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The classic methods for frequency domain transfer function estimation such as the Empirical Transfer Function Estimate (ETFE)
and cross spectral method do not work well when the noise signal is complex. Combines the time domain and frequency domain
methods the Empirical Frequency-domain Optimal Parameter (EFOP) Estimate was presented. It could improve the precision
of system’s transfer function estimation and identification efficiency. The convergence of the EFOP based on frequency domain
smoothing is investigated in this paper.The transfer function is weighted by a frequency window and the GPE criterion is extended
to the integral form. Convergence rate and consistent properties for the EFOP estimate are given. Finally, some simulation results
are included to illustrate the advantage of the EFOP based smoothing method.

1. Introduction

Parametric and nonparametric estimations in system iden-
tification or signal processing are both of great importance.
Most of these algorithms use input and output data to give
a modeling of the target system. The modeling of linear
system transfer function is a non-parameter method, and it is
one of the most important basic problems in control theory.
From the beginning of modern system identification and sig-
nal processing, many nonparametric methods in frequency
domain have been proposed, such as ETFE [1], power spec-
trum estimation [2], and so on. Frequency domain window
functions [3, 4] are used in power spectrum estimation. In the
past few decades, algorithms for window function selection
are developed, such as adaptive smoothing method in [5]
and least square estimation for frequency function in [6].
Discussion of the relationship between time domainmethods
and frequency domainmethods can be found in [7]. EFOP [8,
9] is an algorithm combines the time domain and frequency
domain. A new criterion named General Prediction Error
(GPE) is proposed and implemented in EFOP.This algorithm
obtains the global optimal transfer function in frequency
domain by minimizing the GPE criterion. The advantage of
this kind of algorithm includes a faster rate of convergence
as well as better identification qualities. The algorithms given

in [8, 9] are parametric in time domain, so they cannot
be directly used in the identification of transfer function in
frequency domain. Since frequency domain methods have
their own advantages such as robustness for outliers in data
[10], it is necessary to develop frequency domain methods.

In this article we analysis the convergence of transfer
function estimation based on EFOP and frequency domain
window function smoothing technic. Firstly, the identifica-
tion of transfer function is derived with GPE criterion in
EFOP; secondly, the spectrum analysis is used to calculated
the predict error and a window function to smoothing the
transfer function in frequency domain. The consistence and
convergence properties of this procedure are analyzed in
this paper. It is proofed that this new smoothing method is
asymptotically unbiased and the rate of convergence is fast.
Simulations in the end show that the method proposed in
this paper gives better results than the ETFE on identification
accuracy under large noises.

For the rest of this article, preliminaries including EFOP
and GPE are introduced in Section 2; the frequency domain
smoothing procedure is derived in Section 3; its rate of
convergence and estimator’s bias properties are analyzed
in Section 4; simulation results are given in Section 5 and
Section 6 is the conclusions.
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The contributions of this article include the following.

(i) Extending the GPE criterion in EFOP to its integral
form.

(ii) Development of EFOP smoothing method for trans-
fer function estimation.

(iii) The rate of convergence for this new method is
proved.

2. Preliminaries

Most input and output signals for system identification
procedures are sampled from application systems in industry
or laboratory. Denote 𝑥(𝑡)

𝑁

1
as a data sequence, where 𝑁

is the total number of samples that is, the length of the
data sequence. The Discrete Fourier Transformation (DFT)
of 𝑥(𝑡)𝑁

1
is

𝑋
𝑁 (

𝑘) = DFT{𝑥 (𝑡)}𝑁
1
=

1

√𝑁

𝑁

∑

𝑡=1

𝑥 (𝑡) 𝜔
−𝑡𝑘

,

𝑘 = 1, 2, 3, . . . , 𝑁,

(1)

where 𝜔 = exp(2𝑖𝜋/𝑁). The Inverse Discrete Fourier
Transformation (IDFT) can also be denoted as:

𝑥 (𝑘) = IDFT{𝑋
𝑁 (

𝑘)}
𝑁

1

=

1

√𝑁

𝑁

∑

𝑡=1

𝑋
𝑁 (

𝑘) 𝜔
𝑡𝑘
, 𝑡 = 1, 2, 3, . . . , 𝑁.

(2)

Provided that {𝑥(𝑡)}𝑁
1
and {𝑧(𝑡)}

𝑁

1−𝑁
are signal sequence with

same length, the convolution of then can be written as

(𝑥 ∗ 𝑧) (𝑡) =

1

√𝑁

𝑁

∑

𝑙=1

𝑥 (𝑡) 𝑧 (𝑙 − 𝑡) , 𝑡 = 1, 2, 3, . . . , 𝑁. (3)

Lemma 1 (Parse Val equation). Provided that 𝑋
𝑁
(𝑘) =

DFT{𝑥(𝑡)}𝑁
1

= 1/√𝑁∑
𝑁

𝑡=1
𝑥(𝑡)𝜔
−𝑡𝑘

, 𝑘 = 1, 2, 3, . . . , 𝑁, that
is, 𝑥(𝑡) and 𝑋(𝑘) are DFT pairs. One can obtain

𝑁

∑

𝑡=1

|𝑥 (𝑡)|
2
=

𝑁

∑

𝑘=1





𝑋
𝑁 (

𝑘)





2
. (4)

Lemma 2. For periodic signal {𝑧(𝑡)}𝑁
1−𝑁

, 𝑧(𝑡) = 𝑧(𝑡 + 𝑁), 1 −
𝑁 ≤ 𝑡 ≤ 0, we can obtain:

DFT{(𝑥 ∗ 𝑧) (𝑡)}
𝑁

1
= 𝑋
𝑁 (

𝑘) 𝑍𝑁 (
𝑘) , (5)

where𝑋
𝑁
(𝑘) = DFT{𝑥(𝑡)}𝑁

1
, 𝑍
𝑁
(𝑘) = DFT{𝑧(𝑡)}𝑁

1
.

Lemma 3. Provided that 𝐷 = {(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁
) | ∑

𝑁

𝑘=1
𝑎
𝑘
=

𝑀, 𝑎
𝑘
≥ 0},𝑀 is a constant, {𝜉

𝑘
}
𝑁

1
is stochastic i.d.d white noise

and 𝐸𝜉
2

𝑘
= 𝜆
𝑘
. Let 𝜉 = ∑

𝑁

𝑡=1
𝑎
𝑘
𝜉
𝑘
, 𝐸𝜉2 reaches its minimum

value when the coefficient satisfies 𝑎
𝑘
= 𝑀(𝜆

𝑘
∑
𝑁

𝑘=1
(1/𝜆
𝑘
))
−1.

This lemma can be simply obtained by using Lagrange
method.

Denote 𝑢(𝑡) as an input data sequence, and 𝑦(𝑡) as an
output one. A black box linear model can be expressed as

𝐴 (𝑞) 𝑦 (𝑡) = 𝐵 (𝑞) 𝑢 (𝑡) +

𝐶 (𝑞)

𝐷 (𝑞)

𝑒
0 (
𝑡) , (6)

where 𝐴(𝑞) = 1 + ∑
𝑛
𝑎

𝑘=1
𝑎
𝑘
𝑞
−𝑘, 𝐵(𝑞) = ∑

𝑛
𝑏

𝑘=1
𝑏
𝑘
𝑞
−𝑘, 𝐶(𝑞) =

1 + ∑
𝑛
𝑐

𝑘=1
𝑐
𝑘
𝑞
−𝑘, and𝐷(𝑞) = 1 + ∑

𝑛
𝑑

𝑘=1
𝑑
𝑘
𝑞
−𝑘.

Rewrite this equation as
𝑦 (𝑡) = 𝐺 (𝑞, 𝜃) 𝑢 (𝑡) + 𝐻 (𝑞, 𝜃) 𝑒

0 (
𝑡) , (7)

where 𝐺(𝑞, 𝜃) = 𝐵(𝑞)/𝐴(𝑞),𝐻(𝑞, 𝜃) = 𝐶(𝑞)/𝐴(𝑞)𝐷(𝑞).
Denote 𝑦(𝑡 | 𝜃) as the predictor of output 𝑦(𝑡):

𝑦 (𝑡 | 𝜃) = 𝐻
−1

(𝑞, 𝜃) 𝐺 (𝑞, 𝜃) 𝑢 (𝑡) + (1 − 𝐻
−1

(𝑞, 𝜃)) 𝑦 (𝑡)

(8)

𝜃 is the parameter of the black box model here, and 𝜀(𝑡, 𝜃) =

𝑦(𝑡) − 𝑦(𝑡 | 𝜃) = 𝐻
−1
(𝑞, 𝜃)(𝑦(𝑡) − 𝐺(𝑞, 𝜃)𝑢(𝑡)) is the predict

error, which can also be written as

𝜀 (𝑡, 𝜃) =

𝐴 (𝑞)𝐷 (𝑞)

𝐶 (𝑞)

𝑦 (𝑡) −

𝐵 (𝑞)𝐷 (𝑞)

𝐶 (𝑞)

𝑢 (𝑡) . (9)

The predict error vector can be presented as

𝛽 (𝑁, 𝜃) = (𝜀 (1, 𝜃) , 𝜀 (2, 𝜃) , . . . , 𝜀 (𝑁, 𝜃))
𝑇
. (10)

Define a criterion function

𝐽 =

1

𝑁

𝑁

∑

𝑘=1

𝐿 (𝜀 (𝑡, 𝜃) , 𝜃, 𝑡) . (11)

The estimation of the model under this criterion can be
presented as

̂
𝜃
𝑁
= argmin

𝜃

𝐽 (𝛽 (𝑡, 𝜃) ;𝑁; 𝜃) . (12)

First we denote that the transfer function obtained by
ETFE is 𝐺NETFE(𝜔

𝑘
), and the error of this estimation is

calculated as

𝛿
𝑁 (

𝑘, 𝜃) = 𝐺NETFE (𝜔
𝑘
) − 𝐺
𝑁
(𝜔
𝑘
) , 𝑘 = 1, 2, 3, . . . , 𝑁.

(13)

Lemma 4. Provided that the variance of 𝑒
0
(𝑡) in (7) is 𝜆 and

it is a white noise, thus one obtains
𝐸𝛿
𝑁 (

𝑘, 𝜃) = 0, 𝑘 = 1, 2, 3, . . . , 𝑁,

𝐸𝛿
𝑁 (

𝑘, 𝜃) 𝛿𝑁
(𝑙, 𝜃)

=

{
{

{
{

{

𝜆











𝐶𝜔
𝑘

𝐴𝜔
𝑘
𝐷𝜔
𝑘
𝑈
𝑁 (

𝑘)











2

for 𝑘 = 𝑙,

0 for 𝑘 ̸= 𝑙,

(14)

where 𝑈
𝑁
(𝑘) = DFT{𝑢(𝑡)}𝑁

1
.
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Corollary 5. Under the assumption of Lemma 4, one can
obtain the following equation:

argmin
Ω

𝐸












𝑁

∑

𝑡=1

𝑔
𝑘
𝛿
𝑁 (

𝑘, 𝜃)












2

= argmin
Ω

𝐸

𝑁

∑

𝑡=1

𝑔
2

𝑘





𝛿
𝑁 (

𝑘, 𝜃)





2

= (𝑔
∗

1
, 𝑔
∗

2
, . . . 𝑔
∗

𝑁
) ,

(15)

where

𝑔
∗

𝑘
=













𝐴 (𝜔
𝑘
)𝐷 (𝜔

𝑘
)𝑈
𝑁 (

𝑘)

𝐶 (𝜔
𝑘
)













2

. (16)

This can be derived from Lemma 3. We substitute the
constant𝑀 in Lemma 3 by

𝑀 =

𝑁

∑

𝑙=1













𝐴 (𝜔
𝑙
)𝐷 (𝜔

𝑙
)𝑈
𝑁 (

𝑙)

𝐶 (𝜔
𝑙
)













2

(17)

in an off-line procedure, so𝑀 can be taken as a constant.

Theorem 6. Consider

arg min
Ω

𝐸












𝑁

∑

𝑡=1

𝑔
𝑘
𝛿
𝑁 (

𝑘, 𝜃)












2

= 𝛽
𝑇
(𝑁, 𝜃)𝑄 (𝑁, 𝜃) 𝛽 (𝑁, 𝜃) ,

(18)

where 𝑄(𝑁, 𝜃) = (1/𝑁)∑
𝑁

𝑠=1
𝜓(𝑠, 𝜃)𝜓

𝑇
(𝑠, 𝜃) which is the

weight matrix, and

𝜓 (𝑠, 𝜃) = (V
𝑒 (
𝑠 − 1, 𝜃) , V𝑒 (𝑠 − 2, 𝜃) , . . . , V𝑒 (𝑠 − 𝑁, 𝜃))

𝑇
,

𝑠 = 1, 2, 3, . . . , 𝑁,

V
𝑒 (
𝑡, 𝜃) = {

V (𝑡, 𝜃) , if 1 ≤ 𝑡 ≤ 𝑁

V (𝑡 + 𝑁, 𝜃) , if 1 − 𝑁 ≤ 𝑡 ≤ 0.

(19)

Signal {V(𝑡, 𝜃)}𝑁
1
is introduced by

𝐶 (𝑞) V (𝑡, 𝜃) = 𝐴 (𝑞)𝐷 (𝑞) 𝑢 (𝑡) . (20)

The proof can be completed by using Corollary 5 and
Lemma 1 in this section, and it is similar to the proof in [11].

More details of EFOP and GPE can be can be
found in [11]. EFOP gets the estimator by minimizing

𝛽
𝑇
(𝑁, 𝜃)𝑄(𝑁, 𝜃)𝛽(𝑁, 𝜃), which is the GPE criterion [8]

̂
𝜃 = (Φ

𝑇
(𝑁)𝑄 (𝑁)Φ (𝑁))

−1

Φ
𝑇
(𝑁)𝑄 (𝑁)𝑌 (𝑁) , (21)

where 𝑄(𝑁) = (1/𝑁)∑
𝑁

𝑡=1
𝜓(𝑡, 𝜃)𝜓

𝑇
(𝑡, 𝜃) and Φ(𝑁) is

composed of regression vectors

Φ (𝑁) = (𝜙 (1) , 𝜙 (2) , . . . , 𝜙 (𝑁))
𝑇 (22)

and 𝜙(𝑘) = (−𝑦(𝑘−1), −𝑦(𝑘−2), . . . , −𝑦(𝑘−𝑛
𝑎
), 𝑢(𝑘−1), 𝑢(𝑘−

2), . . . , 𝑢(𝑘 − 𝑛
𝑏
)).

3. New Method Based on EFOP and Frequency
Domain Smoothing

3.1. Representing Criterion in Frequency Domain. Rewrite
𝑉
𝑁
(𝜃, 𝑍
𝑁
) in frequency domain as

𝑉
𝑁
(𝜃, 𝑍
𝑁
) = arg min𝐸












𝑁

∑

𝑡=1

𝑔
𝑘
𝛿
𝑁 (

𝑘, 𝜃)












2

= 𝛽
𝑇
(𝑁, 𝜃)𝑄 (𝑁, 𝜃) 𝛽 (𝑁, 𝜃)

=

𝑁

∑

𝑠=1










𝑈
𝑁 (

𝑠)

𝐻 (𝜔
𝑠
)










4





𝛿
𝑁 (

𝑠, 𝜃)





2

=

𝑁

∑

𝑠=1










𝑈
𝑁 (

𝑠)

𝐻 (𝜔
𝑠
)










4





𝐺
𝑁
(𝜔
𝑠
) − 𝐺
𝑁
(𝜔
𝑠
)







2

=

𝑁

∑

𝑠=1






𝐺NETFE (𝑒

2𝜋𝑖𝑘/𝑁
) − 𝐺
𝑁
(𝑒
2𝜋𝑖𝑘/𝑁

, 𝜃)







2

× 𝑄
𝑁
(

2𝜋𝑖𝑘

𝑁

, 𝜃) ,

(23)

where 𝑄
𝑁
(𝜔, 𝜃) = |𝑈

𝑁
(𝜔)/𝐻(𝑒

𝑖𝜔
, 𝜃)|
4. Since the frequency

domain transfer function is actually a continuous function,
the integrity form can be presented as

𝑉
𝑁
(𝜃, 𝑍
𝑁
)

≈

1

2𝜋

∫

𝜋

−𝜋






𝐺NETFE (𝑒

𝑖𝜔
, 𝜃) − 𝐺

𝑁
(𝑒
𝑖𝜔
, 𝜃)







2

𝑄
𝑁 (

𝜔, 𝜃) 𝑑𝜔.

(24)

3.2. Algorithm with Frequency Domain Window. Denote
𝑊
𝛾
(𝜔) as the window function. Window function can be

seen as a way to perform weighting in frequency domain.
If the width of the window function is relatively large, the
variance of 𝐺

𝑁
(𝑒
𝑖𝜔
, 𝜃) will be small. But a wider frequency

window will make the bias of 𝐺
𝑁
(𝑒
𝑖𝜔
, 𝜃) larger. So there is

a tradeoff between the variance and bias of the estimated
transfer function. A scalar 𝛾 is introduced to adjust this
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tradeoff. A smaller 𝛾 represents a wider window function.
Some of the𝑊

𝛾
(𝜔) s properties are written as follows:

∫

𝜋

−𝜋

𝑊
𝛾 (
𝜉) 𝑑𝜉 = 1; ∫

𝜋

−𝜋

𝜉𝑊
𝛾 (
𝜉) 𝑑𝜉 = 0;

∫

𝜋

−𝜋

𝜉
2
𝑊
𝛾 (
𝜉) 𝑑𝜉 = 𝑀(𝛾) ; ∫

𝜋

−𝜋

𝑊
2

𝛾
(𝜉) 𝑑𝜉 =

1

2𝜋

𝑊(𝛾) .

(25)

Theorem 7. If ̂
𝜃
𝑁

= arg min
𝜃,𝜂

∫

𝜋

−𝜋
(|𝐺NETFE(𝑒

𝑖𝜔
, 𝜃) −

𝐺(𝑒
𝑖𝜔
, 𝜃)|
2
|𝑈
𝑁
(𝜔)|
4
/|𝐻(𝑒

𝑖𝜔
, 𝜂)|
4
)𝑑𝜔, the systems transfer func-

tion can be estimated as

𝐺NEFOP (𝑒
𝑖𝜔
𝑘

)

=

∫

𝜋

−𝜋
𝑊
𝛾
(𝜔 − 𝜔

𝑘
)




𝑈
𝑁 (

𝜔)





4
𝐺NETFE (𝑒

𝑖𝜔
, 𝜃) 𝑑𝜔

∫

𝜋

−𝜋
𝑊
𝛾
(𝜔 − 𝜔

𝑘
)




𝑈
𝑁 (

𝜔)





4
𝑑𝜔

,

(26)

where 𝑊
𝛾
(𝜔) is the frequency domain window function and

𝐺NETFE(𝑒
𝑖𝜔
, 𝜃) is the estimated ETFE transfer function.

Proof. Rewrite 𝐺(𝑒𝑖𝜔, 𝜃) as

𝐺(𝑒
𝑖𝜔
, 𝜃) =

𝑁

∑

𝑘=1

(𝑔
𝑅

𝑘
+ 𝑖𝑔
𝐼

𝑘
)𝑊
𝛾
(𝜔 − 𝜔

𝑘
) ,

𝜃
𝑘
= [𝑔
𝑅

1
, 𝑔
𝐼

1
, . . . 𝑔
𝑅

𝑛
, 𝑔
𝐼

𝑛
]

𝑇

(27)

𝑔
𝑅

𝑘
and 𝑔𝐼

𝑘
are the real and imaginary parts of 𝜃

𝑘
, respectively.

𝜕

𝜕𝜃
𝑘

∫

𝜋

−𝜋






𝐺NETFE (𝑒

𝑖𝜔
, 𝜃) − 𝐺 (𝑒

𝑖𝜔
, 𝜃)







2



𝑈
𝑁 (

𝜔)





4





𝐻 (𝑒
𝑖𝜔
, 𝜂)






4
𝑑𝜔

=

𝜕

𝜕𝜃
𝑘

∫

𝜋

−𝜋






𝐺NETFE (𝑒

𝑖𝜔
, 𝜃) − ∑

𝑁

𝑘=1
(𝑔
𝑅

𝑘
+ 𝑖𝑔
𝐼

𝑘
)𝑊
𝛾
(𝜔 − 𝜔

𝑘
)







2



𝑈
𝑁 (

𝜔)





4





𝐻 (𝑒
𝑖𝜔
, 𝜂)






4
𝑑𝜔

= −2∫

𝜋
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(28)

Since𝐺(𝑒𝑖𝜔, 𝜂)𝑊
𝛾
(𝜔−𝜔

𝑘
) ≈ 𝐺(𝑒

𝑖𝜔
𝑘
, 𝜂)𝑊
𝛾
(𝜔−𝜔

𝑘
), so we have

𝐺NEFOP (𝑒
𝑖𝜔
𝑘
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=
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𝑊
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𝑘
)
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𝑁 (
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4
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𝑘
)




𝑈
𝑁 (

𝜔)





4
𝑑𝜔

.

(29)

The new algorithm is obtained by Theorem 7. Figure 1 is
the explanation of algorithm procedure. In Figure 1, 𝐺

𝑁
and

𝐺
𝐷
are the numerator and denominator of the final result,

respectively.
Elementary operations such as add and division are not

explicitly shown in the chart.

4. Consistency and Convergence Analysis

The theoretical analysis of consistency and convergence for
the proposed method are investigated in this section. It is
proved that the estimation result is asymptotically unbiased
and will converge to the true system transfer function.

4.1. Consistency and Bias. From the expression of 𝐺(𝑒𝑖𝜔𝑘), we
can obtain:

𝐸𝐺NEFOP (𝑒
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0
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𝑊
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Φ
𝑢 (
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2
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,

(30)

where 𝜌
1
(𝑁) is defined as

𝐸𝐺NEFOP (𝑒
𝑖𝜔
) = 𝐺

0
(𝑒
𝑖𝜔
) +

𝜌
1 (
𝑁)

𝑈
𝑁 (

𝜔)

(31)
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|𝜌
1
(𝑁)| ≤ 𝐶

1
/√𝑁 and 𝐶

1
= (2∑

∞

𝑘=1
|𝑘𝑔
0
(𝑘)|) ⋅ max |𝑢(𝑡)|.

Given the Taylor expansion:
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+Φ
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(32)

Note that the window function𝑊
𝛾
should satisfy the follow-

ing equations:

∫

𝜋

−𝜋

𝑊
𝛾 (
𝜉) 𝑑𝜉 = 1; ∫

𝜋

−𝜋

𝜉𝑊
𝛾 (
𝜉) 𝑑𝜉 = 0;

∫

𝜋
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𝜉
2
𝑊
𝛾 (
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𝜉





3
𝑊
𝛾 (
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3
(𝛾) ;

(33)

We can obtain the numerator of 𝐸𝐺
𝑁
(𝑒
𝑖𝜔
0
) as:

𝐺
0
(𝑒
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0

)Φ
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(34)

And the denominator of 𝐸𝐺
𝑁
(𝑒
𝑖𝜔
0
) as:

Φ
2

𝑢
(𝜔
0
) + 2𝑀(𝛾) [Φ



𝑢
(𝜔
0
)Φ


𝑢
(𝜔
0
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0
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(35)

For sake of convenience, we denote 𝐺
0
(𝑒
𝑖𝜔
0
)Φ
𝑢
(𝜔
0
)Φ


𝑢
(𝜔
0
) +

(1/2)Φ
2

𝑢
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0
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) − 𝐺
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𝑢
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0
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(𝜔
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) + Φ
𝑢
(𝜔
0
)Φ


𝑢
(𝜔
0
) as Υ. So the equation can be

rewritten as:

𝐸𝐺NEFOP (𝑒
𝑖𝜔
0

) =

𝐺
0
(𝑒
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0
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0
) + 𝑀(𝛾)Ω

Φ
2

𝑢
(𝜔
0
) + 𝑀(𝛾)Υ

. (36)

From the above equation,we can easily get thatwhen 𝛾 →

∞ and𝑀(𝛾) → 0:

𝐸𝐺NEFOP (𝑒
𝑖𝜔
0

) ≈ 𝐺
0
(𝑒
𝑖𝜔
0

) . (37)

Based on the property of the window function, we can obtain
the following inequality:
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1
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.

(38)

When the first-order and second-order derivatives of the
transfer function are bounded, the estimator 𝐺NEFOP(𝑒

𝑖𝜔
0
) is

asymptotically unbiased.

4.2. Variance Analysis and Rate of Convergence. From the
results of previous sections, we have:
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(39)
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The nominator of (39) can be written as
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(40)

where 𝜌
2
(𝑁) ≤ 2𝐶/𝑁. Rewrite it in the integral form
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And the denominator part can be written approximately as
Φ
2

𝑢
(𝜔
0
). Notice ∫𝜋
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𝑊
2

𝛾
(𝜉)𝑑𝜉 = (1/2𝜋)𝑊(𝛾), so we have the

variance of the estimator
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Figure 2: Results of EFOP smoothing and ETFE smoothing for
system in (43) under 𝜎2

𝑒
= 0.5. ErrorEFOP = 10.21; ErrorETFE =

23.35.

5. Simulations

In this section, we use the target system

𝑦 (𝑡) − 0.2𝑦 (𝑡 − 1) + 0.4𝑦 (𝑡 − 2)

= 9𝑢 (𝑡 − 1) + 2𝑢 (𝑡 − 2) + 𝑒 (𝑡)

(43)

{𝑢(𝑡)} is a white Pseudo-Random Binary Sequence (PRBS)
[12] noise with unit variance 𝜎2

𝑢
= 1. And 𝑒(𝑡) is a gaussian

white noise with variance 𝜎2
𝑒
.

We compared EFOP smoothing with ETFE smoothing
and cross-spectral method. In all simulations, a Hamming
window of length 2 is used for all methods:

𝑤 (𝑛) = 0.54 − 0.46 cos(2𝜋 𝑛

𝑁

) . (44)

And the estimation errors are calculated by the following
equation:

error = (

𝑁

∑

𝑘=1






𝐺 (𝑘) − 𝐺

0 (
𝑘)







2

)

1/2

, (45)

where 𝐺
0
is the sample sequence of true transfer function

with 𝑁 = 128. And 𝐺 is the estimation result with same
length.
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Table 1: Estimation error for 3 methods under different noise variances.

Noise variance 0.1 0.4 0.7 1.0 1.3 1.6 1.9
Estimate error of ETFE smoothing 23.34 25.62 27.14 32.86 38.27 41.31 66.48
Estimate error of cross-spectral method 12.23 13.43 16.83 17.32 21.56 25.87 29.89
Estimate error of EFOP smoothing 9.88 10.68 13.14 13.96 16.67 20.86 24.79
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Figure 3: Results of EFOP smoothing and ETFE smoothing for
system in (43) under 𝜎2

𝑒
= 1.5. ErrorEFOP = 29.07; ErrorETFE =

42.80.

In Figures 2 to 5 we compared three methods for
frequency domain transfer function estimation. In each
figure, the top picture shows the amplitudes of the true
and estimated frequency domain transfer function and the
bottom picture shows the phase of them. Figures 2 and 3 are
comparison between EFOP smoothing and ETFE smoothing
under noise variance of 0.5 and 1.5. The estimation error
for EFOP smoothing and ETFE smoothing in Figure 2 are
10.21 and 23.35, respectively. And the estimation error for
EFOP smoothing and ETFE smoothing in Figure 3 are 29.07
and 42.80, respectively. Figures 4 and 5 are comparison
between EFOP smoothing and cross-spectral method under
noise variance of 0.5 and 1.5. The estimation error for EFOP
smoothing and cross-spectral method in Figure 4 are 11.29
and 13.95, respectively. And the estimation error for EFOP
smoothing andCross SpectralMethod in Figure 5 is 17.60 and
20.30, respectively.
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Figure 4: Results of EFOP smoothing and cross-spectral
method for system in (43) under 𝜎

2

𝑒
= 0.5. ErrorEFOP =

11.29; ErrorCrossSpectral = 13.95.

In all simulations, the variance of input signals are 1. And
all results are obtained by smoothing with a same hamming
window of length 2. It can be seen from the results that
EFOPmethod gives better estimation of the transfer function
thanETFE and cross-spectralmethod. Figure 6 is obtained by
numerical simulations. The error values in Figure 6 are also
represented in Table 1. The estimation error increases with
noise signal ratio and EFOP smoothing gets estimations of
transfer function with lowest error values.

6. Conclusion

In this paper, the convergence of transfer function estimation
based on integrity form of the GPE criterion with frequency
domainwindow function is analyzed.This smoothing technic
gives better results on transfer functions of linearmodels than
traditional ETFEmethod, especially for systems disturbed by
large noises. The consistent property and convergence rate of
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Figure 5: Results of EFOP smoothing and cross-spectral method for system in (43) under 𝜎2
𝑒
= 1.5 ErrorEFOP = 17.60; ErrorCrossSpectral =

20.30.
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Figure 6: Estimate error of EFOP smoothing, ETFE smoothing, and
cross-spectral method for system in (43) under 𝜎2

𝑒
from 0.1 to 1.9.

this method are obtained. Simulations for identification of
frequency domain transfer functions are given to illustrate
the advantage of this technic derived.
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