − 2 0.7454𝑒 − 48 0.7361𝑒 − 48 0.6647𝑒 − 783 0.6563𝑒 − 783 0.0 16.000
M16 0.6368𝑒 − 2 0.6998𝑒 − 47 0.6910𝑒 − 47 0.2286𝑒 − 766 0.2258𝑒 − 766 0.0 16.000

where 𝑦
𝑘
is Newton’s step, 𝑢

𝑘
= 𝑓(𝑦

𝑘
)/𝑓(𝑥

𝑘
), V
𝑘
= 𝑓(𝑧

𝑘
)/

𝑓(𝑥
𝑘
), and 𝑓[⋅, ⋅, ⋅] denotes the divided difference of order

two. We will denote this scheme by K8.
We will also compare our new schemes with the method

designed by Soleymani et al. in [9] (denoted by S8), initialized
with Ostrowski’s procedure,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
) − 2𝑓 (𝑦

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

𝑥
𝑘+1
= 𝑧
𝑘

−
𝑓 (𝑧
𝑘
)

2𝑓 [𝑦
𝑘
, 𝑥
𝑘
] − 𝑓 (𝑥

𝑘
) + 𝑓 [𝑧

𝑘
, 𝑥
𝑘
, 𝑥
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

× (1 + 𝑤
𝑘
+ 2V
𝑘
− 2𝑢
3

𝑘
+
2

5

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
) ,

(31)

where 𝑦
𝑘
is Newton’s step, 𝑢

𝑘
= 𝑓(𝑦

𝑘
)/𝑓(𝑥

𝑘
), V
𝑘
= 𝑓(𝑧

𝑘
)/

𝑓(𝑥
𝑘
), and 𝑤

𝑘
= 𝑓(𝑧

𝑘
)/𝑓(𝑦

𝑘
).

The proposed iterative scheme M16 will be compared
again with T16 and S16.

In the numerical test made, variable precision arithmetics
has been used, with 4000 digits of mantissa inMatlab R2011b.
Some reference orbits have been used in the test that can
be found in [18]. As orbital elements of each one of the test
orbits are known, the vector position in the instants 𝑡

1
and 𝑡
2

have been recalculated with 3998 exact digits. Then, our aim
is to solve the unified Gauss equation from these positions,
with the highest possible precision. In this term, the orbital
elements can be calculated with the best accuracy.

(i) Test Orbit I has the position vectors

⃗𝑟
1
≈ [2.46080928705339,

2.04052290636432, 0.14381905768815]

⃗𝑟
2
≈ [1.98804155574820,

2.50333354505224, 0.31455350605251] ,

(32)
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Table 3: Comparison of modified-Gauss schemes for Orbit II.

|(𝑥
1
− 𝑥
0
)| |𝐹(𝑥

1
)| |(𝑥

2
− 𝑥
1
)| |𝐹(𝑥

2
)| |(𝑥

3
− 𝑥
2
)| |𝐹(𝑥

3
)| ACOC

FP 0.2397𝑒 − 1 — 0.1132𝑒 − 2 — 0.5163𝑒 − 4 — 1.011
K8 0.2289𝑒 − 1 0.2830𝑒 − 15 0.2707𝑒 − 15 0.7343𝑒 − 113 0.7023𝑒 − 113 0.5810𝑒 − 796 7.007
S8 0.2289𝑒 − 1 0.6075𝑒 − 17 0.5809𝑒 − 17 0.8328𝑒 − 142 0.7964𝑒 − 142 0.1039𝑒 − 1140 8.006
M8 0.2289𝑒 − 1 0.3696𝑒 − 17 0.3534𝑒 − 17 0.9933𝑒 − 144 0.9500𝑒 − 144 0.2705𝑒 − 1156 8.005
T16 0.2289𝑒 − 1 0.2913𝑒 − 45 0.2786𝑒 − 45 0.4103𝑒 − 748 0.3924𝑒 − 748 0.0 16.000
S16 0.2289𝑒 − 1 0.1482𝑒 − 34 0.1417𝑒 − 34 0.4368𝑒 − 556 0.4195𝑒 − 556 0.0 16.010
M16 0.2289𝑒 − 1 0.4590𝑒 − 34 0.4389𝑒 − 34 0.1062𝑒 − 557 0.1016𝑒 − 557 0.0 16.000

Table 4: Comparison of modified-Gauss schemes for Orbit III.

|(𝑥
1
− 𝑥
0
)| |𝐹(𝑥

1
)| |(𝑥

2
− 𝑥
1
)| |𝐹(𝑥

2
)| |(𝑥

3
− 𝑥
2
)| |𝐹(𝑥

3
)| ACOC

FP 0.5499𝑒 − 1 — 0.5830𝑒 − 2 — 0.5723𝑒 − 3 — 1.034
K8 0.4968𝑒 − 1 0.1579𝑒 − 11 0.1437𝑒 − 11 0.1661𝑒 − 85 0.1512𝑒 − 85 0.2376𝑒 − 603 7.02
S8 0.4968𝑒 − 1 0.5842𝑒 − 13 0.5317𝑒 − 13 0.6265𝑒 − 109 0.5701𝑒 − 109 0.1095𝑒 − 876 8.017
M8 0.4968𝑒 − 1 0.1092𝑒 − 13 0.9941𝑒 − 14 0.2294𝑒 − 115 0.2087𝑒 − 115 0.8667𝑒 − 929 8.007
T16 0.4968𝑒 − 1 0.2742𝑒 − 34 0.2495𝑒 − 34 0.1560𝑒 − 567 0.1419𝑒 − 567 0.7𝑒 − 3998 16.010
S16 0.4968𝑒 − 1 0.1550𝑒 − 26 0.1411𝑒 − 26 0.1066𝑒 − 435 0.9702𝑒 − 436 0.1𝑒 − 3998 16.020
M16 0.4968𝑒 − 1 0.3967𝑒 − 27 0.3610𝑒 − 27 0.1512𝑒 − 445 0.1376𝑒 − 445 0.1𝑒 − 3998 16.010

measured in Earth radius (e.r.) on the Julian days
(J.D.) from the perigee 𝑡

1
= 0 and 𝑡

2
=

0.01044412000000. The orbital elements correspond-
ing to the geometry of the orbit are the semimajor axis
𝑎 = 4 e.r., the eccentricity 𝑒 = 0.2, the epoch of the
perigee 𝑇

0
= 0ℎ0𝑚0𝑠, and the Euler angles which

fit the orbit in space are the right ascension of the
ascending node,Ω = 30∘, the argument of the perigee
𝜔 = 10∘, and the inclination of the orbit 𝑖 = 15∘.

(ii) Test Orbit II has the following position vectors and
times:

⃗𝑟
1
≈ [−1.75981065999937,

1.68112802634201, 1.16913429510899] e.r.,
𝑡
1
= 0 J.D.,

⃗𝑟
2
≈ [−2.23077219993536,

0.77453561301361, 1.34602197883025] e.r.,
𝑡
2
= 0.01527809 J.D.

(33)

Orbital elements are Ω = 80∘, 𝜔 = 60∘, 𝑖 = 30∘, 𝑎 =
3 e.r., 𝑒 = 0.1, and 𝑇

0
= 0ℎ0𝑚0𝑠.

(iii) Test Orbit III has the following position vectors and
times:

⃗𝑟
1
≈ [0.41136206679761,

−1.66250000000000, 0.82272413359522] e.r.,
𝑡
1
= 0 J.D.,

⃗𝑟
2
≈ [0.97756752977209,

−1.64428006097667, −0.04236299091612] e.r.,
𝑡
2
= 0.01316924 J.D.

(34)

Orbital elements are Ω = 120∘, 𝜔 = 150∘, 𝑖 = 60∘,
𝑎 = 2 e.r., 𝑒 = 0.05, and 𝑇

0
= 0ℎ0𝑚0𝑠.

We will compare the different error estimations at the
first three iterations of the proposed eighth-order method
M8 and the known schemes K8 and S8, and the sixteenth-
order method M16 and the schemes T16 and S16. We also
include, in Tables 2, 3, and 4, the approximated computational
order of convergence (ACOC) (see [19]), in order to check
the computational efficiency of the schemes related to their
theoretical rate of convergence.This index is evaluated by the
formula:

𝑝 ≈ 𝐴𝐶𝑂𝐶 =
log (𝑥𝑘+1 − 𝑥𝑘) / (𝑥𝑘 − 𝑥𝑘−1)


log (𝑥𝑘 − 𝑥𝑘−1) / (𝑥𝑘−1 − 𝑥𝑘−2)


. (35)

The different test orbits have been chosen with increasing
angle ]

2
− ]
1
. It measures the spread in the observations and

by the design of Gauss’ procedure, it induces instability in the
system when it gets higher. The difference between the true
anomalies of the observations is, for the test orbits I to III,
12.23∘, 22.06∘, and 31.46∘, respectively. It can be observed in
Tables 1–4 that, when the spread of the observations increases,
the precision obtained in the calculations per step reduces at
the same rate for any method of the same order.

It is clear that the application of high-order schemes to the
problem of preliminary orbit calculation by Gauss procedure
gets an important success, as the gain in speed and the
precision obtained in the calculations are increased.

Let us note that the precision of the orbital elements cal-
culated with the third estimation provided by any sixteenth-
order method is total, as all the 4000 decimal digits of the
solution considered as exact are reached with only three
iterations.

5. Conclusion

We have extended the idea of other researchers for designing
higher-order iterative methods by using weight function
procedure.
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The Gaussian procedure for determining preliminary
orbits has beenmodified in order to use modern and efficient
iterative schemes of any optimal order of convergence and
achieve high-level accuracy.

From the obtained results, it can be deduced that the
proposed schemes are, at least, as competitive as recently
published methods of the same order of convergence, being
better in some cases. It has also shown to be robust enough
to hold the theoretical order of convergence when an exigent
precision is demanded.
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