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The inspection of inhomogeneous transverse and longitudinal wall thicknesses, which determines the quality of reducing pipe
during the production of seamless steel reducing pipe, is lags and difficult to establish its mechanism model. Aiming at the problems,
we proposed the quality prediction model of reducing pipe based on EOS-ELM-RPLS algorithm, which taking into account the
production characteristics of its time-varying, nonlinearity, rapid intermission, and data echelon distribution. Key contents such
as analysis of data time interval, solving of mean value, establishment of regression model, and model online prediction were
introduced and the established prediction model was used in the quality prediction and iteration control of reducing pipe. It is
shown through experiment and simulation that the prediction and iteration control method based on EOS-ELM-RPLS model can
effectively improve the quality of steel reducing pipe, and, moreover, its maintenance cost was low and it has good characteristics

of real time, reliability, and high accuracy.

1. Introduction

As seamless tubes are widely used in various fields such as
automobile, aviation, petroleum, chemical industry, archi-
tecture, boiler, and military industry and are playing a very
important role in national economy, the seamless tubes are
called industrial blood vessels. With the rapid development of
economy, the service fields of seamless tube expand cease-
lessly and the requirements for product quality also become
more and more urgent and higher. The working procedure of
seamless steel pipe consists of piercing, tube rolling, and tube
reducing. Due to the restriction of mandril rigidity during
piercing and tube rolling, it is difficult to obtain the seamless
steel pipe whose diameter is below 70 mm on tube rolling
train. Also, even a small-sized seamless steel pipe hot rolled
whose diameter is greater than 70 mm is not expected to be
produced by rolling a small tubular billet because this will
decrease the train productivity by leaps and bounds. There-
fore, it is reasonable to produce steel pipe with a small diam-
eter using reducing mode. Owing to the use of reducing pro-
cess, people can use tubular billet with a large diameter for
piercing and rolling, larger reducing can be achieved in

reducing mill train, and hence long pipe with a small diameter
is obtained, which is an effective technical measure in in-
creasing the output, expanding product variety, and reducing
consumption. Various countries throughout the world tend
to adopt continuous rolling process with high efficiency in
steel pipe extending working procedure to produce shell with
single specification and alter technical process in reducing
working procedure to obtain finished pipes in different
specifications.

Since tension reducing mill is the last forming equipment
in steel pipe hot rolling production and has big influence on
the steel pipe quality, the deviation of wall thickness is an
important index in deciding the steel pipe quality. However,
as the mechanism model for pipe reducing process is limited
and the quality monitoring of the pipe is accomplished by the
periodical spot-check of technical personnel, the inspection
results lag severely. Thus, it is significant in theory and
economy to establish the wall thickness prediction model of
steel pipe reducing with a sufficient accuracy. Macrea and
Cepisca [1], Bayoumi [2], and Zhang et al. [3] established a
mechanism model of reducing mill and analyzed the indexes
such as tension, velocity, and wall thickness during reducing
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process but there are too many restraints in his model, and
his model is appropriate for individual production train and
is bad in versatility. Yu et al. [4, 5], Yi et al. [6], Xu and Du [7],
Du et al. [8], Yuan et al. [9], and Shi et al. [10] utilized finite
element software to simulate the reducing process of seamless
steel pipe, performed prediction for the key indexes such as
dimensions and wall thickness of reduced steel pipe. Their
works were used for setting the technical parameters in
reducing production and achieved a certain practical effect.
However, due to the restriction of finite element software, its
precision of prediction is not high and is more appropriate for
the development of products with new specifications instead
of the online real time control of steel pipe. Shuang et al. [11]
analyzed different processes of incoming material and the
pipe thicknesses and lengths during tension-reduction pro-
cess in an iron and steel company using neural network BP
algorithm but they only considered the influence of incoming
shell dimension and entrance temperature, and did not con-
sidered the effect of reducing production process on product
quality.

It takes dozen of seconds to produce a piece of steel pipe
using reduction. Thus it can be seen that the seamless steel
pipe reducing production process is a typical rapid intermit-
tent one. Plentiful production data on site provide conve-
nience for our use of soft measurement method during inter-
mittent production process. Data from reducing production
process take on echelon distribution. In the meantime, as the
product specifications often change, it is very difficult to guar-
antee the same adjustment of stand this time as that of last
time for products with the same specification. This will lead
to the occurrence of a certain time-varying in model. These
problems result in low precision of modeling established by
traditional intermittent process modeling method such as
multiway PLS. The modeling is difficult to be used in pre-
diction and control of field products. Aiming at the pro-
duction process characteristics such as time-varying, nonlin-
earity, rapid intermission, and data echelon distribution, we
proposed to use EOS-ELM-RPLS (ensemble of online
sequential-extreme learning machine-recursive partial least
square) algorithm to establish the quality prediction model
for reducing production. Under the circumstance of ensuring
high precision, the model has high flexibility and adaptability
and can be well used in the prediction and control of product
quality on production site.

2. Time Interval Division of Reducing
Production Process and Analysis of
Quality Influential Factors of Reducing Pipe

2.1. Time Interval Division of Reducing Production Process. In
order to establish accurately the quality prediction model of
reducing pipe, one should firstly analyze the factors influ-
encing the quality of reducing pipe to prevent incomplete
information and existed redundancy during modeling from
decreasing the precision of model. It is known through the
analysis of process characteristic that the effect of various
independent variables on the quality of reducing pipe during
different time intervals is different. Part of variables only
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FIGURE 1: The relation between time and displacement of reducing
tube.

exist in some time intervals and can be treated as factors
observing quality of reducing pipe, whereas another part of
variables run through entire production process and has large
influence on the quality of reducing pipe.

Steel pipe reducing process is substantially a hollow body
sinking continuous rolling process. As shown in Figurel,
three stages can be divided from the head of steel pipe to
entrance of the first stand until away from the last stand in
the tail.

(1) Bite stage: bite stage means the stage from pipe head to
enter the first stand till the pipe head to enter the
last stand. As shown in Figure 1, begin when the steel
pipe head enters the first rolling mill and end when
the steel pipe head encounters the 12th rolling mill.
Steel pipe head moves from point a’ to point b’, and
steel pipe tail moves from point A to point B’ when
the pipe head gradually passes various stands and its
speed increases with increasing coefficient of exten-
sion. At this stage, the influence variables of various
rolling mills increase according to advance stepping
of steel pipe.

(2) Stable rolling stage: from pipe head to enter the last
stand till the pipe tail still not to be away from the first
stand, when whole mill train rolls the same piece of
steel pipe, and rolling load and speed are all stable,
called stable rolling stage. As shown in Figure 1, begin
when the steel pipe head meets the 12th rolling mill,
and end when the steel pipe tail encounters the Ist
rolling mill. Steel pipe head moves from point b’ to
point ¢’, and steel pipe tail moves from point B’ to
point C'. At this stage, the variables of various rolling
mills have influence on steel pipe.

(3) Steel leaving stage: from pipe tail away from the 1st
stand till away from the last stand. As shown in
Figure 1, begin when the steel pipe tail meets the
Ish rolling mill, and end when the steel pipe tail
encounters the 12th rolling mill. Steel pipe head moves
from point ¢’ to point d’, and steel pipe tail moves
from point C' to point D'. At this stage, the number of
stands taking part in rolling this piece of steel pipe at
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the same time decreases gradually until single stand
rolling in the last stand, and whole piece of steel pipe
finishes rolling. Then the steel pipe is expelled out
of the stand. At this stage, the influence variables of
various rolling mills decrease according to advance
stepping of steel pipe.

2.2. Analysis of Quality Influential Factors of Reducing Pipe

2.2.1. Influence of Shell Heating Temperature. The heating
temperature of shell will bring about the variation of metallic
resistance to deformation and result in the variation in rolling
force and average tension coeflicient. The higher the heating
temperature of shell is, the lower the metallic resistance to
deformation is, the smaller the rolling force is, and the smaller
the external diameter undulation of steel pipe is. In addition,
the heating temperature of shell is a function of steel pipe
diameter and obvious positive correlation exists between the
heating temperature and the diameter. The higher the heating
temperature of shell is, the bigger the thermal external dia-
meter of steel pipe is after metal is subjected to thermal
expansion.

2.2.2. Influence of Rolling Speed. 1t is generally recognized
that friction factor plays a role concerning the effect of rolling
speed on metallic transverse inhomogeneous deformation
during reduction of shell. The lower the rolling speed is, the
larger the friction force is, and hence the more favorable it
reduces the in-homogeneity of steel pipe wall thickness.

2.2.3. Influence of Shell Quality. When the shell reduces, it is
difficult to control its wall thickness because its inner surface
is not supported by mandril and the pipe wall of the shell will
be in a free varying state with changing rolling process con-
dition. Moreover, the in-homogeneity wall thickness of the
shell will be inherited to the finished steel pipe after reduction.
Therefore, it is an important condition to improve the wall
thickness homogeneity of shell in order to guarantee the wall
thickness precision of finished steel pipe.

2.2.4. Influence of Tension. When tension reducing mill is
used for the reducing of shell, due to the existence of tension,
the diameter of shell decreases while the wall thickness thins.
Under stable tension condition, metallic transverse deforma-
tion is small, which is favorable for the improvement of the
precision of steel pipe wall thickness. However, tension can-
not be established or tension undulation occurs among stands
when the head of pierced pipe enters in turn various reducing
roll stands and the tail end of shell leaves in turn various
reducing roll stands. Thus the in-homogeneity of longitudinal
wall thickness in the steel pipe certainly will occur.

2.3. Determination of Input and Output Variables. The output
of quality prediction model is the quality of reducing pipe.
The quantification index of judging the quality of reducing
pipe is the transverse and longitudinal wall thickness. Trans-
verse wall thickness in-homogeneity is the ratio of maximum

wall thickness deviation to nominal wall thickness. Its calcu-
lation formula is shown as follows:

Omax — O
AS % — —max_ “min

min 100, 1)
HOM
where AS%: relative in-homogeneity of transverse wall thick-
ness; 8, maximum wall thickness of steel pipe; &,
minimum wall thickness of steel pipe; 8oy nominal wall
thickness of steel pipe.

The size of in-homogeneity of longitudinal wall thickness
in steel pipe is determined by the difference between the mean
value of rough pipe front-end wall thickness and the mean
value of rear-end wall thickness. Its calculation formula is
shown as follows:

_ Z?:l (Snep _ Z?:l 63an i (2)

ASup = n n

where Y, 8., and Y, 85, are the sum of measured front-
end wall thickness and rear-end wall thickness of steel pipe,
respectively; » is the number of measured points at each end
[12].

3. EOS-ELM-RPLS Algorithm

3.1. Nonlinear PLS. Since linear PLS model cannot describe
correctly the nonlinear relation between independent vari-
able X and dependent variable Y, nonlinear PLS method is
required to solve this issue. Wold et al. extended at the PLS
method to nonlinear field [13, 14]. There are two feasible
methods in nonlinear PLS methods: one is to perform array
extension for input matrix, introduce some nonlinear terms
of original variable, for example, the square term, and then
regress the extended input and output matrix using PLS
method. If prior knowledge on the relation of original input
variable does not exist, this method cannot guide the selec-
tion of combined mode and may lead to oversized dimension
of input matrix and the difficulties of processing; the other is
to reserve the linear external model of PLS method. Internal
model is nonlinear.

(1) External relation model:

A
X=TP"+E=Yt,p, +E
a=1

3)
A
Y=UQ" +F=Yu,q, +F

a=1

where A is the number of reserved eigenvector, (1 x
1) and u,(n x 1) are the score vector of X and Y,
respectively, p,(m x 1) and q,(px 1) are the load vec-
tor of X and Y, respectively, T(nx A) and U(nx A) are
the score matrix of X and Y, respectively, P(rmxA) and
Q(p x A) are the load matrix of X and Y, respectively,
and E and F are the fit residual matrix of X and Y,
respectively.

(2) Internal relation model:

i, = f(ta) +& (4)



where f(-) is the nonlinear function and ¢ is the
residual.

Since neural network has the capability of fitting nonlin-
earity, during the modeling of batch process, nonlinear mul-
tiway PLS method that internal model adopts neural network
gains extensive application. As traditional feedforward neural
network adopts gradient learning algorithm during training,
parameters in network needs iteration and update. Not only
does the training time last long but also it easily results in the
issues of local minimum and excessive training [15].

3.2. ELM Algorithm. In supervised batch learning, the learn-
ing algorithms use a finite number of input-output samples
for training [16, 17]. For N arbitrary distinct samples (x;, ;) €
R"xR™, where x; isan x 1 input vector and ¢; isamx 1 target
vector, if an SLFN (single-hidden layer feedforward neural
network [18,19]) with N hidden nodes can approximate these
N samples with zero error, it then implies that there exists f3;,
a;, and b, such that

2l

fx (xj) =Y BG (a,-,b,-,xj) +e =t (5)

Il
—

where j = 1,...,N, g; and b, are the learning parameters of
hidden nodes (weight vector connecting the input node to the
hidden node and threshold of the hidden node) which are
randomly selected according to the proof given by Huang
et al. and f3; is the weight connecting the ith hidden node to
the output node. To avoid overfitting the noise in the data, an
error term ¢; is added. G(a;, b;, x) is the output of the ith hid-

den node with respect to the input x and N is the number of
hidden nodes which can be determined by trial and error or
prior expertise. Then, the equation can be written compactly
as

HB=T, (6)
where
H(ay,...,a5.by,. ... b, Xq5. . xy)
G(apby,x) - Glag by x;) ?)
G(apby,xy) -+ G(“N>bﬁ>xN) Nx N
T
Bl t
B=1": , T=]": , (8)
T T
ﬁﬁ Nxm N Nxm

where H is called the hidden layer output matrix of the net-
work; the ith column of H is the ith hidden node’s output
vector with respect to inputs x;, x,, . .., x5 and the jth row of
H is the output vector of the hidden layer with respect to input
x;. The hidden node parameters a; and b; need not be tuned
during training and may simply be assigned with random
values. Equation (6) then becomes a linear system and the
output weights [ are estimated as

B=H'T, )
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where H" is the Moore-Penrose generalized inverse of the
hidden layer output matrix H [20].

3.3. OS-ELM Algorithm. In real applications, the training
data may arrive chunk-by-chunk or one-by-one; hence, the
batch ELM algorithm has to be modified for this case so as to
make it online sequential [21, 22].

The output weight matrix (8 = H'T) given in (9) is a
least-squares solution of (7). Here we consider the case where
rank(H) = N is the number of hidden nodes. Under this
condition, H" of (9) is given by

-1

H = (HTH) ur. (10)

If H" H tend to become singular, one can make it nonsin-
gular by choosing smaller network size N or increasing data
number N in the initialization phase of OS-ELM. Substituting
(10) to (9), Ebecomes

B=(H"H) 'HT. (1)

Equation (11) is called the least-squares solution to Hf =
T. Sequential implementation of least-squares solution of (11)
results in the OS-ELM.

Given a chunk of initial training set X, = {(x;, ti)}f;]"l and
N, = N, if one considers using the batch ELM algorithm, one
need to consider the solution of minimizing |H,—T|, which
is given by 8, = Ky H_ T,, where K, = H_ H,,.

Suppose that we have another chunk of data N; =
{(x;, ti)}fi‘ggll, where N, is the number of samples in this
chunk. The problem becomes minimizing

I[F]a-[x]

Considering both N, and N;, the output weight f3
becomes

L[H T, !
=] ] b= ] i) o0

. (12)

For sequential learning, we have to express f3; as a func-
tion of f3, K;, H;, and T} and not a function of the data set
N,. Now K, can be written as

H
T T
K, = [H] H/] [H‘;] =K, + H, H,, (14)

H,|" [T,
[HO] [TO] = H, T, + H H, = KoK, 'Hy Ty + H{ T
1 1

=Koy + H?Tl = (K1 - HlTHl)ﬁO + H1TT1

T T
=K,By—H, H,p, + H, T}.
(15)
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Combining (13) and (15), f3, is given by

_ 1 H() ! T() _ 1 T T
B =K, H, T, =K, (KlﬁO_H1H1ﬁ0+H1T1)

=P+ K1_1H1T (T, - H,By)

(16)
where K| = K + HITHI.
When (k + 1)th chunk of data set
lf+1 N,
Ny = {(xi’ti)}i ok 17)

=(Z0 N1

is received, where k > 0 and Ny, denotes the number of sam-
ples in (k + 1)th chunk, we have

T
Ky = Ky + Hi Hyy

1T
Bist = B+ Koy Hyeyy (Tier = Hien i) -

(18)

K, rather than K, is used to compute f3;,, from f3; in

(18). The update formula for K,;il is derived using the
Woodbury formula:

-1 T -1
Ky = (Kk + Hk+1Hk+1)

-1 —114T “1,,T \! -1
=K' = K H (T + Hon K HEG,) - X Ha K
(19)

Let P,,; = K;,,, then the equation for updating 3, can
be written as

T T \71
Py =P - Pka+1(I + Hk+1Pka+1) Hi 1 P 20)

T
Bri1 = Br + P Hiyy (Tyyy = Hypy Br) -

Equation (20) gives the recursive formula for f3,;.

3.4. Ensemble of OS-ELM Algorithm. EOS-ELM consists of
many OS-ELM networks with the same number of hidden
nodes and the same activation function for each hidden node
[23]. It has constructed P OS-ELM networks to form our
EOS-ELM. All P OS-ELMs are trained with new data in each
incremental step. The input parameters for each OS-ELM
network are randomly generated and the output weights are
obtained analytically based on the sequential arrived input
data. Then we compute the average of the outputs of each OS-
ELM network, which is the final output of the EOS-ELM.

Assume the output of each OS-ELM networkis g/ (x;), j =
1,2,...P. Hence, we have

P

g(x;) = %Zg" (x;)- (1)
i=1

3.5. EOS-ELM-RPLS Modeling Steps. The difference of non-
linear RPLS modeling method based on OS-ELM from linear
PLS method is that it uses ELM to establish internal nonlinear
model and in the meantime and achieve the update of internal
and external models. This method reserves linear external
model, extracts through PLS the attributive information of
process, eliminates the colinearity of data, reduces the dimen-
sion of input variable, then adopts ELM to establish nonlinear
internal model between input score vector matrix and output
score vector, and raises the nonlinear processing capability of
internal model. Thus, EOS-ELM-RPLS method has the
advantages of PLS and ELM, that is, the characteristics of
robustness and feature extraction of PLS method and quick
nonlinear processing capability of ELM as well as the preci-
sion accuracy through model real-time update.

The modeling and testing steps of nonlinear RPLS
method based on EOS-ELM are as follows.

(1) Assign two standardized data matrices, X € R™"

and Y € R™P?; dynamic nonlinear PLS regression
model can be expressed as follows:

X = [xl,xz,...,xp]. (22)

(2) Deploy the batch data of batch process, use cross-

validation method to determine the number of latent

variable, adopt linear PLS method to calculate the

score vector matrices T and U, and load vector mat-
rices P and Q for modeling sample X and Y:

A
X=TP"+E=Yt,ps +E,
a=1

(23)
A
Y=UQ +F=)u,q, +F.

a=1

(3) Assign the node number of ELM hidden layer and
activation function (e.g., sigmoid function), use ELM
to establish nonlinear model between internal model
T and U, and gain U = fy\(T), where fg () is the
nonlinear function indicated by EOS-ELM.

(4) When new batch data X, Y; are obtained, we perform
PLS decompose firstly, and obtain score vector and
load vector T}, Uy, P}, Qq:

X, =T,Pl +E,
(24)
Y, =U,Ql +F.

According to formula (19), EOS-ELM algorithm is
adopted to update output layer weight value and achieve the
update of internal model; in the meantime, conduct weighted
mean on load matrix of external model and achieve external
RPLS update, where w is the weight value factor. Repeat above
steps; conduct model update on every batch:

P" = wP" + (1 -w) P/,
(25)
Q" =wQ"+(1-w) Q.
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TABLE 1: Size table of reducing tube.

Ser. number External diameter ~ Wall thickness of Extern.al diameter Wall 'thickne'ss of Number of variable ~ Number of total
of shell shell of finished pipe finished pipe stands stands

1 152.5 4.25 42.2 3.56 18 24

2 152.5 10.25 70 10.25 12 18

3 152.5 7.75 139.7 7.72 12 16

4 152.5 6 73.03 5.51 12 12

5 152.5 9.75 114.3 10 10 16

6 152.5 25 121 25 10 12

7 152.5 6 139.7 6.2 10 10

TABLE 2: Variable table for modeling of reducing tube quality.

Ser. number Variable name Variable meaning

1 X1, Xy, X3 Motor speed, current, and torque of Number 1 reducing mill

2 Xy5 X5, Xg Motor speed, current, and torque of Number 2 reducing mill

3 X7, Xg> Xg Motor speed, current, and torque of Number 3 reducing mill

4 X100 X115 X12 Motor speed, current, and torque of Number 4 reducing mill

5 X13> X145 X5 Motor speed, current, and torque of Number 5 reducing mill

6 X16> X17> X138 Motor speed, current, and torque of Number 6 reducing mill

7 X19> X205 X1 Motor speed, current, and torque of Number 7 reducing mill

8 Xgp> X935 Xoy Motor speed, current, and torque of Number 8 reducing mill

9 X955 Xag> Xo7 Motor speed, current, and torque of Number 9 reducing mill

10 X285 X29> X390 Motor speed, current, and torque of Number 10 reducing mill

1 X315 X3p, X33 Motor speed, current, and torque of Number 11 reducing mill

12 X345 X35> X36 Motor speed, current, and torque of Number 12 reducing mill

—_ =
W
xR
W W
%

—_
w
®

w

©

The temperature of shell
The transverse wall thickness of shell
The longitudinal wall thickness of shell

(5) Use testing data to check model precision. Conduct
PLS decomposition on the testing data X,, gain score
vector T,

X, =T,P" +E. (26)

Introduce T, into EOS-ELM model, gain U, =
Jros—rim(T3), find out model prediction value through Y =
uQ”.

4. Modeling and Control of
Reducing Pipe Quality

4.1. Establishment of Quality Prediction Model of Reducing
Pipe. As there are many specifications of reducing pipe prod-
ucts, one cannot predict accurately the quality of steel pipe
using single model. One must classify data in accordance with
the specifications of products. As shown in Table1, pro-
duction data were classified into seven categories and seven
quality prediction models of reducing pipe were established.

Taking the specification of steel pipe in series Number 4 with
the maximum output as an example, detailed information
of various input variables using this model is shown in
Table 2.

Prior to establishing quality prediction model of reducing
pipe, one must preprocess modeling data and conduct batch
treatment, time interval division, mean value treatment, and
two-dimensional spread on the modeling data. On the basis
of obtaining three-dimensional data, one must process the
process data into subsections according to different time
intervals of production operation. In this work, according to
the variation of roll current, one firstly classified the produc-
tion process of reducing pipe into bite subtime interval, stable
rolling subtime interval, and steel leaving subtime interval.
Then according to the sequence of roll addition, bite and
steel leaving stages were divided in detail. Bite stage was
divided into eleven subtime intervals and in the same way,
steel leaving stage was divided into eleven subtime intervals.
After process variables in various time intervals required by
modeling were determined, one took the mean value of each
process variable in this time interval. Practical data treatment
is shown in Figure 2.
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| Bite stage X Stable rolling stage | Steel leaving stage J

I I | |
Number 1 roll | X1 | X, | Xis | Xia | Xis| Xie | Xig | Xus [ Xio| X0 | Xt X112
Number 2 roll X | Xaa | X3 | Xoa | Xos [ Xas| X7 | Xas | Xao | Xaio Xon Xon
Number 3 roll YS,I Ko | Xas| Xau | Xss| Xe | Xoz| Xas | Xao X310 Xsn | Xsn2
Number 4 roll X X«Lz X{s Xm an Xx,s Xﬂ s Xi,s Xi,lv Xﬂ,ll Yuz
Number 5 roll Xs, Xso [Xss| Xsa | Xss| Xsg | Xs7 Xss Xso | Xs0 | X1 | Xsi2
Number 6 roll §6,1 Ys’z Xs,s Xs,é X6,5 Xw Xsi Xs,x Xes X6,10 ie,u Xs,lz
Number 7 roll Xou | X72 | X7a| Xra | X7 X76 X7z | Xos | Xz | X20| X1 | X712
Number 8 roll Koy | Xsa| Xss | Xsa Xy KXo | Xs7| Xss| Xso | Xs10| Xsn | Xs12
Number 9 roll Xo1| Xop | Xos Xo4 Xos | Xog | Xo7| Xog| Xoo | Xoo| Xo11| Xo12
Number 10 roll Xio1 | X0z X103 Xioa | X105 | Xios | X107 | Xios | X1 | X101 Xion| Xio12
Number 11 roll X1 X2 Xi1a| Xiva| Xins | X6 | Xin7| X | Xino | Xinto| Xinnt| Xiniz
Number 12 roll Xiz1 Xiza| X123 | Xioa | X125 | Xize | X127 | Xizs | Xizo| Xizo| Xz | Xiz12

FIGURE 2: The relation between time and variables of reducing tube.
Adding shell heating temperature X, quality precision XIO,II’XII,IO’XIZ,Q’XIO,IZ’XII,II’XIZ,IO’XII,IZ’
variable X \noverse a0d Xjongitudina> ON€ got final input matrix _ _
XlZ,ll’ X12,12] .
(27)

X = [XT’ Xtransverse’ Xlongitudinal’ Xl,l > XI,Z’ 2,1> X1,3’

?2,2’ _3,1 > ?1,4’ YZ,S’ §3,2> _4,1 > Y1,5’ ?2,4’

X3,3’ _4,2’ Y5,1 > Xlﬁ’ _2,5’ X3,4’ _4,3’ Y5,2’

?6,1 > Y1,7’ Y2,6’ XS,S’ _4,4’ ?5,3’ _6,2’ ?7,1 4

Xl,S’ _2,7’ Y3,6’ X4,5’ XSA’ X6,3’ 27,2’ X ,1>

Y1,9’ _2,8’ Y3,7’ X4,6’ XS,S’ yﬁA’ X7,3’ Y 122

X9,1 > XI,IO’ X2,9’ _3,8’ _4,7’ XS,@ _6,5’ X7,4’
?8,3’ _9,2’ Y10,1 > Y1,1 1> ?2,10’ Y3,9’ ?4,8’ Y5,7’

X10,8’ X11,7> X12,6’ X7,12’ X8,11’ X9,10’ X10,9’ X11,8’
X

10>

X9,9’

12,7> X8,12’ X9,11’ XlO,lO’ X11,9’ X12,8’ X9,12’

Mean values of aforementioned three stage data were
arranged from left to right and a data vector X(I x 147)
consisting of 147 mean values was obtained. The production
data of 70 pieces of reducing pipes produced by reducing mill
train in Baogang Iron and Steel Group in October 2012 were
obtained. Shell diameter was 152.5 mm and its wall thickness
was 6 mm. The reduced diameter was 73.03 mm and the wall
thickness was 5.51 mm. There are total 12 stands. The data
were classified into two groups: former 45 pieces were used
for establishing quality prediction model, and latter 25 pieces
were used for testing the model and checking the estimation
precision of reducing pipe quality. The production data of 45
pieces of reducing pipes were spread and a two-dimensional
data matrix X (45,30062) was obtained where data gathering
cycle was 20 ms, gathering time at bite stage was 2.5 s, gather-
ing time at stable rolling stage was 13 s, and gathering time at
steel leaving stage was 1.2 s. Aiming at above data and treating
them as shown in Figure 2, one got data matrix X(45, 147).
Quality prediction model was established using EOS-ELM-
RPLS algorithm as Figure 3. In the same way, the production
data Xnew(25,147) of 25 pieces of reducing pipes were
gathered and quality prediction inspection was performed. In
order to compare with the quality prediction model during
conventional intermittent process, for the production data of
45 pieces of reducing pipes modeled previously, 39 variables
such as motor rotary speeds, currents and torques, heating
temperature of shell, and quality precision error of shell for Ist
to 12th reducing mills were chosen to act as input variables.
Data gathering cycle was 20 ms and gathering time was 16.7 s.
The quality prediction model was established for data matrix



X(45,30062) using conventional multiway PLS algorithm
during simulation modeling.

Similarly, one reorganized the production data of
25 pieces of reducing pipes to form test data matrix
Xn(25,30062) and perform quality prediction inspection.
Figures 4 and 5 show the results of test data prediction for
two prediction models.

It is seen in Figures 4 and 5 that within the prediction
results of transverse and longitudinal wall thickness in var-
ious stages, the prediction precisions of transverse and lon-
gitudinal wall thickness based on EOS-ELM-RPLS algorithm
were 94.2% and 93.7%, and the prediction precisions based on
conventional multiway PLS algorithm were 90.8% and 90.3%.
This shows that EOS-ELM-RPLS algorithm model possesses
higher prediction precision than multiway PLS algorithm
model. Based on the quality model using EOS-ELM-RPLS
algorithm, using iteration learning control method to modify
continuously the variable traces, counteract the influence of
model error and unknown undulation; one make the quality
of reducing pipe continuously tend to attain ideal indexes.

4.2. Quality Iteration Control of Reducing Pipe Based on
Model. After quality model was obtained by calculation,
iteration learning control method based on mathematical
model was applied to improve the product quality of reducing
pipe. Due to the model-plant mismatch and unknown distur-
bances from batch to batch, the final quality does not always
meet the desired product quality in real industry. Batch-to-
batch iterative learning control can be used to solve this
problem by using the information of previous batch and
currant batch to revise the next batch input trajectory. The
following model is used to express the input-output relation-
ship:

Y=f1(B), (28)

where Y represents the product quality variables and R =
[r1,75,...,75]" is a vector of input variables. The nonlinear
function f(-) is expressed by the online sequential EOS-ELM-
RPLS. The first order Taylor series expansion of (28) can be
given by

- 0 d
y=fo+ a—’{Arl + %Ar2+

- S—fArn. (29)

n

For the kth batch, the actual product quality can be written as
the sum of the model prediction and its error

Vi = Vi + & (30)

The prediction of the (k + 1)th batch can be approximated
and expressed as follows:

o Of ki k
Vi1 :J’k"‘a_(”lﬂ_rl)*"""'
"

[
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r r
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) [ =) (=) (- rj;)]T
= Yk + GARyys
€y
ARy, = [(rlfJrl - rlf) , (r§+1 - r;() ,...,(rf\;“l - rf\,)]T
= [ Akt Ak G
S AR 0% Oy
~or; loror, " Uoryl  THoH, or;

N
= QY BiH, (1 - Hy) o’ PT,
k=1
(32)

where G is the gradient of model output with respect to the
input of the EOS-ELM-RPLS. (x]](’k is input layer weight from
the jth input to the Ith hidden node, ** is the output layer
weight from the /th hidden node to the ith output layer node,
H, is output of the Ith hidden node, and N is the number of
the hidden nodes. The subscript k represents the kth batch.
Let e and ¢, respectively, express the actual error and the
predicting error corresponding to the desired target. Thus, for
the kth batch, the following can be obtained:
& = Ya~ Voo
X (33)
ek =Ya~Vk=Va~™ Yk~ &k
The same as above, the errors for the (k + 1)th batch are
given by
Cr1 = Ya ~ Visr>
A (34)
€t1 = Vd = Y1 = Va = Vierr ~ &1

Assume that the model prediction errors for the kth batch
and the (k+1)th batch are the same. Combining (33) and (34),
it gives

ek+1 = ek - GTARk+1. (35)

The objective of the ILC is to control the input trajectory
in order to make the final product quality achieve the desired
target. By solving the following optimal quadratic objective
function (36), one can get the revised input trajectory for the
(k + 1)th batch:

min ] = g, + AR [,
k+1 (36)

T T
=€ 1216 + AR ZoAR

where Z, and Z, are positive definitive weight matrices. Set
(0J/0ARy,;) = 0; the partial derivative of the quadratic
objective function with respect to the input change AR, can
be obtained:

T -1
ARy, = (GZ,G" + Z,) GZe
(37)
Riy1 = Ry + ARy,
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Itis to be noted that the change of control trajectory ARy,
is directly updated by the actual tracking error of the process.
In many chemical batch processes, however, the actual final
quality is impossible to obtain immediately. Thus, the model
prediction value could be an alternative. Thus, the tracking
performance will depend on the accuracy of the model. The
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FIGURE 5: Prediction result of longitudinal wall thickness.

convergence of the ILC can directly be derived from the
convergence theorems in the literature [24]. It is shown that
e, will converge ask — oo if

I - GK|l <1, (38)

where K = (GZ,G" + Zz)flGZl.
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FIGURE 6: Scheme of ILC based on OSELM-RPLS.

The batch-to-batch iterative learning control scheme of
the EOS-ELM-RPLS based method is illustrated in Figure 6.
Q and P are the load matrix of PLS decomposition.

Table 3 shows the calculation results of quality iteration
learning of reducing pipe. Figures 7 and 8 show the effect of
iteration control. The results showed that the quality error of
reducing pipe decreased by about 12% compared with initial
error after rolling proceeded to 5 pieces of reducing pipes.

5. Conclusions

The production process of reducing pipe continuous rolling
has the characteristics of typical multi-time-intervals and
dynamic multi-variables. In the meantime, there are many
specifications of products, and minor variation of model will
occur due to the adjustment of stand for same specification
of product; in the meantime, the production of wall reduc-
tion and diameter reduction possesses the characteristics
of typical multi-time-intervals and dynamic multivariables.
The production process was classified into three big time
intervals such as bite stage, stable rolling stage, and steel
leaving stage influenced by different variables, and according
to the sequence that roll touches steel, the production process
was further classified into 23 sub-time-intervals; we proposed
the reducing production process model based on EOS-ELM-
RPLS algorithm. This algorithm overcame the shortcomings

Journal of Applied Mathematics
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FIGURE 7: Iterative learning control effect of transverse wall thick-
ness.
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FIGURE 8: Iterative learning control effect of longitudinal wall
thickness.

that quality modeling algorithm has complex structure, big
calculation load, and bad capability in processing nonlinear
problem during conventional intermittent process. Based on
the quality prediction model of reducing pipe, we applied
iteration learning control technique to the control system of
wall thickness deviation and improved the production quality
of reducing pipe. Field data simulation and the test results of
reducing production in Baogang Iron and Steel Group Steel
Pipe Subcompany revealed the validity of this method.
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TABLE 3: Iterative learning calculating result of wall thickness of reducing tube.

Ser. . . First Second Third Fourth
Variable name Initial value . . . .
number learning value learning value learning value learning value
1 Rotary speed of 113752 1136.51 1134.25 113315 1132.53
Number 1 reducing mill
2 Rotary speed of 1133.82 1132.65 113158 1130.52 1130.22
Number 2 reducing mill
3 Rotary speed of 1288.24 1288.93 1289.36 1290.05 1290.22
Number 3 reducing mill
4 Rotary speed of 1409.32 1408.31 140715 1406.53 1406.17
Number 4 reducing mill
5 Rotary speed of 1485.26 1483.84 1482.37 1480.98 1480.68
Number 5 reducing mill
6 Rotary speed of 1458.81 1459.84 1460.37 1460.64 1460.87
Number 6 reducing mill
7 Rotary speed of 1179.95 1178.68 117755 1177.09 1176.95
Number 7 reducing mill
8 Rotary speed of 1110.95 1109.72 1108.66 110785 110762
Number 8 reducing mill
9 Rotary speed of 1290.43 1291.42 1292.37 1293.21 1293.38
Number 9 reducing mill
10 Rotary speed of 1220.67 1219.55 1218.76 121784 121752
Number 10 reducing mill
11 Rotary speed of 1143.38 1141.75 1140.53 1139.61 1138.92
Number 11 reducing mill
Rotary speed of
12 Number 13 reducing mil 1103.21 1102.33 1101.36 1100.52 1100.22
13 Current of Number 1 35.46 34.75 34.24 33.97 33.91
reducing mill
14 Current of Number 2 52.48 51.62 51.28 51.07 50.98
reducing mill
15 Current of Number 3 41.54 42.37 42.97 4331 43.42
reducing mill
16 Current of Number 4 134.52 133.75 133.24 133.94 133.87
reducing mill
17 Current of Number 5 218.21 21747 216.84 21637 216.28
reducing mill
18 Current of Number 6 332.46 333.23 333.86 334.32 334.44
reducing mill
19 Current of Number 7 324.46 323.71 323.14 322.71 322.62
reducing mill
20 Current of Number § 302.35 301.43 300.85 300.18 300.02
reducing mill
21 Current of Number 9 326.87 327.95 328.56 328.83 328.92
reducing mill
2 Current of Number 10 324.37 323.65 323.15 322.97 322.88
reducing mill
23 Current of Number 11 325.84 324.77 324.24 323.95 323.86
reducing mill
24 Current of Number 12 274.94 274.04 273.65 273.13 273.04
reducing mill
25 Torque of Number 1 251.64 252.31 252.88 253.23 253.32
reducing mill
26 Torque of Number 2 320.48 321.25 321.93 322.35 322,52
reducing mill
27 Torque of Number 3 62.44 63.12 63.34 63.52 63.57

reducing mill
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TaBLE 3: Continued.

Ser. . -, First Second Third Fourth
Variable name Initial value . . . .

number learning value learning value learning value learning value

28 Torque of Number 4 445.85 446.87 44766 448.02 44821
reducing mill

29 Torque of Number 5 652.48 650.36 648.82 64774 64748
reducing mill

30 Torque of Number 6 1042.68 1040.24 1039.07 1038.21 103798
reducing mill

31 Torque of Number 7 1204.15 1203.26 1202.77 1202.35 1202.12
reducing mill

2 Torque of Number 8 1251.42 1250.15 1249.14 1248.48 124822
reducing mill

33 Torque of Number 9 1175.25 1176.37 117706 1177.84 1178.12
reducing mill

34 Torque of Number 10 1214.85 1213.45 1212.84 1212.25 1212.07
reducing mill

35 Torque of Number 11 1316.47 131757 1318.16 1318.54 1318.75
reducing mill

36 Torque of Number 12 1224.46 1223.24 1222.63 1222.22 1221.97
reducing mill

37 The temperature 886 892 896 898 901

of shell
References [11] Y. Shuang, J. Fan, and M. Lai, “Prediction of accuracy of stretch

[1] D. Macrea and C. Cepisca, “Algorithms for speed and stretch
control of the main drives of a stretch-reducing tube mill,” Revue
Roumaine des Sciences Techniques, Serie Electrotechnique et
Energetique, vol. 53, no. 1, pp. 99-107, 2008.

[2] L. S. Bayoumi, “Analysis of flow and stresses in a tube stretch-
reducing hot rolling schedule;” International Journal of Mechan-
ical Sciences, vol. 45, no. 3, pp. 553-565, 2003.

[3] E-P. Zhang, B.-Y. Sun, and J.-M. Wang, “Energy method in
stretch reducing process of steel tube,” Journal of Iron and Steel
Research International, vol. 15, no. 6, pp. 39-43, 2008.

[4] H. Yu, E Du, and E Wang, “Finite element model development
and application on stretch reducing process of seamless tube;”
Journal of Mechanical Engineering, vol. 47, no. 22, pp. 74-79,
2011.

[5] H. Yu, E S. Du, and E X. Wang, “FE analysis of tube thickness
variation in process of 14-stand slight stretch sizing (reducing)
mill,” Steel Pipe, vol. 35, no. 5, pp. 17-20, 2006 (Chinese).

[6] W. S.Yi, R. Y. Hao, and H. Yu, “Finite-element analysis and
experimental research of in-process gage variation of steel tube
being slight-stretch reduced,” Steel Pipe, vol. 30, no. 1, pp. 15-20,
2001 (Chinese).

[7] Z.Q.Xuand E S. Du, “A integrated simulation system of stretch
reducing of tube and verification,” Journal of Yanshan Univer-
sity, vol. 28, no. 1, pp. 36-39, 2004 (Chinese).

[8] E S. Du, Q. X. Huang, and C. Liu, “The computer predicting in
the process of 3-roll reducing of seamless tube,” Iron and Steel,
vol. 30, no. 7, pp. 28-31, 1995 (Chinese).

[9] Q Yuan, L. H. Ly, and P. Liu, “Study of the math model of WT
variation in 12-stand mini-stretch reducing mill,” Steel Pipe, vol.
32, no. 6, pp. 5-8, 2003 (Chinese).

[10] J. H. Shi, C.J. Zhao, and L. P. Bian, “FEA of oval pass of 21-stand
stretch reducing mill,” Steel Pipe, vol. 41, no. 4, pp. 18-22, 2012
(Chinese).

reduction by artificial neural networks,” Iron and Steel, vol. 35,
no. 2, pp. 28-31, 2000 (Chinese).

B. M. Wang, Hot Rolled Steel Tubes Quality, Metallurgical Indus-
try Press of China, Beijing, China, 1987 (Chinese).
S. Wold, N. Kettaneh-Wold, and B. Skagerberg, “Nonlinear PLS

modeling,” Chemometrics and Intelligent Laboratory Systems,
vol. 7, no. 1-2, pp. 53-65, 1989.

S.J. Qin, “Recursive PLS algorithms for adaptive data model-
ing, Computers & Chemical Engineering, vol. 22, no. 4-5, pp.
503-514, 1998.

B. Hu, Z. Zhao, and J. Liang, “Multi-loop nonlinear internal
model controller design under nonlinear dynamic PLS frame-
work using ARX-neural network model,” Journal of Process
Control, vol. 22, no. 1, pp. 207-217, 2012.

G. Feng, Z. Qian, and N. Dai, “Reversible watermarking via
extreme learning machine prediction,” Neurocomputing, vol. 82,
pp. 62-68, 2012.

Y. Yu, T.-M. Choi, and C.-L. Hui, “An intelligent quick predic-
tion algorithm with applications in industrial control and load-
ing problems,” IEEE Transactions on Automation Science and
Engineering, vol. 9, no. 2, pp. 276-287, 2012.

[18] Y. M. Yang, Y. N. Wang, and X. F. Yuan, “Bidirectional extreme
learning machine for regression problem and its learning effec-
tiveness,” IEEE Transaction on Neural Network, vol. 23, no. 9,
pp. 1498-1505, 2012.

G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learn-
ing machine for regression and multiclass classification,” IEEE
Transactions on Systems, Man, and Cybernetics B: Cybernetics,
vol. 42, no. 2, pp- 513-529, 2012.

H.-X. Tian and Z.-Z. Mao, “An ensemble ELM based on mod-
ified AdaBoost.RT algorithm for predicting the temperature of
molten steel in ladle furnace,” IEEE Transactions on Automation
Science and Engineering, vol. 7, no. 1, pp. 73-80, 2010.

(12]

(13]

(16]

(17]

(19]

(20]



Journal of Applied Mathematics

[21] S.J.Xie, J. Yang, H. Gong, S. Yoon, and D. S. Park, “Intelligent
fingerprint quality analysis using online sequential extreme
learning machine,” Soft Computing, vol. 16, no. 9, pp. 1555-1568,
2012.

[22] J. Zhao, Z. Wang, and D. S. Park, “Online sequential extreme
learning machine with forgetting mechanism,” Neurocomput-
ing, vol. 87, pp. 79-89, 2012.

[23] Y. Lan, Y. C. Soh, and G.-B. Huang, “Ensemble of online
sequential extreme learning machine,” Neurocomputing, vol. 72,
no. 13-15, pp. 3391-3395, 2009.

[24] J.H. Lee, K.S. Lee, and W. C. Kim, “Model-based iterative learn-
ing control with a quadratic criterion for time-varying linear
systems,” Automatica, vol. 36, no. 5, pp. 641-657, 2000.

13



