
Research Article
Inverse Estimates for Nonhomogeneous Backward
Heat Problems

Tao Min,1 Weimin Fu,1 and Qiang Huang2

1 School of Science, Xi’an University of Technology, Xi’an, Shaanxi 710054, China
2 State Key Laboratory of Eco-Hydraulic Engineering in Shaanxi, Xi’an University of Technology, Xi’an, Shaanxi 710048, China

Correspondence should be addressed to Tao Min; mintao@xaut.edu.cn

Received 16 September 2013; Accepted 12 January 2014; Published 2 March 2014

Academic Editor: Zhong Bo Fang

Copyright © 2014 Tao Min et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the inverse problem in the nonhomogeneous heat equation involving the recovery of the initial temperature from
measurements of the final temperature.This problem is known as the backward heat problem and is severely ill-posed.We show that
this problem can be converted into the first Fredholm integral equation, and an algorithm of inversion is given using Tikhonov’s
regularization method. The genetic algorithm for obtaining the regularization parameter is presented. We also present numerical
computations that verify the accuracy of our approximation.

1. Introduction

Inverse heat conduction problems (IHCPs) appear in many
important scientific and technological fields [1–6]. Hence
analysis, design implementation, and testing of inverse algo-
rithms are also great scientific and technological interest.
In this paper we will examine some inversion techniques
in order to estimate the initial temperature distribution of
an inverse nonhomogeneous heat conduction problem; this
problem is called the backward heat problem, the backward
Cauchy problem, or the final value problem. As is known,
the nonhomogeneous problem is severely ill-posed; that is,
solutions do not always exist, and in the case of existence,
these do not depend continuously on the given data. In fact,
from small noise contaminated physical measurements, the
corresponding solutions have large errors. It makes it difficult
to do numerical calculations. Hence, a regularization is in
order. Lattes and Lions, in [7], regularized the problem by
adding a “corrector” to the main equation. Gajewski and
Zacharias [8] considered a similar problem. Nakamura et al.
[9] used transformation techniques to solve the initial inverse
problem in heat conduction and Al-Khalidy [10] dealt with
the problem numerically. For a comprehensive review of the
literature and summary of various approaches in the field of

inverse heat conduction problems, one can consult the books
by Beck et al. [11] and by Hensel [12]. Although there are
many papers on the linear homogeneous case of the backward
problem, we only find a few papers on the nonhomogeneous
case, such as in [13, 14].

The plan of this paper is as follows. In Section 2, we
formulate a one-dimensional IHCP. In Section 3, we show
that this problem can be converted into the first Fredholm
integral equation, the numerical algorithm is derived, and
an algorithm of inversion is also given using Tikhonov’s
regularization method. We use the genetic algorithm for the
choice of the regularization parameter in Section 4. Section 5
presents numerical experiments to show the efficiency of the
proposed method. Section 6 ends this paper with a brief
discussion on some numerical aspects.

2. Mathematical Model

2.1. The Direct Problem. The direct (forward) problem con-
sists of a transient heat conduction problem in a slab with
adiabatic boundary condition and initially at a temperature
denoted by 𝑓(𝑥).
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Themathematical formulation of this problem is given by
the following nonhomogeneous heat equation:

𝜕𝑢

𝜕𝑡
− 𝑘
𝜕2𝑢

𝜕𝑥2
= 𝜑 (𝑥, 𝑡) , 0 < 𝑥 < 𝐿, 𝑡 > 0, (1)

𝑢 (0, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝐿, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 𝐿,

(2)

where 𝑢(𝑥, 𝑡) (temperature), 𝜑(𝑥, 𝑡) (source term), 𝑓(𝑥)
(initial condition), 𝑥 (spatial variable), and 𝑡 (time variable)
are dimensionless quantities and 𝑘 denotes the dispersion
coefficient.

For the direct problem where the initial condition 𝑓(𝑥)
is specified, the problem given by (1) and (2) is concerned
with the determination of the temperature distribution𝑢(𝑥, 𝑡)
in the interior region of the solid as a function of time and
position.

2.2. Inverse Problem. For the inverse problem, the initial
condition 𝑓(𝑥) is regarded as being unknown. In addition,
an overspecified condition is also considered available. To
estimate the unknown coefficient 𝑓(𝑥), the additional infor-
mation,

𝑢 (𝑥, 𝑇) = 𝑔 (𝑥) , (3)

is given at time 𝑇, over a specified space interval 0 ≤
𝑥 ≤ 𝐿. We note that the measured overspecified condition
𝑢(𝑥, 𝑇) = 𝑔(𝑥) should contain measurement errors. There-
fore the inverse problem can be stated as follows: estimate
the unknown function𝑓(𝑥) by utilizing the above-mentioned
measured data.

3. Algorithm Analysis

Thesolution of the direct problem for a given initial condition
𝑓(𝑥) is explicitly obtained using separation of variables for
0 < 𝑥 < 𝐿, 𝑡 ≥ 0. Consider the initial boundary problems
(1) and (2); we look for solutions 𝑢 in the form 𝑢(𝑥, 𝑡) =
𝑇(𝑡)𝑋(𝑥). We look at the following eigenvalue problem:

𝑋 + 𝜆𝑋 = 0

𝑋 (0) = 𝑋 (𝐿) = 0.
(4)

The eigenvalues and the corresponding eigenfunctions are

𝜆 = (
𝑛𝜋

𝐿
)
2

, 𝑋
𝑛
(𝑥) = sin 𝑛𝜋

𝐿
𝑥. (5)

Now we set

𝑢 (𝑥, 𝑡) =
∞

∑
𝑛=1

𝑇
𝑛
(𝑡) sin 𝑛𝜋

𝐿
𝑥. (6)

Formally computing 𝑢
𝑡
and 𝑢

𝑥𝑥
and substituting into (1), we

get

𝜑 (𝑥, 𝑡) = 𝑢
𝑡
− 𝑘𝑢
𝑥𝑥

=
∞

∑
𝑛=1

[𝑇
𝑛
(𝑡) + 𝑘(

𝑛𝜋

𝐿
)
2

𝑇
𝑛
(𝑡)] sin(𝑛𝜋𝑥

𝐿
) .

(7)

Hence expanding 𝑓 and 𝜙 into the following Fourier series:

𝜑 (𝑥, 𝑡) =
∞

∑
𝑛=1

𝜑
𝑛
(𝑡) sin(𝑛𝜋𝑥

𝐿
) ,

𝑓 (𝑥) =
∞

∑
𝑛=1

𝑓
𝑛
sin(𝑛𝜋𝑥

𝐿
) ,

(8)

where

𝜑
𝑛
(𝑡) =

2

𝐿
∫
𝐿

0

𝜑 (𝑥, 𝑡) sin(𝑛𝜋𝑥
𝐿
) 𝑑𝑥,

𝑓
𝑛
=
2

𝐿
∫
𝐿

0

𝑓 (𝑥) sin(𝑛𝜋𝑥
𝐿
)𝑑𝑥,

(9)

we get
∞

∑
𝑛=1

[𝑇
𝑛
(𝑡) + 𝑘(

𝑛𝜋

𝐿
)
2

𝑇
𝑛
(𝑡)] sin(𝑛𝜋𝑥

𝐿
)

=
∞

∑
𝑛=1

𝜑
𝑛
(𝑡) sin(𝑛𝜋𝑥

𝐿
) .

(10)

The uniqueness of the Fourier expansion leads to the family
of ODE’s:

𝑇
𝑛
(𝑡) + 𝑘(

𝑛𝜋

𝐿
)
2

𝑇
𝑛
(𝑡) = 𝜑

𝑛
(𝑡) . (11)

In addition,

𝑢 (𝑥, 0) =
∞

∑
𝑛=1

𝑇
𝑛
(0) sin 𝑛𝜋

𝐿
𝑥 =
∞

∑
𝑛=1

𝑓
𝑛
sin(𝑛𝜋𝑥

𝐿
) = 𝑓 (𝑥) ,

(12)

so that

𝑇
𝑛
(0) = 𝑓

𝑛
, 𝑛 ≥ 1. (13)

Solving (11)–(13), we find

𝑇
𝑛
(𝑡) = 𝑓

𝑛
𝑒−𝑘(𝑛𝜋/𝐿)

2
𝑡 + ∫
𝑡

0

𝑒−𝑘(𝑛𝜋/𝐿)
2
(𝑡−𝑠)𝜑
𝑛
(𝑠) 𝑑𝑠,

𝑢 (𝑥, 𝑡) =
∞

∑
𝑛=1

𝑓
𝑛
𝑒−𝑘(𝑛𝜋/𝐿)

2
𝑡 sin(𝑛𝜋𝑥

𝐿
)

+
∞

∑
𝑛=1

sin(𝑛𝜋𝑥
𝐿
)∫
𝑡

0

𝑒−𝑘(𝑛𝜋/𝐿)
2
(𝑡−𝑠)𝜑
𝑛
(𝑠) 𝑑𝑠,

𝑢 (𝑥, 𝑡) −
∞

∑
𝑛=1

sin(𝑛𝜋𝑥
𝐿
)∫
𝑡

0

𝑒−𝑘(𝑛𝜋/𝐿)
2
(𝑡−𝑠)𝜑
𝑛
(𝑠) 𝑑𝑠

= ∫
𝐿

0

𝐾(𝑥, 𝑦, 𝑡) 𝑓 (𝑦) 𝑑𝑦,

(14)
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where𝐾(𝑥, 𝑦, 𝑡) = (2/𝐿)∑∞
𝑛=1
𝑒−(𝑛𝜋)

2
𝑘𝑡/𝐿
2

sin(𝑛𝜋𝑥/𝐿) sin(𝑛𝜋𝑦/
𝐿). 𝐾(𝑥, 𝑦, 𝑡) is an infinite series; numerically we cannot
handle infinite sums. Limit the sum to a finite number of
expansion terms 200which guarantees the convergence of the
series. So

𝐾(𝑥, 𝑦, 𝑡) ≈
2

𝐿

200

∑
𝑛=1

𝑒−(𝑛𝜋)
2
𝑘𝑡/𝐿
2

sin(𝑛𝜋𝑥
𝐿
) sin(

𝑛𝜋𝑦

𝐿
) . (15)

Thus initial inverse problem is reduced to solving integral
equation of the first kind:

𝑤 (𝑥) = ∫
𝐿

0

𝐾(𝑥, 𝑦, 𝑇) 𝑓 (𝑦) 𝑑𝑦, (16)

where

𝑤 (𝑥) = 𝑢 (𝑥, 𝑇) −
∞

∑
𝑛=1

𝑎
𝑛
sin(𝑛𝜋𝑥

𝐿
)

= 𝑔 (𝑥) −
∞

∑
𝑛=1

𝑎
𝑛
sin(𝑛𝜋𝑥

𝐿
) ,

𝑎
𝑛
=
2

𝐿
∫
𝑇

0

𝑒−𝑘(𝑛𝜋/𝐿)
2
(𝑇−𝑠) [∫

𝐿

0

𝜑 (𝑥, 𝑠) sin(𝑛𝜋𝑥
𝐿
) 𝑑𝑥] 𝑑𝑠

= ∫
𝐿

0

∫
𝑇

0

2

𝐿
𝑒−𝑘(𝑛𝜋/𝐿)

2
(𝑇−𝑠)𝜙 (𝑥, 𝑠) sin(𝑛𝜋𝑥

𝐿
) 𝑑𝑠 𝑑𝑥

= ∫
𝐿

0

∫
𝑇

0

𝑔 (𝑥, 𝑠, 𝑛) 𝑑𝑠 𝑑𝑥,

(17)

where 𝑔(𝑥, 𝑠, 𝑛) = (2/𝐿)𝑒−𝑘(𝑛𝜋/𝐿)
2
(𝑇−𝑠)𝜙(𝑥, 𝑠) sin(𝑛𝜋𝑥/𝐿).

Since 𝑎
𝑛
is a double integral, it is difficult to determine the

exact value. The authors try to seek its approximation by
complex trapezoid formula.

Given that the interval [0, 𝐿] is equally subdivided into
𝑚 subintervals, {[𝑥

𝑖−1
, 𝑥
𝑖
]}|𝑚
𝑖=1

, with equally spaced sampling
points 𝑥

𝑖
= 𝑖ℎ where 𝑖 = 0, 1, 2, . . . , 𝑚. Also, assume that

the interval [0, 𝑇] is equally subdivided into 𝑙 subintervals,
{[𝑠
𝑗−1
, 𝑠
𝑗
]}|𝑙
𝑗=1

, with equally spaced sampling points 𝑠
𝑗
= 𝑗𝑘

where 𝑗 = 0, 1, 2, . . . , 𝑙. The composite Trapezoidal rule is

𝑎
𝑛
≈
1

4
ℎ𝑘(𝑔 (0, 0, 𝑛) + 𝑔 (𝐿, 0, 𝑛) + 𝑔 (0, 𝑇, 𝑛) + 𝑔 (𝐿, 𝑇, 𝑛)

+ 2
𝑚−1

∑
𝑖=1

𝑔 (𝑥
𝑖
, 0, 𝑛) + 2

𝑚−1

∑
𝑖=1

𝑔 (𝑥
𝑖
, 𝑇, 𝑛)

+ 2
𝑙−1

∑
𝑗=1

𝑔 (0, 𝑠
𝑗
, 𝑛) + 2

𝑙−1

∑
𝑗=1

𝑔 (𝐿, 𝑠
𝑗
, 𝑛)

+ 4
𝑙−1

∑
𝑗=1

(
𝑚−1

∑
𝑖=1

𝑔 (𝑥
𝑖
, 𝑠
𝑗
, 𝑛))) .

(18)

Approximation of 𝑎
𝑛
can be obtained by the above formula.

The first step in the numerical treatment used in this
research consists in discretization of (16) by the quadrature
formula. The interval [0, 𝐿] can be subdivided into 𝑁 equal
intervals of width ℎ = Δ𝑦 = 𝐿/𝑁. Let 𝑦

0
= 0 and 𝑦

𝑗
= 𝑗Δ𝑦,

and since the variable is either 𝑦 or 𝑥, let 𝑥
0
= 𝑦
0
= 0,

𝑥
𝑁
= 𝑦
𝑁
= 𝐿, and 𝑥

𝑖
= 𝑖Δ𝑦 (i.e., 𝑥

𝑖
= 𝑦
𝑖
). Also denote 𝑓(𝑥

𝑖
)

as 𝑓
𝑖
,𝑤(𝑥
𝑖
) as𝑤
𝑖
, and𝐾(𝑥

𝑖
, 𝑦
𝑗
, 𝑇) as𝐾

𝑖𝑗
. Now if the trapezoid

rule is used to approximate the given equation, then

𝑤 (𝑥) = ∫
𝐿

0

𝐾(𝑥, 𝑦, 𝑇) 𝑓 (𝑦) 𝑑𝑦

≈ Δ𝑦 [
1

2
𝐾 (𝑥, 𝑦

0
, 𝑇) 𝑓 (𝑦

0
) + 𝐾 (𝑥, 𝑦

1
, 𝑇) 𝑓 (𝑦

1
)

+ ⋅ ⋅ ⋅ + 𝐾 (𝑥, 𝑦
𝑁−1
, 𝑇) 𝑓 (𝑦

𝑁−1
)

+
1

2
𝐾 (𝑥, 𝑦

𝑁
, 𝑇) 𝑓 (𝑦

𝑁
)] ,

(19)

or, more tersely,

𝑤 (𝑥) ≈ Δ𝑦 [
1

2
𝐾 (𝑥, 𝑦

0
, 𝑇) 𝑓
0
+ 𝐾 (𝑥, 𝑦

1
, 𝑇) 𝑓
1

+ ⋅ ⋅ ⋅ 𝐾 (𝑥, 𝑦
𝑁−1
, 𝑇) 𝑓
𝑁−1

+
1

2
𝐾 (𝑥, 𝑦

𝑁
, 𝑇) 𝑓
𝑁
] .

(20)

There are 𝑁 + 1 values of 𝑓
𝑖
, as 𝑖 = 0, 1, 2, . . . , 𝑁. Therefore

the equation becomes a set of𝑁 + 1 equations in 𝑓
𝑖
:

𝑤
𝑖
= Δ𝑦 [

1

2
𝐾
𝑖0
𝑓
0
+ 𝐾
𝑖1
𝑓
1
+ ⋅ ⋅ ⋅ 𝐾

𝑖(𝑁−1)
𝑓
𝑁−1

+
1

2
𝐾
𝑖𝑁
𝑓
𝑁
] ,

𝑖 = 0, 1, 2, . . . , 𝑁,

(21)

which give the approximate solution to 𝑓(𝑥
𝑖
) at 𝑥 = 𝑥

𝑖
. This

may also be written in matrix form:

𝐾𝐹 = 𝑊, (22)

where𝐾 is the matrix of coefficients,
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𝐾 = Δ𝑦 ⋅

[
[
[
[
[
[
[
[

[

1

2
𝐾 (𝑥
0
, 𝑦
0
, 𝑇) 𝐾 (𝑥

0
, 𝑦
1
, 𝑇) ⋅ ⋅ ⋅

1

2
𝐾 (𝑥
0
, 𝑦
𝑁
, 𝑇)

1

2
𝐾 (𝑥
1
, 𝑦
0
, 𝑇) 𝐾 (𝑥

1
, 𝑦
1
, 𝑇) ⋅ ⋅ ⋅

1

2
𝐾 (𝑥
1
, 𝑦
𝑁
, 𝑇)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1

2
𝐾 (𝑥
𝑁
, 𝑦
0
, 𝑇) 𝐾 (𝑥

𝑁
, 𝑦
1
, 𝑇) ⋅ ⋅ ⋅

1

2
𝐾 (𝑥
𝑁
, 𝑦
𝑁
, 𝑇)

]
]
]
]
]
]
]
]

]

, (23)

𝐹 is the matrix of solutions,

𝐹 = [𝑓 (𝑦
0
) , . . . , 𝑓 (𝑦

𝑖
) , . . . , 𝑓 (𝑦

𝑁
)]
𝑇

, (24)

and𝑊 is the matrix of the nonhomogeneous part:

𝑊 = [𝑤 (𝑥
0
) , . . . , 𝑤 (𝑥

𝑖
) , . . . , 𝑤 (𝑥

𝑁
)]
𝑇

,

𝑤 (𝑥
𝑖
) = 𝑢 (𝑥

𝑖
, 𝑇) −

∞

∑
𝑛=1

𝑎
𝑛
sin(

𝑛𝜋𝑥
𝑖

𝐿
) = 𝑔 (𝑥

𝑖
)

−
∞

∑
𝑛=1

𝑎
𝑛
sin(

𝑛𝜋𝑥
𝑖

𝐿
) , 𝑖 = 0, 1, 2, . . . , 𝑁.

(25)

The problem (22) is ill-posed in the sense that the
inverse operator 𝐾−1 of 𝐾 exists but is not continuous.
Hence, although the problem (22) has a unique solution,
solving it directly will not give a right solution. Indeed, the
linear operator 𝐾 is so badly conditioned that any numerical
attempt to directly solve (22) may fail.

In this note we describe the Tikhonov regularization for
finding a stable approximate solution to a linear ill-posed
problem represented in the form of an operator equation:

𝐾𝐹 = 𝑊, (26)

where, instead of the exact data𝑊, noisy data𝑊
𝛿
is available

with
𝑊 −𝑊

𝛿

 ≤ 𝛿. (27)

In order to find a solution in stable manner, Tikhonov
proposed to solve the following:

𝐹
𝛼,𝛿
= arg min
𝐹∈𝑅
𝑁+1

𝐽
𝛼
(𝐹) = (

𝐾𝐹 −𝑊𝛿

2

2
+ 𝛼‖𝐹‖

2

2
) , (28)

where 𝛼 is the regularization parameter. The computation of
the approximate solution 𝐹

𝛼,𝛿
consists in solving the Euler

equation corresponding to the functional 𝐽
𝛼
. This equation

has the following form:

(𝐾∗𝐾 + 𝛼𝐼) 𝐹
𝛼,𝛿
= 𝐾∗𝑊

𝛿
, (29)

where 𝐾∗ is the adjoint operator of 𝐾 and 𝐼 is the identity
operator. The regularization solution 𝐹

𝛼,𝛿
obviously depends

on the parameter 𝛼, the value of which directly affects the
degree of approximation and the stability of the solution.
From the viewpoint of the approximation degree, the smaller

the better for the value of 𝛼; however, from the viewpoint of
the solution stability, the larger the better. So the key point for
solving the problem is getting the value of 𝛼.

In order to obtain an effectively approximate solution to
the original ill-posed problem, it is particularly important to
choose suitable parameter. If we do not have the information
of 𝑊, we have to use an “a posteriori” parameter choice,
where one uses results of the actual computation like the
residual for computing a regularization parameter. The most
widely used method is Morozov’s discrepancy principle,
where one takes 𝛼 such that

𝐾𝐹𝛼,𝛿 −𝑊𝛿
2 = 𝛿. (30)

On how to solve the equation ‖𝐾𝐹
𝛼,𝛿
−𝑊
𝛿
‖
2
= 𝛿, some

researchers have developed some theories and methods to
determine 𝛼 [13, 15–19]. In the present paper, the genetic algo-
rithm for obtaining the regularization parameter is presented.

4. The Genetic Algorithm

Genetic algorithms belong to the general category of stochas-
tic global optimization methods [20–22]. They have their
philosophical basis in a process found in nature related to
the evolution of the different biological species. Based on
Darwin’s theory of evolution where the fittest individuals
survive, while the less fit are eliminated, a simple genetic
algorithm is basically composed of three operators: (i) selec-
tion, (ii) crossover, and (iii) mutation. The computational
implementation of a genetic algorithm starts with random
generation of a population of individuals where each individ-
ual is actually a chain composed of representations of binary
numbers, sequentially, random values for design variables.
Each individual in the population corresponds to a value of
the objective function (fitness function),

𝜆 (𝛼) =

𝐾𝐹𝛼,𝛿 −𝑊𝛿

2 − 𝛿
 , (31)

which is associated with a function of adaptability that is
minimized.

With the fitness function values calculated for each indi-
vidual in the population, the probability that this individual
will be selected for crossover is determined. This probability
is given by

𝑝
𝑖
=

𝜆
𝑖

∑
𝑛

𝑖=1
𝜆
𝑖

, 𝑖 = 1, 2, . . . , 𝑛, (32)

where 𝜆
𝑖
is the fitness function, defined in (31), and 𝑛 is the

population size.Thefittest individuals have higher probability
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Initialize the population for the
regularization parameter

Calculate the individual

Select operator

Crossover operator

Mutation operator

Generate new population

Maximum
generation?

Output the optimum parameter

Yes

No

objective functions 𝜆(𝛼)

Figure 1: Flow chart for the calculation of regularization parameter
based on GA.

of being selected for crossover. After selecting a pair of
individuals, crossover is done by switching between the parts
of the binary strings of these individuals. The population size
remains constant through all the generations.This exchange-
digit binary string corresponds in nature to the exchange
of genetic information between parents, which represents
the process by which it promotes the improvement of the
species. The crossover for each pair of selected individuals is
also subject to a probability 𝑝

𝑐
to be performed. Mutation is

a safeguard against losses of useful genetic material during
reproduction and crossover. The process of mutation is
simply to choose a few members from the population based
on a probability of mutation 𝑝

𝑚
and switch a 0 to a 1 and

vice versa at a randomly selected site on the selectedmember.
The process consisting of selection, crossover, and mutation
is then repeated by the total number of generations, and at the
end the most fitted individual is selected, that is, the one that
leads to lower value of the objective function (31).The specific
implementation process is shown in Figure 1.

5. Numerical Examples

In this section, we are going to demonstrate some numerical
results for determining 𝑓(𝑥) in the inverse problems (1)–
(3). We use the 𝐿

∞
error norm and the relative error to

Table 1: 𝑇 = 0.1, the objective function 𝜆(𝛼), the 𝐿
∞
, and the

relative errors for 𝑓(𝑥), with 𝛿 = 0, 0.01, 0.05, 0.1.

𝛿 𝛼 𝜆(𝛼) 𝐿
∞

RE
0 6.7341 × 10−10 8.6679 × 10−9 5.8643 × 10−6 5.8822 × 10−6

0.01 1.9422 × 10−3 0 1.6741 × 10−3 1.5696 × 10−3

0.05 9.7098 × 10−3 0 1.9019 × 10−3 1.7996 × 10−3

0.1 1.9419 × 10−2 0 1.9352 × 10−3 1.8332 × 10−3

Table 2: 𝑇 = 0.5, the objective function 𝜆(𝛼), the 𝐿
∞
, and the

relative errors for 𝑓(𝑥), with 𝛿 = 0, 0.01, 0.05, 0.1.

𝛿 𝛼 𝜆(𝛼) 𝐿
∞

RE
0 3.1837 × 10−13 1.7318 × 10−7 7.7189 × 10−8 4.9543 × 10−8

0.01 3.7471 × 10−5 0 3.2502 × 10−6 3.2502 × 10−6

0.05 1.8735 × 10−4 0 3.2502 × 10−6 3.2502 × 10−6

0.1 3.7471 × 10−4 0 3.2502 × 10−6 3.2502 × 10−6

Table 3: 𝑇 = 1, the objective function 𝜆(𝛼), the 𝐿
∞
, and the relative

errors for 𝑓(𝑥), with 𝛿 = 0, 0.01, 0.05, 0.1.

𝛿 𝛼 𝜆(𝛼) 𝐿
∞

RE
0 8.9302 × 10−18 3.7471 × 10−6 8.1049 × 10−6 8.0927 × 10−6

0.01 2.6955 × 10−7 0 2.5360 × 10−4 2.5360 × 10−4

0.05 1.3477 × 10−6 0 2.5464 × 10−4 2.5464 × 10−4

0.1 2.6955 × 10−6 0 2.5477 × 10−4 2.5477 × 10−4

Table 4: 𝑇 = 1.2, the objective function 𝜆(𝛼), the 𝐿
∞
, and the

relative errors for 𝑓(𝑥), with 𝛿 = 0, 0.01, 0.05, 0.1.

𝛿 𝛼 𝜆(𝛼) 𝐿
∞

RE
0 6.1296 × 10−16 2.9210 × 10−6 7.4720 × 10−7 7.4718 × 10−7

0.01 3.7452 × 10−8 0 4.8134 × 10−4 4.8134 × 10−4

0.05 1.8726 × 10−7 0 4.8590 × 10−4 4.8590 × 10−4

0.1 3.7453 × 10−7 0 4.8647 × 10−4 4.8647 × 10−4

measure the difference between the numerical and analytical
solutions. The 𝐿

∞
error norm is defined by

𝐿
∞
= max
0≤𝑗≤𝑁

𝑓 (𝑥𝑗) − 𝑓 (𝑥𝑗)
 , (33)

and the relative error (RE) is defined by

RE = √
∑
𝑁

𝑗=0

𝑓(𝑥𝑗) − 𝑓(𝑥𝑗)

2

∑
𝑁

𝑗=0

𝑓(𝑥𝑗)

2

, (34)

where 𝑥
𝑗
are test points and 𝑁 is the total number of

uniformly distributed points on [0, 1]. 𝑓(𝑥) is the exact
solution and 𝑓(𝑥) is the numerical solution.

In our computations, we take 𝑁 = 40. The noisy data
{𝑤𝛿(𝑥

𝑗
)}|
𝑁

𝑗=0
were assumed to contain some random errors.

Assume the observed data has the following noised form:

𝑊𝛿 = 𝑊 + 𝛿 × randn (size (𝑊)) , (35)
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Table 5: 𝑇 = 1, the analytical and numerical results for the 𝑓(𝑥
𝑗
) in 𝑥

𝑗
= 0.1𝑗, where 𝛿 = 0.

𝑗 Exact 𝑓(𝑥
𝑗
) Numerical 𝑓(𝑥

𝑗
) |𝑓(𝑥

𝑗
) − 𝑓(𝑥

𝑗
)|

1 0.309016994374947 0.309019506872923 2.51249797578179 × 10−6

2 0.587785252292473 0.587790008583465 4.75629099216945 × 10−6

3 0.809016994374947 0.809023584278051 6.58990310320462 × 10−6

4 0.951056516295154 0.951064106758891 7.59046373755012 × 10−6

5 1 1.00000810910255 8.10910254811503 × 10−6

6 0.951056516295154 0.951064262563094 7.74626794020072 × 10−6

7 0.809016994374947 0.809023549839842 6.5554648942534 × 10−6

8 0.587785252292473 0.587789998909465 4.74661699212398 × 10−6

9 0.309016994374948 0.309019477607716 2.48323276808016 × 10−6

10 1.22464679914735 × 10−16 6.12328388409843 × 10−17 6.1231841073751 × 10−17

Table 6: 𝑇 = 1, the analytical and numerical results for the 𝑓(𝑥
𝑗
) in 𝑥

𝑗
= 0.1𝑗, where 𝛿 = 0.1.

𝑗 Exact 𝑓(𝑥
𝑗
) Numerical 𝑓(𝑥

𝑗
) |𝑓(𝑥

𝑗
) − 𝑓(𝑥

𝑗
)|

1 0.309016994374947 0.308938263749532 7.8730625415413 × 10−5

2 0.587785252292473 0.587635497743805 1.49754548667946 × 10−4

3 0.809016994374947 0.808810874921651 2.06119453296294 × 10−4

4 0.951056516295154 0.950814208345435 2.42307949718912 × 10−4

5 1 0.999745222344235 2.54777655765204 × 10−4

6 0.951056516295154 0.950814208345429 2.42307949724685 × 10−4

7 0.809016994374947 0.808810874921642 2.06119453305731 × 10−4

8 0.587785252292473 0.587635497743796 1.49754548676939 × 10−4

9 0.309016994374948 0.308938263749526 7.87306254214082 × 10−5

10 1.22464679914735 × 10−16 6.12167393253357 × 10−17 6.12479405893996 × 10−17

where 𝑊 = (𝑤(𝑥
0
), 𝑤(𝑥

1
), . . . , 𝑤(𝑥

40
))𝑇, “randn(⋅)” is a

normally distributed random variable with zero mean and
unit standard deviation, and 𝛿 dictates the level of noise.
“randn(size(𝑊)” returns an array of random entries that has
the same size asW.

Example 1. In this example let us consider the following
inverse problem:

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+ 𝜑 (𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0,

𝑢 (0, 𝑡) = 0, 𝑡 > 0,

𝑢 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1.

(36)

The overspecified condition is as follows:

𝑢 (𝑥, 𝑇) = 𝑔 (𝑥) = 𝑒
−𝑇 sin (𝜋𝑥) . (37)

The analytical solution of this example is 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin(𝜋𝑥)
and 𝜑(𝑥, 𝑡) = (𝜋2 − 1)𝑒−𝑡 sin(𝜋𝑥), 𝑓(𝑥) = sin(𝜋𝑥).

The regularization parameter 𝛼 is chosen using the
genetic algorithm. In the genetic algorithm implemented, a
tournament selection scheme by two individuals was used. A

uniform crossover operator is applied with a probability of
0.95 and a uniform mutation operator where each individual
has a probability 0.05 of being mutated. Population size is
20, number of generations is 100. The search domain is
[0, 100] for 𝛼. The objective function 𝜆(𝛼), the 𝐿

∞
error

norm, and relative error RE are presented in Tables 1, 2, 3,
and 4 corresponding to 𝑇 = 0.1, 0.5, 1, and 1.2, respectively.
Especially when 𝑇 = 1, the corresponding errors between
the analytical values and the estimated results by function
𝑓(𝑥) are listed in Table 5 (𝛿 = 0) and Table 6 (𝛿 = 0.1).

From this numerical example, it can be seen that the
numerical results are quite satisfactory. As shown in Tables 1–
6, when the noise level of input data 𝛿 = 0 with 𝑇 = 0.1,0.5,1,
and 1.2, the numerical solutions obtained using our method
are of high degree of accuracy. Even with the noise level of
input data up to 𝛿 = 0.1, the numerical solutions are still in
good agreement with the exact solutions.

6. Conclusion

This paper deals with the effective algorithms for solving
the backward heat problem and the following results are
obtained.

(1) The present study successfully applies the numerical
method involving Tikhonov’s regularization method
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in conjunction with the first Fredholm integral equa-
tion to the inverse nonhomogeneous heat conduction
problems.

(2) From the illustrated example, it can be seen that the
proposed numerical method is efficient and accurate
to estimate the initial condition 𝑓(𝑥).
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