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One important challenge of a hybrid genetic algorithm (HGA) (also called memetic algorithm) is the tradeoff between global
and local searching (LS) as it is the case that the cost of an LS can be rather high. This paper proposes a novel, simplified, and
efficient HGA with a new individual learning procedure that performs a LS only when the best offspring (solution) in the offspring
population is also the best in the current parent population. Additionally, a newLSmethod is developed based on a three-directional
search (TD), which is derivative-free and self-adaptive. The new HGA with two different LS methods (the TD and Neld-Mead
simplex) is compared with a traditional HGA. Four benchmark functions are employed to illustrate the improvement of the
proposed method with the new learning procedure. The results show that the new HGA greatly reduces the number of function
evaluations and converges much faster to the global optimum than a traditional HGA.The TD local searchmethod is a good choice
in helping to locate a global “mountain” (or “valley”) but may not perform the Nelder-Mead method in the final fine tuning toward
the optimal solution.

1. Introduction

Genetic algorithms (GAs) perform well as a global search
technique, but they may often take a relatively long time
to converge to a global optimum [1–4]. Local search (LS)
techniques have been incorporated into GAs to improve
their performance through what could be termed as learning.
Such HGAs, often known as memetic algorithms (MAs),
were first introduced by Moscato [5, 6] and are viewed as a
form of population-based genetic algorithms hybridized with
an individual learning procedure capable of fine tuning the
global search.

MAs represent one of the recent growing areas of research
in evolutionary computation [7, 8]. Any population-based
metaheuristic search method (inspired by Darwinian princi-
ples of natural selection) hybridized with any individual lea-
rning (inspired by Dawkins’ notation “meme” [9]) procedure
that belongs to the class of MAs [7]. In diverse contexts, MAs
have also been referred to as hybrid evolutionary algorithms,
Baldwinian evolutionary algorithms, Lamarkian evolution-
ary algorithms, cultural algorithms, or a genetic local search.

MAs have been successfully applied to hundreds of real-
world problems in a wide range of domains [3, 7, 8, 10].
An important challenge of MAs is the tradeoff between
global searching and local searching in terms of the time and
computational effort [3, 10–14]; that is, the yet unanswered
questions are when to apply a LS technique; to which
individuals in the GA (or any other evolutionary algorithms)
population should the LS technique be applied; and how
much computational effort should be devoted to the LS
technique. Recent literature presented several nonclassical
MA methods that have been successful in reducing the total
computational costs associated with an LS technique and that
produce a profitable synergy from the hybridization of the
GA (or any other evolutionary algorithms) and LS methods
[7, 14–19]. But none of the nonclassical MAs are commonly
accepted [10, 14]. Additionally, some of these methods, such
as Seront and Bersini [15], Tang et al. [17], and Molina et al.
[18, 19], may require the need for extra parameters.

Another challenge of MAs is the choice of successful LS
techniques. Ning et al. [20] investigated the choice of LS
techniques in HGAs and concluded that the choice affects
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the search performance significantly and no single HGA
always performs best on a diverse set of benchmark test
functions.

In this study, to reduce the computational effort of an LS
method without any extra parameters, a new HGA, called
“a best-offspring HGA,” denoted by BOHGA, is developed
with a new individual learning procedure; that is, BOHGA
performs an LS only when the best offspring (solution) in the
offspring population is also the best in the current parent pop-
ulation. Additionally, a new LS method, a three-directional
local search (TD), is introduced which is derivative-free
and self-adaptive. The main idea of TD is that when the
offspring performs better than both of its parents, three
potential directions are constructed from parents to one of
their offspringwith a certain step length.We compare the new
individual-learning HGA, BOHGA, with a traditional HGA,
each using two memes: our TD method and the Neld-Mead
simplexmethod. Both of thesememes are derivative-free and
suitable for real applications.

The remainder of this paper is organized as follows. We
first briefly review the traditional GA and HGA. Our new
HGA is introduced with its new individual learning proce-
dure on when to perform the LS and on which offspring.
We then present the two memes, respectively: one is the
three-directional search (TD) and the other is the Nelder-
Mead simplex meme. Through two benchmark functions,
we present results for comparing the four HGAs for eight
different settings of the GA operators and two different
stopping rules. Finally, we present conclusions, discussions,
and suggestions for future work.

2. The Genetic Algorithm and Hybrid
Genetic Algorithm

Genetic algorithms (GAs) are iterative optimization proce-
dures that repeatedly apply GA operators (such as selection,
crossover, and mutation) to a group of solutions until some
criterion of convergence has been satisfied. In a GA, a
search point (solution), a setting in the search space with
𝑘 dimensions (𝑘 variables), is coded into a string, x =
[𝑥
1
, . . . , 𝑥

𝑘
]
󸀠, which is analogous to a chromosome in bio-

logical systems. The string/chromosome is composed of 𝑘
characters, 𝑥

1
, . . . , 𝑥

𝑘
, which are analogous to the k genes.

A set of multiple concurrent search points or a set of
chromosomes (or individuals) is called a population. Each
iterative step where a new population is obtained is called a
generation. A GA hybridized with a local search procedure is
called a hybrid genetic algorithm (HGA).

A basic HGA procedure has the following steps.

(1) Define an objective/fitness function, and set the GA
operators (such as population size, parent/offspring
ratio, selection method, number of crossovers, and
mutation rate).

(2) Randomly generate the initial population as the cur-
rent parent population.

(3) Evaluate the objective function for each individual
(chromosome or solution) in the initial population.

(4) Generate an offspring population by using GA oper-
ators (such as selection/mating, crossover, and muta-
tion).

(5) Evaluate the objective function of each individual in
the offspring population.

(6) Perform a local search on each offspring, evaluating
fitness of each new location, and replace the offspring
if there exists a locally improved solution.

(7) Decide which individuals to include in the next
population. This step is referred to as “replacement”
in that individuals from the current parent population
are “replaced” by a new population consisting of those
individuals from the offspring and/or the parent
populations.

(8) If a stopping criterion is satisfied, then the procedure
is halted. Otherwise, go to Step 4.

Without Step 6, an HGA is just a GA. Therefore, HGAs
have all the properties possessed byGAs. LikeGAs, HGAs are
a large family of algorithms that have the same basic structure
but differ from one another with respect to several strategies
such as stopping rules, operators which control the search
process, and the local search meme.

Based on previous experiences, in this study, we use a
continuous HGA where chromosomes are coded as contin-
uous measurement variables. Suppose there are 𝑘 variables;
that is, there are 𝑘 genes in each chromosome. We also make
the following assumptions. The (parent) population size is
2𝑘 and the offspring population size is also 2𝑘. The type of
selectionwe utilize is randompairing.Theblending crossover
is utilized and the number of crossover points depends on
the number of dimensions of a specific objective function.
Random uniform mutation is utilized and the mutation rate
is set around or equal to 1/𝑘. The type of replacement over
both parent and offspring populations is either ranking or
tournament. For details on the setting of the GA operators;
see, for example, [21–25].

There are many choices of local search memes [20], two
of which are used in this study. Onememe is our newly devel-
oped “three-directional LS (TD),” introduced in Section 4.
A second meme is a popular LS meme, the Nelder-Mead
Simplex method, introduced in Section 5.

3. The Best-Offspring Hybrid Genetic
Algorithm

As mentioned, our goal is to reduce the total costs associated
with the LS. It has been noticed that the LSmay be repeatedly
performed on the same “mountain” (for finding a maximum)
or “valley” (for finding a minimum) [15]. Therefore, it is
possible that, after local searching, several chromosomes
in a generation are very close to each other, standing on
the same top of a mountain or at the same bottom of a
valley. This may make it harder for the GA to maintain
diversity in its population, an important consideration in
avoiding converging to a local optimum [25]. Therefore, we
propose the best-offspring HGA (BOHGA) where the LS
is only performed on the best offspring in the offspring
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population when it is also the best overall chromosomes in
the current parent population. When such a best offspring
appears, it is very likely that the best offspring is located on
a new, higher mountain or on a new lower valley. As will be
soon demonstrated, this action tends to make BOHGAmore
computationally efficient and helps to prevent converging to
a local optimum.

The general procedure for BOHGA is the same as that of
HGA, except that in the ith generationwe change Step 6 from
the original HGA procedure into Steps 6.1–6.3 as follows.

(6.1) Is the best offspring in the offspring population also
the best over the current parent population?

(6.2) If no, directly go to Step 7; that is, there is no LS in
this generation.

(6.3) If yes, then perform an LS on the best offspring
considered as a starting point. Find the best locally
improved solution and replace the best offspring by
it. Then go to Step 7.

Actually, the BOHGA process is a special HGA process
where an LS is not performed on every new offspring but only
on the offspring which are best in both the offspring and the
current parent populations. It is possible that not every gen-
eration of BOHGA requires an LS. The BOHGA procedure,
therefore, strongly agrees with the original idea of MA, first
introduced by Mascato in 1989 [5]; that is, initially let the GA
explore a wide search space. Once a potential search solution
is found by a GA, a fine tuning search will be conducted by an
LS. Similar to both the GA and the HGA, the whole process
is iterated until some appropriate stopping rule is satisfied.

4. A Three-Directional (TD) Meme

The idea of the TD meme is to construct three potential
directions for an offspring whose performance is better than
both of its parents in a generation. Thus, three paths are
declared without requiring the gradient. When an offspring
shows improvement from its parents in terms of the objective
function, it may be possible to make continuous improve-
ments by moving along the directions/paths from its parents
to the offspring; that is, some search points are “collected”
along the paths until no further improvement can be found.
These parents can be considered as two different starting
points. Both of their first steps from the two starting points
go to the same point: the offspring. So two directions are
established: one direction is from one of the parents to the
offspring; the other is from the second of the parents to the
offspring. Both directions have obtained improvement, since
the best offspring of interest is an improvement over both its
parents in terms of values of an objective function.

For example, consider a 2-dimensional (𝑘 = 2) problem
along with the contours of a response (or values of an
objective function) as illustrated in Figure 1. The offspring is
denoted by 𝑂 (expressed as x

𝑂
= [𝑥
𝑂1
, . . . , 𝑥

𝑂𝑘
]
󸀠) and its

parents are denoted by 𝑃1 (x
𝑃1
= [𝑥
𝑃11
, . . . , 𝑥

𝑃1𝑘
]
󸀠) and 𝑃2

(x
𝑃2
= [𝑥
𝑃21
, . . . , 𝑥

𝑃2𝑘
]
󸀠). Obviously, there are two directions:

one is from 𝑃1 to 𝑂, expressed as 𝛿
𝑃1𝑂
= x
𝑂
− x
𝑃1
=

[𝛿
11
, 𝛿
12
, . . . , 𝛿

1𝑘
]
󸀠, and the other is from 𝑃2 to 𝑂, expressed

X2

X1

O

P1

P2

Θ

Figure 1: A contour plot of a 2-dimensional problem with the three
directions indicated: Parent 1 direction is from 𝑃1 to 𝑂; Parent 2
direction is from 𝑃2 to 𝑂; the common direction is a horizontal
dotted line, starting at 𝑂 towards the positive values on the𝑋

1
axis.

The three “stars” represent the three points stopped on the three
paths with no further improvement.

as 𝛿
𝑃2𝑂
= x
𝑂
−x
𝑃2
= [𝛿
21
, 𝛿
22
, . . . , 𝛿

2𝑘
]
󸀠. We refer to these two

directions as Parent 1 and Parent 2 directions.
The third direction is the “common” direction, expressed

as 𝛿 = [𝛿
31
, 𝛿
32
, . . . , 𝛿

3𝑘
]
󸀠, and based on the two parent

directions. If 𝛿
1𝑖
and 𝛿

2𝑖
, for 𝑖 = 1, . . . , 𝑘, are both positive

(negative), then 𝛿
3𝑖

is positive (negative); that is, if both
the parent directions are in common, say, both positive
(negative) along the 𝑋

𝑖
axis, then the third direction is

positive (negative) along the 𝑋
𝑖
axis. If 𝛿

1𝑖
and 𝛿

2𝑖
, for 𝑖 =

1, . . . , 𝑘, are opposite in direction, then 𝛿
3𝑖
is set to 0; that is, if

the parent directions are not in common on the𝑋
𝑖
axis, then

the third direction has no movement along the 𝑋
𝑖
axis. For

more details on the three directions and determining their
moving distances for each moving step, see the Appendix.

Figure 1 illustrates the three defined directions. The opti-
mal point is denoted by “Θ.” It is easy to see the two parents
directions, expressed as 𝛿

𝑃1𝑂
= [𝛿

11
, 𝛿
12
]
󸀠 and 𝛿

𝑃2𝑂
=

[𝛿
21
, 𝛿
22
]
󸀠, respectively. The third direction 𝛿 = [𝛿

31
, 𝛿
32
]
󸀠.

Obviously, 𝛿
31
> 0 since both 𝛿

11
> 0 and 𝛿

21
> 0; that is, the

common direction in this case is positive along the 𝑋
1
axis.

And 𝛿
32
= 0 since 𝛿

12
> 0 and 𝛿

22
< 0; that is, the common

direction has no relative movement along the𝑋
2
axis.

Once the three directions are defined, starting at 𝑂, the
TD method moves along the three directions/paths, with
some appropriate step length for each moving step until no
improvement is found in terms of an objective function. In
Figure 1, the three “stars” on the paths denote that the three
best points found on each path and the processes of moving
along the paths will be stopped at their next points due to no
further improvement.

The choice of the size of step length 𝑑 depends on the
degree of bumpiness of the surface of an objective function.
We recommend that 𝑑 should be in the physical range of
0.01 to 1.0. If the surface is very bumpy relative to the region
of the domain, then the appropriate 𝑑 should be relatively
small. Otherwise, the appropriate 𝑑 should be relatively large
to make HGA more efficient.
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In our BOHGA procedure, the TD meme will only be
performed for the best offspring in the offspring population
that is also the best in the current parent population. In
our HGA procedure, the TD meme will be performed for
those offspring whose performances are better than both of
their parents. Since not every offspring performs better than
either one of its parents, the TDmeme will not be performed
on every offspring, which is the major difference from a
traditional HGA.

5. Nelder-Mead Simplex Meme

The Nelder-Mead simplex method [26] is a very popular
derivative-free method for finding a local minimum of a
function [8]. For a two-dimensional problem, a simplex is a
triangle, and the method is a pattern search that compares
function values at the three vertices of a triangle. The worst
vertex, where 𝑓(𝑥, 𝑦) is largest, is rejected and replaced with
a new vertex. A new triangle is formed and the search is
continued. The process generates a sequence of triangles
(which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of
the triangles is iteratively reduced and the coordinates of
the minimum point are found. The simplex algorithm can
easily be extended to higher dimensions [26]. In many
numerical tests, the simplex method succeeds in obtaining a
good reduction in the function value using a relatively small
number of function evaluations but it is easy to converge to
a local optimum and is generally not suitable for a highly
nonlinear objective function [26].

Like the TD meme, the simplex meme requires a pre-
specified step length parameter, representing a guess of the
problem’s characteristic length scale. In this study, the step
length parameter is set to the same size as 𝑑 for the fair
comparison between the simplex and TDmemes.The C code
for the simplex method is obtained from Numerical Recipes
in C [27].

6. Examples: Benchmark Functions

Using benchmark functions, our goal is to compare our
BOHGA with a traditional HGA, with each procedure using
one of the two LS techniques: our new TD method or
the simplex method; that is, we compare the computational
efficiency of four MAs: BOHGA with simplex (denoted
as “BOHGAS”), BOHGA with TD (“BOHGATD”), HGA
with simplex (“HGAS”), and HGA with TD (“HGATD”) in
computational efficiency for the four objective benchmark
functions. As mentioned, HGATD is different from the
traditionalHGA in that the TD local searchwill be performed
only for those offspring whose performances are better than
both their parents.

To make the comparisons comparable, the settings of the
GA operators and the starting random numbers that are used
to generate the initial populations are the same for each of the
four MAs. In addition, since different starting random seeds
may result in a different number of function evaluations to
find an optimum, aMonteCarlo experiment is performed 100

times; that is, these four algorithms are run 100 times with
100 different starting random seeds.The fourmethods will be
compared by averaging the results over the 100 replications of
the experiment.

A different setting of GA operators may result in a differ-
ent number of function evaluations. We choose 20 (𝑘 = 20)
as a number of dimensions for the four benchmark functions.
Therefore, as indicated in Section 2, both parent and offspring
population sizes are 40. The number of crossover points is 4
or 8.Themutation rate is 0.05 (= 1/𝑘) or 0.06, a slightly larger
value than 1/𝑘. The type of replacement over both parent and
offspring populations is ranking or tournament. Therefore,
there are a total of eight combinations of crossover, mutation,
and replacement type; that is, there are eight GA settings used
for comparisons.

Also two stopping rules are utilized for the experiment.
The first stopping rule (rule 1) is that a method will be halted
when a preset cut-off value (considered as a near-global
optimum) is achieved. The cut-off value represents the user’s
best guess of the optimal value of the objective function.
Rule 1 can be used to compare the computational efficiencies
of the four methods in finding a near-global optimum of an
objective function. The mean of a total number of function
evaluations over 100 replications of each MA will be used
for comparisons. Since sometimes the global and near-global
optimal values are unknown, a second stopping rule (rule 2)
is also considered. The second stopping rule is that a method
will be halted at a preselected number of generations. Under
rule 2, the number of function evaluations it takes for the
four methods to converge to a global “mountain” or “valley”
or even to a global optimum is compared; that is, the rate of
convergence to a near-global or global optimum is compared
across the four methods. Obviously, it is not relevant to
compare the total number of function evaluations required
given a fixed total number of generations. Graphs will be
used to illustrate the comparisons of the four methods, by
plotting mean best values of the objective function over 100
replications at each generation found by each method versus
mean cumulative number of function evaluations at each
generation by each algorithm. Four benchmark functions
(the Rastrigin’s, Schwefel’s, Rosenbrock’s, andGriewank’s) are
used for the comparisons, but, due to similar results and
limited space, only the first two functions are presented as
follows.

6.1. Comparisons for the Rastrigin’s Function in 20Dimensions.
A generalized Rastrigin’s function is given by

𝑓 (x) =
𝑘

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) ,

where − 5.12 ≤ 𝑥
𝑖
≤ 5.12,

(1)

where 𝑘 is the number of dimensions of the function (𝑘 =
20 in the study). Figure 2 shows its 1- and 2-dimensional
surfaces. The surfaces are very bumpy in a narrow range
(−5.12, 5.12). The goal is to find a minimal value and its
corresponding location. The minimum of this function is
known asmin(𝑓(x)) = 𝑓(0, . . . , 0) = 0.0. From the left plot of
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Figure 2: Surface of Rastrigin’s function: (a) 1-dimension; (b) 2-dimension.

Table 1: Comparisons of BOHGAS, HGAS, BOHGATD, and HGATD in terms of mean number of evaluations under the eight settings of GA
operators for the Rastrigin’s function in 20 dimensions by stopping rule 1.

8 settings of GA operators Mean (evaluation)
Replacement Crossover Mutation BOHGAS HGAS BOHGATD HGATD

Ranking
4 0.05 29174 510436 41352 39420

0.06 29688 549620 46608 40174

8 0.05 33951 463661 30980 34720
0.06 30052 510260 35135 33627

Tournament
4 0.05 62758 988761 132271 112930

0.06 113071 1424709 258692 265373

8 0.05 91747 1054834 214672 208569
0.06 212320 1538475 765658 880024

Overall average 75345 880095 190671 201855

Figure 2, a solutionmust be located on the global valleywhere
the value of the objective function is less than about 1.0.

The step length for the TD meme is set to 0.05, the same
value as for the simplex meme. The cut-off value used by
rule 1, which is a near-global optimum, is set to 0.05. The
preselected number of generations used by stopping rule 2 is
5,000.

Under stopping rule 1, Table 1 presents the mean number
of function evaluations as a summary of the 100 repetitions
for the Rastrigin’s function in 20 dimensions for comparisons
of the four algorithms. Table 1 shows that the number of
evaluations required to obtain a value of the objective
function is within 0.05 of the true minimum. BOHGAS
consistently performs the best with much smaller mean
numbers of function evaluations than the BOHGATD and
HGATD, which are quite competitive to each other. Inmost of
all the GA settings, BOHGAS has the smallest mean number
of function evaluations, followed byBOHGATD, HGATD, and
HGAS. In addition, themean number of function evaluations
greatly depends on the GA settings. The GA using ranking
replacement obviously performs much better than the GA
with tournament replacement in all of the four methods
indicating that tournament replacement in MAs is not as
efficient as ranking replacement. The mutation rate of 0.05
performs better than the rate of 0.06 in most cases.

Under stopping rule 2 with 5,000 generations, Figure 3
shows the mean best minimums of Rastrigin’s function
versus mean cumulative number of function evaluations at
each generation over 100 replications by BOHGAS, HGAS,
BOHGATD, and HGATD, respectively. The GA parameters
were set at the ranking replacement, four crossover points,
and 0.05 mutation rate. This figure illustrates that HGAS did
not converge in the 50,000 mean function evaluations but
the other three methods did converge. In the left plot of
Figure 3, the BOHGAS procedure converged the fastest to
the global “valley,” followed closely by the BOHGAS and the
HGATD methods. The right plot in Figure 3, in an expanded
scale, reveals that the BOHGAS procedure is actually the
first to converge to the cutoff of 0.05 at about 38,000 mean
cumulative function evaluations, followed by theHGATD and
the BOHGATD methods. It is clear that these three methods
have very similar behavior for this function.

6.2. Comparisons for the Schwefel’s Function in 20 Dimensions.
A generalized Schwefel function from Schwefel [28] is given
by

𝑘

∑

𝑖=1

− 𝑥
𝑖
sin(√󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨) , where − 500 ≤ 𝑥
𝑖
≤ 500, (2)
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Figure 3: Best minimums of Rastrigin’s function in 20 dimensions versus number of function evaluations at each generation averaged over
100 replications of the four MAmethods under the GA setting (ranking replacement, 4 crossover points, and 0.05 mutation rate). (a) Overall
view in a full scale; (b) highlighted view in an expanded scale.
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Figure 4: Surface of Schwefel’s function: (a) 1-dimension; (b) 2-dimension.

where 𝑘 is the number of dimensions of the function. The
minimum of the objective function is given by min(𝑓(x)) =
𝑓(420.9687, . . . , 420.9687). Theminimum is dependent on 𝑘,
the number of dimensions. When 𝑘 = 20, the minimum
value is −8,379.66. Figure 4 shows the 1- and 2-dimensional
surfaces for the Schwefel function. In the left plot of the figure,
a solution must be located in the deepest valley, when value
of the objective function is less than about −300.0 in the 1-
dimensional case.

Although the Schwefel function has a nonlinear bumpy
surface, its surface is relatively smooth in a range (−500, 500)
when compared to the surface of the Rastrigin’s function.The
step length for the TD meme is set to 0.5, the same as for the

simplex meme. The preselected number of generations used
by stopping rule 1 is 1,000.The cut-off near-global value is set
to −8,379.0.

Similar to Table 1, under stopping rule 1, Table 2 presents
the mean total number of function evaluations as a summary
of the 100 repetitions for the Schwefel’s function for
comparison of the four algorithms. Table 2 shows that
the numbers of evaluations required to obtain a value of
the objective function smaller than −8,379.0 by BOHGAS,
BOHGATD, and HGATD are all consistently much less than
required by HGAS overall settings. BOHGAS consistently
performs the best with much smaller mean numbers of
function evaluations than theHGATD and BOHGATD, which
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Table 2: Comparisons of BOHGAS, HGAS, BOHGATD, and HGATD in terms of mean of the number of evaluations under the eight settings
of GA operators for the Schwefel’s function in 20 dimensions by stopping rule 1.

8 settings of GA operators Mean (evaluation)
Replacement Crossover Mutation BOHGAS HGAS BOHGATD HGATD

Ranking
4 0.05 13595 471668 26792 31243

0.06 15049 471251 26972 31590

8 0.05 13230 518101 20588 28070
0.06 13792 546366 20207 29972

Tournament
4 0.05 28631 1059412 47893 132294

0.06 37991 1404750 94763 281186

8 0.05 37792 1408634 74805 221730
0.06 57270 1824465 214563 815384

Overall average 27169 963081 65823 196434
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Figure 5: Best minimums of Schwefel’s function in 20 dimensions versus number of function evaluations at each generation averaged over
100 replications of the four MA methods under the GA setting (ranking replacement, four crossover points, and 0.05 mutation rate). (a)
Overall view in a full scale; (b) highlighted view in an expanded scale.

are quite competitive to each other. Overall the GA settings,
BOHGAS has the smallest mean numbers of function eval-
uations, followed by BOHGATD, then HGATD, and finally
HGAS. In addition, the GA setting with ranking replacement
performs much better than with tournament replacement in
all of the four methods. This again indicates that tournament
replacement inMAs is not as efficient as ranking replacement.
Themutation rate of 0.05 performs better than the rate of 0.06
in most cases.

Similar to Figure 3, under stopping rule 2 with 1,000
generations, Figure 5 shows the mean best minimum of
the Schwefel’s function versus mean cumulative number of
function evaluations at each generation over 100 replications
obtained by each MA in the GA setting with the ranking
replacement, four crossover points, and 0.05 mutation rate.

The left plot of Figure 5 shows that HGAS is the slowest to
converge while BOHGATD and BOHGAS have converged to
a global “valley” at a similar yet faster rate than HGATD.
The right plot of Figure 5, in an expanded scale, shows in
detail that BOHGAS is the fastest to converge to the cutoff of
−8379.0 at about 1,400mean cumulative function evaluations,
followed by the BOHGATD, followed by the HGATD.

7. Conclusion and Discussion

The importance of memetic algorithms in both real-world
applications and academic research has lead to the establish-
ment of the series of international Workshops On Memetic
Algorithms (WOMA) and a dedicated book [13]. From these
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workshops, the following important questions are raised: (1)
when to apply local improvement heuristics, (2) to which
individuals in the evolutionary algorithms population should
local searches be applied, and (3) how much computational
efforts to devote to local search algorithms. These questions
remain unanswered, and more research effort is required
to gain the understanding and insights that may lead to
guidelines for the design of efficient and effective algorithms
[13].

This paper presents an improved and simplified MA,
BOHGA, with a novel individual learning procedure on
when to perform a local search (or individual learning).
Unlike a classical MA/HGA procedure, where a local search
is performed on each offspring (solution), our new MA
performs a local search when the best offspring is also found
to be the best among the current parent population.This new
learning procedure does not require any extra parameters.

We also develop a new meme, a three-directional local
search, TD, which is derivative-free and self-adaptive. The
main idea of TD is that three potential directions are
constructed fromparents to their offspringwith a certain step
length, when the offspring performs better than both of its
parents.

The four well-known benchmark functions with very
different experimental ranges are used to compare BOHGAS,
HGAS, BOHGATD, and HGATD. The results under stopping
rule 1 (that an algorithm is halted when a near-global-
optimum cutoff is achieved)match the results under stopping
rule 2 (that an algorithm is halted at a preselected number
of generations) for both functions.These results indicate that
BOHGA with the new individual learning procedure works
much more efficiently than the traditional HGA, whichever
meme is chosen. HGATD, where the LS is performed only
on those offspring that have an objective function values
superior to both of their parents, is quite competitive to
BOHGA. These results also indicate that the TD meme is
likely to help algorithms converge faster to a global “valley”
but does not appear to converge as quickly during the final
fine tuning stage as the simplex meme. The results from the
Rosenbrock’s and the Griewank’s functions (which are not
presented here) are similar to those from the Rastrigin’s and
the Schwefel’s functions.

During the comparisons of the four MAs, we used eight
different settings of GA operators and found that ranking
replacement performs uniformly better than tournament
replacement for both functions. The mutation rate of 0.05
(which is 1/𝑘, 𝑘 = 20 in both of the benchmark functions)
performed better than the rate of 0.06 in most cases. The
different number of crossover points had no obvious effect
on the number of function evaluations.

In summary, our new HGA with an individual learning
procedure performs a LS only when the best offspring is also
the best within the parent population.Our newHGAnot only
reduces the number of function evaluations required by the
LS, but also improves accuracy and efficiency in finding an
optimal solution. The TD meme is a good choice in helping
finding a global “valley” or “peak” but may not perform as
well as the Nelder-Mead method at the final fine tuning. It is
noted that ourHGAhas combined our newmemewith a GA.

We speculate that our new procedure would also be effective
when combined with other evolutionary algorithms.

Several issues remain for further study. For example, the
three derivative-free directions defined in the TDmememay
not be optimal. Another issue concerns the appropriate step
length, once the directions are chosen. The size of a step
length, arbitrarily chosen by us, may affect the efficiency of
the MAs. We found that the TD may converge faster to a
global “valley” or “peak” than the simplex meme but may be
not as fast at finding an optimum at the fine tuning stage.
In a future study, we may combine the TD and simplex
memes together, using TD first to reach the global “valley”
or “peak,” followed by the simplex meme to fine tune the
solution. A further issue involves the optimal settings of the
GA operators. In this study, the three main GA operators:
the type of replacement, the number of crossover points, and
the mutation rate, have been studied. However, there may be
some other operators affecting the GA performance, such as
the population size and the parent/offspring ratio. We plan to
study these issues in future work.

C++ code is available upon request from the authors.

Appendix

Mathematical Representation of the Three-
Direction: A Local Search

We first introduce our notation. Parent 1 (𝑃1) is given by
x
𝑃1
= [𝑥
𝑃11
, . . . , 𝑥

𝑃1𝑘
]
󸀠, where x is a vector of size 𝑘 × 1 where

𝑘 is the number of factors or the number of dimensions.
Similarly, Parent 2 (𝑃2) is given by x

𝑃2
= [𝑥
𝑃21
, . . . , 𝑥

𝑃2𝑘
]
󸀠,

and their offspring (𝑂) is expressed as x
𝑂
= [𝑥
𝑂1
, . . . , 𝑥

𝑂𝑘
]
󸀠.

Parent 1 direction (from 𝑃1 to 𝑂) is expressed as 𝛿
𝑃1𝑂

and
Parent 2 direction (from𝑃2 to𝑂) is as 𝛿

𝑃2𝑂
. And the common

direction is simply denoted as 𝛿. The new points after the
first step along the three directions are expressed as xNew1 =
[𝑥New11, . . . , 𝑥New1𝑘]

󸀠, xNew2 = [𝑥New21, . . . , 𝑥New2𝑘]
󸀠, and

xNew = [𝑥New1, . . . , 𝑥New𝑘]
󸀠, corresponding to Parent 1, Parent

2, and their common direction, respectively. The appropriate
moving distance on each axis in eachmoving step is expressed
as 𝑑.

Parent 1 direction, which essentially is the different
distances on each dimension between points 𝑃1 and 𝑂, is
expressed as

𝛿
𝑃1𝑂
= x
𝑂
− x
𝑃1
= [𝛿
11
, 𝛿
12
, . . . , 𝛿

1𝑘
]
󸀠

. (A.1)

Similarly, the Parent 2 direction is expressed as

𝛿
𝑃2𝑂
= x
𝑂
− x
𝑃2
= [𝛿
21
, 𝛿
22
, . . . , 𝛿

2𝑘
]
󸀠

. (A.2)

To keep the same directions and move along the three
paths, the moving distance on each axis should be in con-
stant proportion to each other, as the method of steepest
ascent/descent in response surface methodology (RSM). (In
RSM, the constant proportion on the 𝑖th dimension is defined
as 𝛽
𝑖
/𝛽
×, where the 𝛽

𝑖
is the 𝑖th estimated coefficient in

the estimated first-order model and the 𝛽∗ is the largest
coefficient in magnitude among the 𝑘 estimated coefficients,
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that is, 𝛽∗ = max
𝑖=1,...,𝑘
|𝛽
𝑖
|.) From this ratio, we can see that

the proportion only depends on the 𝛽
𝑖
, the 𝑖th coefficient.The

moving distance on the 𝑖th dimension is defined as (𝛽
𝑖
/𝛽
∗
) ∗

𝜌, where the 𝜌 is an appropriate fixed distance. (For more
details, please see Myers and Montgomery [29, Pages 205–
207]).

In our GA application, the main idea in moving along the
Parent 1 path is the same as that in the method of steepest
ascent/descent; that is, to keep the constant proportion in
each dimension and move some appropriate fixed distance
(which is 𝑑 in our case) along Parent 1 path. But the difference
between our GA case and RSM is the starting point. In the
GA case, the starting points are 𝑃1 and 𝑃2, not 𝑂; that is, the
first step has already been completed. So the nextmoving step
starts at𝑂. The largest moving distance in the first step is also
not 𝑑, but max

𝑖=1,...,𝑘
|𝛿
1𝑖
|, where the 𝛿

1𝑖
is the moving distance

on 𝑖th axis in (A.1). Let 𝛿∗
1
denote max

𝑖=1,...,𝑘
|𝛿
1𝑖
|. In our study,

if 𝛿∗
1
< 𝑑, then the moving distant in the next step will be 𝛿∗

1
.

Otherwise, the distance in the next stepwill be𝑑.Thedistance
𝑑 is obviously utilized to control the next moving distance.

The procedure of moving along the Parent 1 direction is
as follows.

(1) Calculate 𝛿
𝑃1𝑂

and then find 𝛿∗
1
= max

𝑖=1,...,𝑘
|𝛿
1𝑖
|, the

largest distance in the first moving step.
(2) If 𝛿∗

1
< 𝑑, then the next new position on the 𝑖th axis,

𝑖 = 1, . . . , 𝑘, is defined as 𝑥New1𝑖 = 𝑥𝑂𝑖 + (𝛿1𝑖/𝛿
∗

1
) × 𝑑.

Otherwise, the new position is 𝑥New1𝑖 = 𝑥𝑂𝑖 + 𝛿1𝑖.
(3) Check the region of the new point xNew1 =
[𝑥New11, . . . , 𝑥New1𝑘]

󸀠. If 𝑥New1𝑖 is greater than its upper
bound (which is the largest value in the 𝑖th domain),
then let it be the upper bound. Similarly, if it is less
than its lower bound (which is the lowest value in the
𝑖th domain), then let it be the lower bound. (Usually,
the upper bounds and lower bounds have been given
through defining the objective function.)

(4) Evaluate the new point xNew1 by the objective func-
tion. If the new point performs worse than the point
x
𝑂
, then the process of moving along the Parent 1

direction is halted. If the new point performs better
than the x

𝑂
, then replace the point xNew1 by the next

new point xNew1 + Δ𝑁1𝑂, where Δ𝑁1𝑂 = xNew1 −
x
𝑂
. (The “N1O” means “New point from Parent 1” to

“Offspring.”) Then return to Step 3.

The procedure for moving along the Parent 2 direction
is the same as that for the Parent 1 direction. However, the
procedure for the common direction is slightly different from
them, due to the different starting points. The starting points
from the parents directions are 𝑃1 or 𝑃2, while the starting
point in the common direction is 𝑂.

As mentioned earlier, building the common direction
depends on whether both parent directions are consistent or
not. If they are consistent on 𝑖th axis (either both positive
or both negative), then move the same direction on the 𝑖th
axis as the parent directions. Otherwise, stay on that axis
without any movement, due to inconsistent directions. There
is a special case: one of the moving distances on an axis in

the parent directions is zero and the other is nonzero. In this
case, we recommend movement in the same direction with
the parent direction with nonzero moving distance on the
axis.

The procedure for movement along the common direc-
tion is as follows.

(1) Calculate 𝛿
𝑃1𝑂

and 𝛿
𝑃2𝑂

as (A.1) and (A.2).
(2) The next new point is defined as xNew =

[𝑥New1, . . . , 𝑥New𝑘]
󸀠 along the path from the common

direction. To establish the common direction, three
situations on each axis/dimension are possible: (a)
the 𝛿
1𝑖
× 𝛿
2𝑖
> 0 which means that there is a common

direction on the 𝑖th axis; (b) The 𝛿
1𝑖
× 𝛿
2𝑖
< 0 which

means that there is not a common direction on the
𝑖th axis; and (c) the 𝛿

1𝑖
× 𝛿
2𝑖
= 0 which means that at

least one of 𝛿
1𝑖
and 𝛿
2𝑖
equals zero.

(2.1) If the situation is (a), then the newpoint position
on the 𝑖th axis is given by𝑥New𝑖 = 𝑥𝑂𝑖+min(|𝛿

1𝑖
|,

|𝛿
2𝑖
|, 𝑑) if both 𝛿

1𝑖
and 𝛿
2𝑖
are positive, or 𝑥New𝑖 =

𝑥
𝑂𝑖
− min(|𝛿

1𝑖
|, |𝛿
2𝑖
|, 𝑑) if both 𝛿

1𝑖
and 𝛿

2𝑖
are

negative.
(2.2) If the situation is (b), the new point position

on the 𝑖th axis is given by 𝑥New𝑖 = 𝑥𝑂𝑖 (no
movement on the 𝑖th axis in this situation).

(2.3) If the situation is (c), there are three subcases:
(1) 𝛿
1𝑖
= 0 and 𝛿

2𝑖
̸= 0; (2) 𝛿

1𝑖
̸= 0 and 𝛿

2𝑖
= 0;

and (3) 𝛿
1𝑖
= 0 and 𝛿

2𝑖
= 0.

(2.3.1) For case (1), if |𝛿
2𝑖
| ≥ 𝑑, then𝑥New𝑖 = 𝑥𝑂𝑖+𝑑

(when 𝛿
2𝑖
> 0) or 𝑥New𝑖 = 𝑥𝑂𝑖 − 𝑑 (when

𝛿
2𝑖
< 0). Otherwise, 𝑥New𝑖 = 𝑥𝑂𝑖 + 𝛿2𝑖.

(2.3.2) For case (2), similar to case (1), if |𝛿
1𝑖
| ≥ 𝑑,

then 𝑥New𝑖 = 𝑥𝑂𝑖 ± 𝑑. Otherwise 𝑥New𝑖 =
𝑥
𝑂𝑖
+ 𝛿
1𝑖
.

(2.3.3) For case (3), 𝑥New𝑖 = 𝑥𝑂𝑖.

(3) Check the range of the new point xNew.
(4) Evaluate the point xNew. If the new point performs

worse than the point x
𝑂
, then the process for moving

along the common direction is stopped. If the new
point is better than x

𝑂
, then replace the point xNew

by the next new point xNew + ΔNCO, where ΔNCO =
xNew − x𝑂. (The “NCO” means “New from Common
directions” and “Offspring”). Return to Step 3.
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