
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 407267, 12 pages
http://dx.doi.org/10.1155/2013/407267

Research Article
A Fast Optimization Method for Reliability and Performance of
Cloud Services Composition Application

Zhao Wu,1 Naixue Xiong,2 Yannong Huang,1 Qiong Gu,1

Chunyang Hu,1 Zhongbo Wu,1 and Bo Hang1

1 School of Mathematics and Computer Science, Hubei University of Arts and Science, Xiangyang 441053, China
2 School of Computer Science, Colorado Technical University, Colorado Springs, CO 80907, USA

Correspondence should be addressed to Naixue Xiong; nxiong@coloradotech.edu

Received 15 April 2013; Accepted 13 September 2013

Academic Editor: Rung Ching Chen

Copyright © 2013 Zhao Wu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important
revolution of software industry. The cloud services composition is one of the key techniques in software development. The
optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization
problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the
cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques,
for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and
easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these
defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on
universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service
composition application based on the multiple state system theory is presented. Then the reliability and performance definition
based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is
presented. In the end, the illustrative examples are given.

1. Introduction

Cloud computing is an emerging trend for the provision of IT
infrastructure as services, with the potential of transforming
the way of offering business services [1]. Based on cloud
computing platform, software development becomes promi-
nent and accessible for all without the expensive investing in
hardware resources and themanaging andmaintaining costs.

On cloud computing platform, the cloud services com-
position (CSC) is a fashionable approach of software devel-
opment based on cloud services [2–4]. In the framework
of CSC, cloud services are considered as self-contained,
self-describing, modular applications that can be published,
located, and invoked across the web.

How to select and integrate cloud services to satisfy user’s
functional requirements is an important issue, which has
widely attracted attention of researchers [5]. Great progress
has been made in this field [6–8]. However, little research

focused on reliability model and simulation for CSC.
Recently, there has been growing interest in this field. Meth-
ods and technologies related to reliability model and simula-
tion for CSC have attracted attention because they can fore-
cast the QoS that users will obtain from CSC [9–11]. In addi-
tion, it is helpful to analyze whether there are some relia-
bility bottlenecks within CSC applications. Thus, reliability
prediction is the basis of reliability optimization for the CSC
applications.

The service-oriented architecture (SOA) is the most rep-
resentative technological architecture to build the cloud ser-
vices application on cloud computing platform [12–14]. How-
ever, because SOA supposed by services composition tech-
nique is of dynamic and cooperative essential characteristic,
the traditional software reliability predictionmethods are not
suitable to the cloud services application based on SOA.

From the aspect of software architecture, cloud services
application is a kind of Internetware based on cloud services,

2 Journal of Applied Mathematics

which is built by cloud services composition technique [15,
16]. As a kind of abstract of distributed software system run-
ning on the Internet which is opened, dynamic, and difficult
to control, there are many differences between the Inter-
netware and traditional software system, such as structure,
operation mechanism, correctness guarantees, development
method, and life cycle. Due to the static, closed, and control-
lable running environment, the traditional software model is
of finite autonomy, fixed encapsulation, monotonic interac-
tion, tightly coupled structure, and offline evolution. Being
different from the traditional software model, the cloud
services application, as a kind of Internetware, exists in each
node on the cloud service platformwith a subjective software
service form. In the running environment, which is opened,
dynamic, and difficult to control, the cloud services applica-
tion has some new characters, such as flexible evolution, con-
tinuous reaction, and multitarget self-adaption. Due to being
difficult to adapt to these new characters, traditional software
reliability assurancemethods cannot be adopted for the cloud
services application which is built based on service composi-
tion technique. Quite different to traditional software relia-
bility assurance technique, the reliability assurance method
for the cloud services application pays more attention to the
mechanism of flexible reliability measure, predication and
self-adapting based on summative evaluation of operation
information in opened running environment [17, 18]. So,
the fast reliability prediction method for the cloud services
application has great theory research value.

From the aspect of software online evolution, cloud
services application confronts fast and continuous change
of user’s requirement and running environment. So, cloud
services application must have the ability to apperceive the
changes in outrunning environment and dynamically evolve
according to functionality and performance requirement
with this kind of change. In order to provide better QoS to
users, cloud services application must have more adaptability
to collect various changes realtimely and adjust oneself online
according to preestablished strategies in runtime [19]. How-
ever, with the closed, controllable, and static user’s require-
ment in the background, traditional software reliability
prediction methods lack the ability to dynamically adapt
themselves to the changes of running environment and user’s
requirement.Therefore, it cannot be employed in the reliabil-
ity prediction for cloud services application. So, the fast reli-
ability prediction method for the cloud services application
has important realistic technology requirement.

At the present time, the researches on reliability predic-
tion for cloud services application are still just starting Due
to the opened and dynamic running environment, continu-
ous variable user’s requirement, randomly selected member
services and its own characters of loose coupling and long
transaction, the severe challenges are confronted the reli-
ability prediction for cloud services application, which is
seriously restricting the further development, application,
and extension of cloud services application. In the face of
urgent demands of high reliable cloud services application
frommany government, economy, and commerce fields such
as e-government, e-commerce, and e-bank, the fast reliability
optimization becomes the key to promote the successful

development, application, and extension of the cloud services
application.

Facing the challenge, this paper researches the reliability
model of cloud services application. On this basis, a fast
reliability optimization for cloud services application is pre-
sented. The paper is organized as follows. Section 2 presents
the reliability model for cloud service application based on
the multiple state system (MSS) theory. The reliability and
performance of cloud service and cloud services composition
application are defined in Section 3. Section 4 presents a relia-
bility and performancemodel for cloud services composition
application based on universal generating function (referred
to as UGF) technique. A fast reliability optimization algo-
rithm by using the UGF technique is presented in Section 5.
Section 6 provides some illustrative examples.

2. Reliability Model for Cloud Service
Composition Application

2.1. Multiple State SystemTheory. TheMSSwas introduced in
the middle of the 1970s in [20–23]. In these works, the basic
concepts of MSS reliability were primarily formulated, the
system structure functionwas defined, and its propertieswere
initially studied.The notions of minimal cut set and minimal
path set were introduced in the MSS context, as well as the
notions of coherence and element relevancy.

Some systems can perform their tasks with various distin-
guished levels of efficiency usually referred to as performance
rates. A system that can have a finite number of performance
rates is called a multistate system. Any system consisting of
different units that have a cumulative effect on the entire sys-
tem performance has to be considered as a MSS [24]. So the
cloud service application can be regard as a multiple state
system.

MSS reliability analysis relates to systems for which one
cannot formulate an “all or nothing” type of failure criterion.
Such systems are able to perform their task with partial
performance (intensity of the task accomplishment). Failures
of some system elements lead only to the degradation of the
system performance.

2.2. Reliability and Performance Definition for Cloud Ser-
vices Composition Application. From the aspect of users,
the reliability of cloud service application can be defined
as the probability that its performance rates satisfy user’s
requirements, described as a vector pair (w, q), where w =

{𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
} is a vector of user’s requirement rates 𝑤

𝑗
,

(𝑗 = 1, . . . ,𝑀), and q = {𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑀
} is the vector of steady

state probability 𝑞
𝑗
= Pr{𝑊 = 𝑤

𝑗
}, (𝑗 = 1, . . . ,𝑀), according

to a certain user’s requirement rate, where 𝑊 is a random
variable that represents the performance rates of cloud service
application.

Based on the above definition, the reliability function of
cloud service application under steady state can be defined as

𝑅 (𝑡) = Pr {𝑇
𝑓
≥ 𝑡 | 𝐹 (𝐺 (0) ,𝑊 (0)) ≥ 0} . (1)

And the one under transient state can be defined as

𝑅 (𝑡) = Pr {𝐹 (𝐺 (𝑡) ,𝑊 (𝑡)) ≥ 0} , (2)

Journal of Applied Mathematics 3

where 𝐺(𝑡) is the integral performance rate of cloud service
application.

In the interval [0, 𝑇], the reliability function of cloud
service application can be defined as

𝑅
𝑇
=
1

𝑇
∫
𝑇

0

1 (𝐹 (𝐺 (𝑡) ,𝑊 (𝑡)) ≥ 0) 𝑑𝑡. (3)

Based on the above definition, the reliability function of
cloud service application under dynamically changing user’s
requirements can be defined as

𝑅 (w, q) =
𝑀

∑
𝑚=1

𝑅 (𝑤
𝑚
) 𝑞
𝑚

=

𝑀

∑
𝑚=1

𝑞
𝑚

𝐾

∑
𝑘=1

𝑝
𝑘
1 (𝐹 (𝑔

𝑘
, 𝑤
𝑚
) ≥ 0) .

(4)

In order to calculate the probability distribution of reli-
ability, failure time 𝑇

𝑓
, time between failures 𝑇

𝑏
, and failure

number𝑁
𝑇
are defined.

2.3. Probability Distribution of Performance Rates for Cloud
Service. Furthermore, the performance rates for cloud ser-
vice can be defined. According to its performance rates, the
cloud service 𝑗 to build a cloud service application can be of 𝑘

𝑗

kinds of various states, described by g
𝑗
= {𝑔
𝑗1
, 𝑔
𝑗2
, . . . , 𝑔

𝑗𝑘𝑗
},

where 𝑔
𝑗𝑖
is the performance rate of cloud service 𝑗 under

the state 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑘
𝑗
}. The performance rate 𝐺

𝑗
(𝑡)

corresponding to the cloud service 𝑗 in any time 𝑡 ≥ 0 is a
random variable that gets the value from g

𝑗
: 𝐺
𝑗
(𝑡) ∈ g

𝑗
. The

probability of performance rates of the cloud service 𝑗 under
various states in any time 𝑡 can be described as a set,

p
𝑗
(𝑡) = {𝑝

𝑗1
(𝑡) , 𝑔
𝑗2
(𝑡) , . . . , 𝑔

𝑗𝑘𝑗
(𝑡)} , (5)

where 𝑝
𝑗𝑖
(𝑡) = Pr{𝐺

𝑗
(𝑡) = 𝑔

𝑗𝑖
}. Because cloud service 𝑗 is

in one and only one of 𝑘
𝑗
kinds of various states in any time

𝑡, these states form a mutual exclusion events complete set.
Therefore, the formula∑𝑘𝑗

𝑖=1
𝑝
𝑗𝑖
(𝑡) = 1, (0 ≤ 𝑡 ≤ 𝑇) is satisfied.

In the end, the set of value pairs ⟨𝑔
𝑗𝑖
, 𝑝
𝑗𝑖
(𝑡)⟩ completely

determines the probability distribution of performance rates
corresponding to a cloud service 𝑗 in any time 𝑡.

2.4. Structure Function of Performance Rates for Cloud Service
Application. Based on the above definition of the perfor-
mance rates of cloud service application and cloud service,
the structure function of cloud service application can be
defined. Let

𝐿
𝑛
= {𝑔
11
, . . . , 𝑔

1𝑘1
} × {𝑔

21
, . . . , 𝑔

2𝑘2
} × ⋅ ⋅ ⋅ × {𝑔

𝑛1
, . . . , 𝑔

𝑛𝑘𝑛
}

(6)

be the possible combinations of performance rates of all cloud
services and 𝑀 = {𝑔

1
, . . . , 𝑔

𝑘
} the possible values range

of performance rates of cloud service application. Then the
transform function 𝜙(𝐺

1
(𝑡), . . . , 𝐺

𝑛
(𝑡)) : 𝐿𝑛 → 𝑀, called

the structure function of cloud service application, can map

the performance rates space of cloud services into one of
cloud service applications. Hence, a general reliability model
of cloud service application can be defined as

g
𝑗
, p
𝑗
(𝑡) , 1 ≤ 𝑗 ≤ 𝑛, 𝜙 (𝐺

1
(𝑡) , . . . , 𝐺

𝑛
(𝑡)) . (7)

The structure function of cloud service application estab-
lishes a feasible way to calculate the reliability of cloud service
application using one of cloud services.

3. Reliability and Performance Definition
for Cloud Service Composition Application
Based on UGF

3.1. UGF Technique. The methods of MSS reliability assess-
ment are based on four different approaches: (1) an exten-
sion of the Boolean models to the multivalued case; (2)
the stochastic process (mainly Markov and semi-Markov)
approach; (3) the Monte-Carlo simulation technique; and (4)
the UGF approach.

The approach based on the extension of Boolean models
is historically the firstmethod that was developed and applied
for the MSS reliability evaluation. It is based on the natural
expansion of the Boolean methods to the multistate systems.

The stochastic process methods that are widely used for
the MSS reliability analysis are more universal. The method
can be applied only to relatively small MSS because the
number of system states increases dramatically with the
increase in the number of system elements.

Even though almost every real world MSS can be rep-
resented by the Monte-Carlo simulation for the reliability
assessment, the main disadvantages of this approach are the
time and expenses involved in the development and execu-
tion of the model.

The computational burden is the crucial factor when one
solves optimization problems where the reliability measures
have to be evaluated for a great number of possible solutions
along the search process. This makes using the three above-
mentioned methods in reliability optimization problematic.
On the contrary, the UGF technique is fast enough.This tech-
nique allows one to find the entire MSS performance distri-
bution based on the performance distribution of its elements
by suing a fast algebraic procedure. An analyst can use the
same recursive procedures for MSS with a different physical
nature of performance and different types of element interac-
tion.

For the above reasons, we choose UGF technique to study
a fast reliability optimizationmethod for cloud services com-
position network. The UGF generalizes the technique that is
based on using a well-known ordinary generating function.
The basic ideas of the method were introduced by Ushakov
[25]. The approach proved to be very convenient for numer-
ical realization. It requires relatively small computational
resources for evaluatingMSS reliability indices and, therefore,
can be used in complexes reliability optimization algorithms.
Because the relationship between system state probability and
system output performance rates can be expressed definitely
by UGF, and the 𝑢-function of system can be obtained by
calculating the 𝑢-function of components simply, UGF is

4 Journal of Applied Mathematics

approved as an efficient reliability assessment approach that is
suitable to various MMS.Therefore, UGF can be successfully
applied for the reliability assessment and optimization of
MMS.

In most studies on the prediction and optimization of
system reliability based on the UGF, the system structure
and composite form of research object are relatively simple,
such as electric power system and mechanical system. The
presented design methods and calculation methods of the
𝑢-function composite operators are only applicable to some
simple structure forms, such as series, parallel, series parallel
hybrid, and bridge structure, which limits the application
range of the UGF method. Different from the above research
objects, the cloud services composition is of complex, flexible
and dynamic structure form. The adaptability to complex,
flexible and dynamic system, such as the cloud services com-
position application, becomes advantage and characteristic of
our presented method.

3.2. Reliability Definition of Cloud Service Composition Appli-
cationBased onUGF. Based on the reliabilitymodel for cloud
service application described in Section 2, the reliability of
cloud service composition can be defined by UGF. The
general form of the definition is as follows.

The reliability of a cloud service composition (or a cloud
service) is a random variable𝑋.Therefore, the corresponding
𝑢-function can be defined as

𝑢 (𝑧) =

𝐾

∑
𝑘=1

𝑝
𝑘
⋅ 𝑧
𝑋𝑘 , (8)

where the discrete variable 𝑋 has 𝐾 possible values and 𝑝
𝑘

is the reliability when 𝑋 is in the state 𝑋
𝑘
. Based on this

definition, the reliability of a cloud service composition (or a
cloud service) can be expressed as

𝑈 (𝑡, 𝑧) =

𝐾

∑
𝑘=1

𝑝
𝑘
(𝑡) ⋅ 𝑧
𝐺𝑘 . (9)

Because 𝑈(𝑧) is correlative with the state probability 𝑝
𝑘

and the reliability rate 𝐺
𝑘
, which correspond to the cloud

service composition (or a cloud service), describes the reli-
ability of cloud service composition (or a cloud service). On
this basis, we can define related performance operators fur-
thermore, such as usability operator 𝛿

𝐴
, output performance

operator 𝛿
𝐺
and unfinished performance operator 𝛿

𝑈
, to

describe related reliability indexes.
Based on the above performance operators, the related

reliability indexes for cloud service composition (or a cloud
service) can be defined as follows.

(i) The usability is defined as

𝐸
𝐴
= 𝐸
𝐴
(𝑊, 𝑞) =

𝑀

∑
𝑚=1

𝑞
𝑚
⋅ 𝛿
𝑅
(𝑈 (𝑧) , 𝐹,𝑊

𝑚
) . (10)

(ii) The output performance expectation is defined as

𝐸
𝐺
= 𝛿
𝐺
(𝑈 (𝑧)) = 𝛿

𝐺
(

𝐾

∑
𝑘=1

𝑝
𝑘
⋅ 𝑧
𝐺𝑘)

=
𝑑𝑈

𝑑𝑧
(1) =

𝐾

∑
𝑘=1

𝑝
𝑘
⋅ 𝐺
𝑘
.

(11)

(iii) The unfinished performance requirement is defined
as:

𝐸
𝑈
(𝑊, 𝑞) =

𝑀

∑
𝑚=1

𝑞
𝑚
⋅ 𝛿
𝑈
(𝑈 (𝑧) , 𝐹,𝑊

𝑚
) , (12)

where

𝛿
𝑈
(𝑈 (𝑧) , 𝐹,𝑊

𝑚
)

= 𝛿
𝑈
(

𝐾

∑
𝑘=1

𝑝
𝑘
⋅ 𝑧
𝐺𝑘 , 𝐹,𝑊

𝑚
)

=

𝐾

∑
𝑘=1

𝑝
𝑘
⋅max {−𝐹 (𝐺

𝑘
,𝑊
𝑚
) , 0} .

(13)

3.3. Composite Operators of Reliability and Performance
Indexes Based on UGF. Based on the above reliability defi-
nition expressed by UGF for cloud services, the 𝑢-function
composite operators Ω can be designed for various perfor-
mance indexes of the diverse composition patterns. The reli-
ability of cloud service composition can be worked out based
on theΩ calculation of cloud services’ reliability.

Two rules must be satisfied in the design of 𝑢-function
composite operatorsΩ as follows:

(1) Ω (𝑈
1
(𝑧) , . . . , 𝑈

𝑘
(𝑧) , 𝑈

𝑘+1
(𝑧) , . . . , 𝑈

𝑛
(𝑧))

= Ω (𝑈
1
(𝑧) , . . . , 𝑈

𝑘+1
(𝑧) , 𝑈

𝑘
(𝑧) , . . . , 𝑈

𝑛
(𝑧)) ;

(2) Ω (𝑈
1
(𝑧) , . . . , 𝑈

𝑘
(𝑧) , 𝑈

𝑘+1
(𝑧) , . . . , 𝑈

𝑛
(𝑧))

= Ω (Ω (𝑈
1
(𝑧) , . . . , 𝑈

𝑘
(𝑧)) , Ω (𝑈

𝑘+1
(𝑧) , . . . , 𝑈

𝑛
(𝑧))) .

(14)

The generic form of composite operators Ω can be
expressed as

Ω(∑
∀𝑘

𝑝
𝑘
⋅ 𝑧
𝐺𝑘 ,∑
∀𝑙

𝑝
𝑙
⋅ 𝑧
𝐺𝑙) = ∑

∀𝑘

∑
∀𝑙

𝑝
𝑘
⋅ 𝑝
𝑙
⋅ 𝑧
𝑓(𝐺𝑘 ,𝐺𝑙), (15)

where𝑓(𝐺
𝑘
, 𝐺
𝑙
) can be defined according to the performance

indexes and composition structures of the cloud service
application.

4. Reliability and Performance Model of
Cloud Services Composition Application
Based on UGF

4.1. Fault TolerantModel of Cloud Services Composition Appli-
cation. To strengthen the capability of fault tolerant of cloud

Journal of Applied Mathematics 5

service composition applications to improve its reliability
and performance, the component duplication technique has
been introduced into the design of cloud service composition
applications. By deploying a number of functionally equiva-
lent software versions for each cloud service, the cloud service
composition applications can avoid the global failure due to
the fault of one cloud service as far as possible.We assume that
𝑛
𝑐
functionally equivalent software versions are available for

each cloud service 𝑐. Each software version 𝑖 has an estimated
reliability 𝑟

𝑐𝑖
and response time 𝜏

𝑐𝑖
(it includes the execution

time of software version and the network transmission time
used transfer computing results to other software version, end
users, etc.). Failures of software versions in each cloud service
are statistically independent, as well as the total failures of the
different cloud services.

In many cases, the information about the software ver-
sion’s reliability and the response time is available from sepa-
rate testing and/or reliability prediction models. This infor-
mation can be incorporated into a fault-tolerant program
model in order to obtain an evaluation of its reliability and
performance.

According to the generally accepted model, the cloud
service composition application consists of 𝐶 cloud services.
Each cloud service performs a subtask and the sequential
execution of the cloud services performs a major task.

To assure that all of the computing tasks can correctly be
executed by cloud service, the cloud services broker (referred
to as CSB) and the check mechanism are established in the
cloud service composition application.The checkmechanism
presumes that software versions send their computing results
to the CSB. Then the CSB compares received computing
results with each other. The CSB sends the computing results
to the next cloud service in the service flow, if at least 𝑘 out of
𝑛 computing results agree. Otherwise, the CSB discards these
received computing results and recalls the cloud services. If
the consistent results cannot be obtained after trying a certain
number of times, the CSB will stop the execution of the cloud
services composition application.

The software versions in each cloud service 𝑐 run on
parallel hardware units. The total number of units is ℎ

𝑐
. The

units are independent and identical. The availability of each
unit is 𝑎

𝑐
. The number 𝐻

𝑐
of units available at the moment

determines the amount of available computational resources
and, therefore, the number of software versions that can
be executed simultaneously 𝐿

𝑐
(𝐻
𝑐
). No hardware unit can

change its state during the execution.
The software versions of each cloud service 𝑐 start their

execution in accordance with a predetermined ordered list.
𝐿
𝑐
first software versions from the list start their execution

simultaneously (at time zero). If the number of terminated
software versions is less than 𝑘

𝑐
, after termination of each

software version a new software version from the list starts its
execution immediately. If the number of terminated software
versions is not less than 𝑘

𝑐
, after termination of each software

version the CSB compares the outputs. If 𝑘
𝑐
outputs are

identical, the CSB terminates its execution (terminating all
the software versions that are still executed), otherwise a new
software version from the list is executed immediately.

If after termination of 𝑛
𝑐
software versions the number of

identical outputs is less than 𝑘
𝑐
then the entire cloud services

application fail.
The execution time of the CSB includes the execution

time and data transmission time spent by all cloud services
invoked by the CSB and itself. In the case that CSB gets not
less than 𝑘

𝑐
consistent results successfully, the time of the

entire CSB execution𝑇
𝑐
is equal to the termination time of the

software version that has produced the 𝑘
𝑐
th correct output (in

most cases, the time needed by the CSB to make the decision
can be neglected). It can be seen that the CSB execution time
is a random variable depending on the reliability and the
response time of the software versions and on the availability
of the hardware units.

The sum of the random execution times of each CSB gives
the random task execution time for the entire system 𝑇. In
order to estimate both the system’s reliability and its perfor-
mance, different measures can be used, depending on the
application.

In cloud service applications where the response time of
each task is of critical importance, the system’s acceptability
function is defined as 𝐹(𝑇, 𝑤) = 1(𝑇 < 𝑤), where 𝑤 is a max-
imal allowed system response time. The system’s reliability
𝑅(𝑤) = 𝐸(𝐹(𝑇, 𝑤)) in this case is the probability that the cor-
rect output is produced in time less than 𝑤. The conditional
expected system response time 𝜀(𝑤) = 𝐸(𝑇×1(𝑇 < 𝑤))/𝑅(𝑤)

is considered to be a measure of the system’s performance.
This index, defined according to (16), determines the system’s
expected response time given that the system and network do
not fail:

𝜀 (𝑤) =
𝐸 (𝐺)

Pr {𝐹 (𝐺,𝑊) = 1}
=
𝐸 (𝐺𝐹 (𝐺,𝑊))

𝐸 (𝐹 (𝐺,𝑊))
. (16)

In cloud service applications where the system’s average
productivity (the number of executed tasks) over a fixed mis-
sion time is of interest, the system’s acceptability function is
defined as𝐹(𝑇) = 1(𝑇 < ∞), the system’s reliability is defined
as the probability that it produces correct outputs regard-
less of the total response time (this index can be referred
to as 𝑅(∞)), and the conditional expected system response
time 𝜀(∞) is considered to be a measure of the system’s
performance.

4.1.1. Number of SoftwareVersionsThatCanBe Simultaneously
Executed. The number of available hardware units in cloud
service 𝑐 can vary from 0 to ℎ

𝑐
. Given that all of the units are

identical and have availability 𝑎
𝑐
, one can easily obtain proba-

bilities 𝑄
𝑐
(𝑥) = Pr{𝐻

𝑐
= 𝑥} for 0 ≤ 𝑥 ≤ ℎ

𝑐
:

𝑄
𝑐
(𝑥) = Pr {𝐻

𝑐
= 𝑥} = (

ℎ
𝑐

𝑥
) 𝑎
𝑥

𝑐
(1 − 𝑎

𝑐
)
ℎ𝑐−𝑥. (17)

The number of available hardware units 𝑥 determines the
number of software versions that can be executed simultane-
ously: 𝑙

𝑐
(𝑥). Therefore,

Pr {𝐿
𝑐
= 𝑙
𝑐
(𝑥)} = 𝑄

𝑐
(𝑥) . (18)

The pairs 𝑄
𝑐
(𝑥), 𝑙
𝑐
(𝑥) for 0 ≤ 𝑥 ≤ ℎ

𝑐
determine the

probability mass function (referred to as p.m.f. as follows) of
the discrete random value 𝐿

𝑐
.

6 Journal of Applied Mathematics

4.1.2. Termination Times of Software Version. In each cloud
service 𝑐, a sequence where each software version starts its
execution is defined by the numbers of software versions.This
means that each software version 𝑖 starts its execution not ear-
lier than software versions 1, . . . , 𝑖 − 1 and not later than soft-
ware versions 𝑖 + 1, . . . , 𝑛

𝑐
. If the number of software versions

that can run simultaneously is 𝑙
𝑐
, then we can assume that

the software versions run on 𝑙
𝑐
independent processors. Let

𝛼
𝑚
be the time when processor 𝑚 terminates the execution

of a software version and is ready to run the next software
version from the list of not executed software versions.
Having the response time of each software version 𝜏

𝑐𝑖
(1 ≤

𝑖 ≤ 𝑛
𝑐
), one can obtain the termination time 𝑡

𝑐𝑖
(𝑙
𝑐
) for each

software version 𝑖 using the following simple algorithm.

(1) Assign 𝛼
1
= ⋅ ⋅ ⋅ = 𝛼

𝑙𝑐
= 0 (all of the units are ready to

run the software versions at time 0).
(2) For 𝑖 = 1, . . . , 𝑛

𝑐
repeat the following:

(a) find any𝑚 (1 ≤ 𝑚 ≤ 𝑙
𝑐
) : 𝛼
𝑚
= min{𝛼

1
, . . . , 𝛼

𝑙𝑐
}

(𝑚 is the number of the earliest processor that
is ready to run a new software version from the
list),

(b) obtain 𝑡
𝑐𝑖
(𝑙
𝑐
) = 𝛼
𝑚
+ 𝜏
𝑐𝑖
and assign 𝛼

𝑚
= 𝑡
𝑐𝑖
(𝑙
𝑐
).

Times 𝑡
𝑐𝑖
(𝑙
𝑐
), (1 ≤ 𝑖 ≤ 𝑛

𝑐
), correspond to intervals

between the beginning of cloud service execution and the
moment when the software versions produce their outputs.
Observe that the software versions that start execution earlier
can terminate later: 𝑗 < 𝑦 does not guarantee that 𝑡

𝑐𝑗
(𝑙
𝑐
) ≤

𝑡
𝑐𝑦
(𝑙
𝑐
). In order to obtain the sequence, in which the soft-

ware versions produce their outputs, the termination times
should be sorted in increasing order 𝑡

𝑐𝑚1
(𝑙
𝑐
) ≤ 𝑡

𝑐𝑚2
(𝑙
𝑐
) ≤

⋅ ⋅ ⋅ ≤ 𝑡
𝑐𝑚𝑛𝑐

(𝑙
𝑐
) which gives the order of software versions

𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛𝑐
corresponding to times of their termination.

The ordered list𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛𝑐
determines the sequence

of software version outputs. Now one can consider the
cloud service 𝑐 as a system in which the 𝑛

𝑐
software

versions are executed consecutively according to the order
𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛𝑐
and produce their outputs at times 𝑡

𝑐𝑚1
(𝑙
𝑐
),

𝑡
𝑐𝑚2

(𝑙
𝑐
), . . . , 𝑡

𝑐𝑚𝑛𝑐
(𝑙
𝑐
).

4.2. Definition of Reliability and Performance of the Cloud
Service and the Cloud Services Composition Application. Let
𝑟
𝑐𝑚𝑖

be the reliability of the software version that produces 𝑖th
output in cloud service 𝑐 (𝑟

𝑐𝑚𝑖
is equal to the probability that

this output is correct). Consider the probability that 𝑘 out
of 𝑛 first software versions of cloud service 𝑐 succeed. This
probability can be obtained as

𝑅
𝑘
= [

𝑛

∏
𝑖=1

(1 − 𝑟
𝑐𝑚𝑖
)]

× [

[

𝑛−𝑘+1

∑
𝑖1=1

𝑟
𝑐𝑚𝑖1

1 − 𝑟
𝑐𝑚𝑖1

𝑛−𝑘+2

∑
𝑖2=𝑖1+1

𝑟
𝑐𝑚𝑖2

1 − 𝑟
𝑐𝑚𝑖2

⋅ ⋅ ⋅

𝑛

∑
𝑖𝑘=𝑖𝑘−1+1

𝑟
𝑐𝑚𝑖𝑘

1 − 𝑟
𝑐𝑚𝑖𝑘

]

]

.

(19)

The cloud service 𝑐 produces the correct output directly
after the end of the execution of 𝑗 software versions (𝑗 ≥ 𝑘

𝑐
)

if the𝑚
𝑗
th software version succeeds and exactly 𝑘

𝑐
−1 out of

the first executed 𝑗 − 1 software versions succeed.
The probability of such event 𝑝

𝑐𝑗
(𝑙
𝑐
) is

𝑝
𝑐𝑗
(𝑙
𝑐
) = 𝑟
𝑐𝑚𝑗

[

𝑗−1

∏
𝑖=1

(1 − 𝑟
𝑐𝑚𝑖
)]

× [

𝑛−𝑘𝑐+1

∑
𝑖1=1

𝑟
𝑐𝑚𝑖1

1 − 𝑟
𝑐𝑚𝑖1

𝑛−𝑘𝑐+2

∑
𝑖2=𝑖1+1

𝑟
𝑐𝑚𝑖2

1 − 𝑟
𝑐𝑚𝑖2

⋅ ⋅ ⋅

𝑗−1

∑
𝑖𝑘𝑐
−1=𝑖𝑘𝑐−2

+1

𝑟
𝑐𝑚𝑖𝑘𝑐−1

1 − 𝑟
𝑐𝑚𝑖𝑘𝑐−1

]

]

.

(20)

Observe that 𝑝
𝑐𝑗
(𝑙
𝑐
) is the conditional probability that the

cloud service response time is 𝑡
𝑐𝑚𝑗

(𝑙
𝑐
) given that 𝑙

𝑐
software

versions can be executed simultaneously:

𝑝
𝑐𝑗
(𝑙
𝑐
) = Pr {𝑇

𝑐
= 𝑡
𝑐𝑚𝑗

(𝑙
𝑐
) | 𝐿
𝑐
= 𝑙
𝑐
} . (21)

Having the p.m.f. of 𝐿
𝑐
we can now obtain for 1 ≤ 𝑥 ≤ ℎ

𝑐

Pr {𝑇
𝑐
= 𝑡
𝑐𝑚𝑗

(𝑙
𝑐
(𝑥))}

= Pr {𝑇
𝑐
= 𝑡
𝑐𝑘𝑗

(𝑙
𝑐
(𝑥)) | 𝐿

𝑐
= 𝑙
𝑐
(𝑥)}Pr {𝐿

𝑐
= 𝑙
𝑐
(𝑥)}

= 𝑝
𝑐𝑗
(𝑙
𝑐
(𝑥)) 𝑄

𝑐
(𝑥) .

(22)

Thepairs 𝑡
𝑐𝑚𝑗

(𝑙
𝑐
(𝑥)),𝑝

𝑐𝑗
(𝑙
𝑐
(𝑥))𝑄

𝑐
(𝑥), obtained for 1 ≤ 𝑥 ≤

ℎ
𝑐
and 𝑘

𝑐
≤ 𝑗 ≤ 𝑛

𝑐
, determine the p.m.f. of software version

response time 𝑇
𝑐
.

Since the events of successful cloud service execution ter-
mination for different 𝑗 and 𝑥 are mutually exclusive, we can
express the probability of cloud service 𝑐 success as

𝑅
𝑐
(∞) = Pr {𝑇

𝑐
< ∞} =

ℎ𝑐

∑
𝑥=1

[

[

𝑄
𝑐
(𝑥)

𝑛𝑐

∑
𝑗=𝑘𝑐

𝑝
𝑐𝑗
(𝑙
𝑐
(𝑥))]

]

.

(23)

Since failure of any cloud service constitutes the failure
of the entire application, the application’s reliability can be
expressed as

𝑅 (∞) =

𝐶

∏
𝑐=1

𝑅
𝑐
(∞) . (24)

For cloud services, there are four kinds of execution
patterns in cloud services composition application: sequence,
parallel, split, and loop. From the p.m.f. of response times
𝑇
𝑐
for each cloud service 𝑐 one can obtain the p.m.f. of the

response time of the entire application in accordance with

Journal of Applied Mathematics 7

the composition structures and execution logics of the cloud
services composition application:

𝑇 =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝐶

∑
𝑐=1

𝑇
𝑐

for sequence structure,

max (𝑇
1
, . . . , 𝑇

𝑐
) for parallel structure,

𝐶

∑
𝑐=1

𝑝
𝑐
𝑇
𝑐

for split structure,

𝐿

∑
𝑙=1

𝐶

∑
𝑐=1

𝑇
𝑐

for loop structure,

(25)

where the 𝑝
𝑐
is the probabilities that the 𝑐th split is chosen to

be executed.The 𝐿 is the number of times of loop that𝐶 cloud
services are executed repeatedly. 𝑝

𝑐
and 𝐿 can be obtained

from separate testing and/or prediction models.

5. Fast Optimization Algorithm of
Reliability and Performance for Cloud
Services Composition Application Based
on UGF and GA

5.1. Using UGF to Evaluate the Response Time Distribution
of Cloud Services. In order to obtain the response time
distribution for a cloud service 𝑐 for a given 𝑙

𝑐
in the form

𝑝
𝑐𝑗
(𝑙
𝑐
), 𝑡
𝑐𝑚𝑗

(𝑙
𝑐
) (𝑘
𝑐

≤ 𝑗 ≤ 𝑛
𝑐
) one can determine the

realizations 𝑡
𝑐𝑚𝑗

(𝑙
𝑐
) of the response time𝑇

𝑐
(𝑙
𝑐
) using the algo-

rithm presented in Section 4.1.2 and the corresponding prob-
abilities 𝑝

𝑐𝑗
(𝑙
𝑐
) using (20). However, the probabilities 𝑝

𝑐𝑗
(𝑙
𝑐
)

can be obtained in a much simpler way using a procedure
based on the UGF technique.

Let the random binary variable 𝑠
𝑐𝑚𝑖

be an indicator of the
success of software version 𝑚

𝑖
in cloud service 𝑐 such that

𝑠
𝑐𝑚𝑖

= 1 if the software version produces the correct output
and 𝑠
𝑐𝑚𝑖

= 0 if it produces the wrong output.The p.m.f. of 𝑠
𝑐𝑚𝑖

can be represented by the 𝑢-function

𝑢
𝑐𝑚𝑖

(𝑧) = 𝑟
𝑐𝑚𝑖
𝑧
1
+ (1 − 𝑟

𝑐𝑚𝑖
) 𝑧
0
. (26)

It can be easily seen that using the operator ⊗
+
we can obtain

the 𝑢-function

𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) = ⨂
+

(𝑢
𝑐𝑚𝑖

(𝑧) , . . . , 𝑢
𝑐𝑚𝑗

(𝑧)) (27)

that represents the p.m.f. of the number of correct outputs in
cloud service 𝑐 after the execution of a group of first 𝑗 software
versions (the order of elements 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛𝑐
and, there-

fore,𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) depend on 𝑙

𝑐
). Indeed, the resulting polynomial

relates the probabilities of combinations of correct andwrong
outputs (the product of corresponding probabilities) with the
number of correct outputs in these combinations (the sum
of success indicators). Observe that after collecting the like
terms (corresponding to obtaining the overall probability of

a different combination with the same number of correct
outputs) 𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) takes the form

𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) =

𝑗

∑
𝑘=0

𝜋
𝑗𝑘
𝑧
𝑘
, (28)

where 𝜋
𝑗𝑘
is the probability that the group of first 𝑗 software

versions produces 𝑘 correct outputs.
Note that𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) can be obtained by using the recurrent

expression:

𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) = 𝑈
𝑐𝑗−1

(𝑧, 𝑙
𝑐
)⨂
+

[𝑟
𝑐𝑚𝑗

𝑧
1
+ (1 − 𝑟

𝑐𝑚𝑗
) 𝑧
0
] . (29)

According to its definition, 𝑝
𝑐𝑗
(𝑙
𝑐
) is the probability that

the group of first 𝑗 software versions produces 𝑘
𝑐
correct

outputs and the group of first 𝑗−1 software versions produces
𝑘
𝑐
− 1 correct outputs given that 𝑙

𝑐
software versions can be

executed simultaneously. The coefficient 𝜋
𝑗𝑘𝑐

in polynomial
𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) is equal to the conditional probability that the group

of first 𝑗 software versions produces 𝑘
𝑐
correct outputs given

that 𝑙
𝑐
software versions can be executed simultaneously.

In order to let the coefficient 𝜋
𝑗𝑘𝑐

in polynomial 𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
)

be equal to 𝑝
𝑐𝑗
(𝑙
𝑐
), the term with the exponent equal to 𝑘

𝑐

should be removed from 𝑈
𝑐𝑗−1

(𝑧, 𝑙
𝑐
) before applying (29)

(excluding the combination in which 𝑗 − 1 first software
versions produce 𝑘

𝑐
correct outputs while the 𝑚

𝑗
th software

version fails).
If after the execution of 𝑗 first software versions the num-

ber of correct outputs produced is 𝑘 and 𝑘 + 𝑛
𝑐
− 𝑗 < 𝑘

𝑐
, then

the required number of correct outputs 𝑘
𝑐
cannot be obtained

even if all the 𝑛
𝑐
− 𝑗 subsequent software versions produce

correct outputs.Therefore, the terms𝜋
𝑗𝑘
𝑧𝑘 with 𝑘 < 𝑘

𝑐
−𝑛
𝑐
+𝑗

can be removed from 𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
).

The above considerations lie at the base of the following
algorithm for determining all of the probabilities 𝑝

𝑐𝑗
(𝑙
𝑐
) (𝑘
𝑐
≤

𝑗 ≤ 𝑛
𝑐
).

(1) For the given 𝑙
𝑐
, determine the order of software ver-

sion termination𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛𝑐
using the algorithm

from Section 4.1.2.
(2) Determine the 𝑢-function of each software version of

cloud service 𝑐 according to (26).
(3) Define 𝑈

𝑐0
(𝑧, 𝑙
𝑐
) = 1. For 𝑗 = 1, 2, . . . , 𝑛

𝑐
,

(a) obtain 𝑈
𝑐𝑗
(𝑧, 𝑙
𝑐
) using (28) and, after collecting

like terms, represent it in the form (29),
(b) remove from 𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
) all the terms 𝜋

𝑗𝑘
𝑧𝑘 for

which 𝑘 < 𝑘
𝑐
− 𝑛
𝑐
+ 𝑗,

(c) If 𝑗 ≥ 𝑘
𝑐
, assign 𝑝

𝑐𝑗
(𝑙
𝑐
) = 𝜋
𝑗𝑘𝑐

and remove term
𝜋
𝑗𝑘𝑐
𝑧𝑘𝑐 from 𝑈

𝑐𝑗
(𝑧, 𝑙
𝑐
).

5.2. Evaluating Response Time Distribution of the Cloud
Services CompositionApplication. Having the pairs𝑝

𝑐𝑗
(𝑙
𝑐
(𝑥)),

𝑡
𝑐𝑚𝑗

(𝑙
𝑐
(𝑥)) for each possible realization 𝑙

𝑐
(𝑥) of 𝐿

𝑐
(1 ≤ 𝑥 ≤

ℎ
𝑐
) and probabilities Pr{𝐿

𝑐
= 𝑙
𝑐
(𝑥)} = 𝑄

𝑐
(𝑥), one can obtain

the p.m.f. of random response times 𝑇
𝑐
for each cloud service

8 Journal of Applied Mathematics

by applying (22). If the conditional p.m.f. 𝑝
𝑐𝑗
(𝑙
𝑐
(𝑥)),

𝑡
𝑐𝑚𝑗

(𝑙
𝑐
(𝑥)) are represented by the 𝑢-function

𝑢̃
𝑐
(𝑧, 𝑙
𝑐
(𝑥)) =

𝑛𝑐

∑
𝑗=𝑘𝑐

𝑝
𝑐𝑗
(𝑙
𝑐
(𝑥)) 𝑧

𝑡𝑐𝑚𝑗
(𝑙𝑐(𝑥)) (30)

then the 𝑢-function representing the p.m.f. of the random
value 𝑇

𝑐
takes the form

𝑈̃
𝑐
(𝑧) =

ℎ𝑐

∑
𝑥=1

𝑄
𝑐
(𝑥) 𝑢̃
𝑐
(𝑧, 𝑙
𝑐
(𝑥)) . (31)

In accordance with the four kinds of execution patterns of
cloud services in cloud services composition application, we
present four kinds of composition operators for 𝑢-function
operation corresponding to formula (25):

(1) The composition operator ⊗sequ for sequence execu-
tion pattern:

𝑈̃ (𝑧) = 𝑈̃
1
(𝑧)⨂

sequ
𝑈̃
2
(𝑧)

=

𝐿1

∑
𝑙1=1

Pr (𝑇
1𝑙1

= 𝑇̃
1𝑙1
) 𝑧
𝑇̃1𝑙1⨂

sequ

𝐿2

∑
𝑙2=1

Pr (𝑇
2𝑙2

= 𝑇̃
2𝑙2
) 𝑧
𝑇̃2𝑙2

=

𝐿1

∑
𝑙1=1

𝐿2

∑
𝑙2=1

Pr (𝑇
1𝑙1

= 𝑇̃
1𝑙1
)Pr (𝑇

2𝑙2
= 𝑇̃
2𝑙2
) 𝑧
𝑇̃1𝑙1
+𝑇̃2𝑙2 .

(32)

(2) The composition operator ⊗para for parallel execution
pattern:

𝑈̃ (𝑧)

= 𝑈̃
1
(𝑧)⨂

para
𝑈̃
2
(𝑧)

=

𝐿1

∑
𝑙1=1

Pr (𝑇
1𝑙1

= 𝑇̃
1𝑙1
) 𝑧
𝑇̃1𝑙1⨂

para

𝐿2

∑
𝑙2=1

Pr (𝑇
2𝑙2

= 𝑇̃
2𝑙2
) 𝑧
𝑇̃2𝑙2

=

𝐿1

∑
𝑙1=1

𝐿2

∑
𝑙2=1

Pr (𝑇
1𝑙1

= 𝑇̃
1𝑙1
)Pr (𝑇

2𝑙2
= 𝑇̃
2𝑙2
) 𝑧

max(𝑇̃1𝑙1 ,𝑇̃2𝑙2).

(33)

(3) The composition operator ⊗split for split execution
pattern:

𝑈̃ (𝑧)

= 𝑈̃
1
(𝑧)⨂

split
𝑈̃
2
(𝑧)

=

𝐿1

∑
𝑙1=1

Pr (𝑇
1𝑙1

= 𝑇̃
1𝑙1
) 𝑧
𝑇̃1𝑙1⨂

split

𝐿2

∑
𝑙2=1

Pr (𝑇
2𝑙2

= 𝑇̃
2𝑙2
) 𝑧
𝑇̃2𝑙2

= 𝑝
1

𝐿1

∑
𝑙1=1

Pr (𝑇
1𝑙1

= 𝑇̃
1𝑙1
) 𝑧
𝑇̃1𝑙1 + 𝑝

2

𝐿2

∑
𝑙2=1

Pr (𝑇
2𝑙2

= 𝑇̃
2𝑙2
) 𝑧
𝑇̃2𝑙2 ,

(34)

where the 𝑝
1
and 𝑝

2
are the probabilities that the

splits, corresponding to 𝑈̃
1
(𝑧) and 𝑈̃

2
(𝑧), are chosen

to execute.
(4) The composition operator ⊗loop for loop execution

pattern.

The composition operator ⊗loop can be expressed by mul-
tiple composition operators ⊗sequ, because the loop execution
pattern can be transformed to an accumulation of multiple
sequence execution patterns. The number of composition
operators ⊗sequ transformed is equal to the number of times
of repeated execution in loop pattern.

Hence, one can obtain the 𝑢-function 𝑈̃(𝑧) representing
the p.m.f. of the random entire application response time 𝑇
as

𝑈̃ (𝑧) = ⨂
𝑓

(𝑈̃
1
(𝑧) , . . . , 𝑈̃

𝐶
(𝑧))

= ⨂
𝑓

(

ℎ𝑐

∑
𝑥=1

𝑄
𝑐
(𝑥) 𝑢̃
𝑐
(𝑧, 𝑙
𝑐
(𝑥))) ,

(35)

where the composition operator ⊗
𝑓
is an abstract composi-

tion operator that it can be one of the composition operators
⊗sequ, ⊗para, ⊗split, and ⊗loop.

In accordance with the composition patterns in cloud
services composition application, the concrete 𝑢-function
𝑈̃(𝑧) representing the p.m.f. of𝑇 can be obtained by replacing
⊗
𝑓
by one of the composition operators ⊗sequ, ⊗para, ⊗split, and

⊗loop.

5.3. Evaluating Response Time Distribution of Different Cloud
Services Executed on the Same Hardware. Now consider the
case where all of the software cloud services are consecutively
executed on the same hardware consisting of ℎ parallel
identical modules with the availability 𝑎. The number of
available parallel hardware modules𝐻 is random with p.m.f.
𝑄(𝑥) = Pr{𝐻 = 𝑥}, 1 ≤ 𝑥 ≤ ℎ, defined in the same way as in
(17).

When 𝐻 = 𝑥, the number of software versions that can
be executed simultaneously in each cloud service 𝑐 is 𝑙

𝑐
(𝑥).

The 𝑢-functions representing the p.m.f. of the corresponding
cloud service response time𝑇

𝑐
are 𝑢̃
𝑐
(𝑧, 𝑙
𝑐
(𝑥)) defined by (30).

The 𝑢-function 𝑈̂(𝑧, 𝑥) representing the conditional p.m.f. of
the entire application response time𝑇 (given that the number
of available hardware modules is 𝑥) can be obtained for any
𝑥 (1 ≤ 𝑥 ≤ ℎ) as

𝑈̂ (𝑧, 𝑥) = ⨂
+

(𝑢̃
1
(𝑧, 𝑙
1
(𝑥)) , . . . , 𝑢̃

𝐶
(𝑧, 𝑙
𝐶
(𝑥)))

=

𝐶

∏
𝑐=1

𝑢̃
𝑐
(𝑧, 𝑙
𝑐
(𝑥)) .

(36)

Having the p.m.f. of the random value 𝐻 we obtain the
𝑢-function 𝑈̃(𝑧) representing the p.m.f. of 𝑇 as

𝑈̃ (𝑧) =

𝐻

∑
𝑥=1

𝑄 (𝑥) 𝑈̂ (𝑧, 𝑥) . (37)

Journal of Applied Mathematics 9

Table 1: Parameters of fault-tolerant cloud services and software versions.

No. of cloud services 𝐿
𝑐

𝑘
𝑐

Software versions
1 2 3 4 5 6 7 8

1 1 1
𝑐 5 15 7 8 12 6 — —
𝜏 17 10 20 32 30 75 — —
𝑟 0.71 0.85 0.85 0.89 0.95 0.98 — —

2 2 2
𝑐 5 15 7 8 12 — — —
𝜏 28 55 35 55 58 — — —
𝑟 0.71 0.85 0.85 0.89 0.95 — — —

3 4 3
𝑐 4 3 4 6 5 4 9 6
𝜏 17 20 38 38 48 50 41 63
𝑟 0.80 0.80 0.86 0.90 0.90 0.94 0.98 0.98

4 1 2
𝑐 12 16 17 17 — — — —
𝜏 17 10 20 32 — — — —
𝑟 0.75 0.85 0.93 0.97 — — — —

5 3 1
𝑐 5 9 11 7 12 — — —
𝜏 30 54 40 65 70 — — —
𝑟 0.70 0.80 0.80 0.80 0.89 — — —

5.4. Optimizing the Structure of Cloud Service Composition
Application with Fault-Tolerant Mechanism Based on UGF
and GA. When a fault-tolerant cloud service application is
designed, one has to choose software versions for each cloud
service and find the sequence of their execution in order to
achieve the entire application’s greatest reliability subject to
cost constraints. The software versions are chosen from a list
of the available products. Each software version is character-
ized by its reliability, response time, and cost. The total cost
of the entire application is defined according to the cost of its
software versions. The cost for each software version can be
the purchase cost if the software versions are commercial and
the off-the-shelf cost, or it can be an estimate based upon the
software version’s size, complexity, and performance.

Assume that 𝐵
𝑐
functionally equivalent software versions

are available for each cloud service 𝑐 and that the number 𝑘
𝑐
of

the software versions that should agree in each cloud service
is predetermined.The choice of the software versions and the
sequence of their execution in each cloud service determine
the entire application’s reliability and performance.

The permutation x∗
𝑐

of 𝐵
𝑐
different integer numbers

ranging from 1 to 𝐵
𝑐
determines the order of the software

version that can be used in cloud service 𝑐. Let 𝑦
𝑐𝑏
= 1 if the

software version 𝑏 is chosen to be included in cloud service 𝑐
and 𝑦

𝑐𝑏
= 0 otherwise. The binary vector 𝑦

𝑐
= {𝑦
𝑐1
, . . . , 𝑦

𝑐𝐵𝑐
}

determines the subset of software versions chosen for cloud
service 𝑐. Having the vectors x∗

𝑐
and y
𝑐
one can determine the

execution order 𝑥
𝑐
of the software versions chosen by remov-

ing from x∗
𝑐
any number 𝑏 forwhich y

𝑐𝑏
= 0.The total number

of software versions in cloud service 𝑐 (equal to the length of
vector y

𝑐
after removing the unchosen software versions) is

determined as

𝑛
𝑐
=

𝐵𝑐

∑
𝑏=1

𝑦
𝑐𝑏
. (38)

The application structure optimization problem can now
be formulated by finding vectors 𝑥

𝑐
for 1 ≤ 𝑐 ≤ 𝐶 that maxi-

mize 𝑅(𝑤) subject to cost constraint

Ω =

𝐶

∑
𝑐=1

∑
𝑏∈𝑥𝑐

𝜔
𝑐𝑏
≤ Ω
∗
, (39)

where 𝜔
𝑐𝑏
is the cost of software version 𝑏 used in cloud ser-

vice 𝑐, Ω is the entire application cost and Ω∗ is the maximal
allowable application cost. Note that the length of vectors
x
𝑐
can vary depending on the number of software versions

chosen.
In order to encode the variable-length vectors x

𝑐
in the

GA using the constant length integer strings one can use
(𝐵
𝑐
+ 1)-length strings containing permutations of numbers

1, . . . , 𝐵
𝑐
, 𝐵
𝑐
+ 1. The numbers that appear before 𝐵

𝑐
+ 1

determine the vector x
𝑐
. For example, for 𝐵

𝑐
= 5 the permu-

tations (2, 3, 6, 5, 1, 4) and (3, 1, 5, 4, 2, 6) correspond to x
𝑐
=

(2, 3) and x
𝑐
= (3, 1, 5, 4, 2) respectively. Any possible vector

x
𝑐
can be represented by the corresponding integer substring

containing the permutation of 𝐵
𝑐
+1 numbers. By combining

𝐶 substrings corresponding to different cloud services one
obtains the integer string 𝑎, that encodes the entire applica-
tion structure.

The encoding method is used in which the single permu-
tation defines the sequences of the software versions chosen
in each of the 𝐶 cloud services. The solution encoding string
is a permutation of 𝑛 = ∑

𝐶

𝑐=1
(𝐵
𝑐
+ 1) integer numbers

ranging from 1 to 𝑛. Each number 𝑗 belonging to the interval
∑
𝑚−1

𝑐=1
(𝐵
𝑐
+ 1) + 1 ≤ 𝑗 ≤ ∑

𝑚

𝑐=1
(𝐵
𝑐
+ 1) corresponds to software

version 𝑗 − ∑
𝑚−1

𝑐=1
(𝐵
𝑐
+ 1) of cloud service. The relative order

in which the numbers corresponding to the software versions
of the same cloud service appear in the string determines the
structure of this cloud service.

10 Journal of Applied Mathematics

w = 250 w = 300

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

160 190 220 250 280 310

R

w w

Ω
∗
= 160

Ω
∗
= 140

Ω
∗
= 120

Ω
∗
= 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R

Ω
∗
= 160

Ω
∗
= 140

Ω
∗
= 120

Ω
∗
= 100

180 210 240 270 300

Figure 1: 𝑅(𝑤) functions for the solutions obtained.

Table 2: Parameters of solutions obtained for 𝑤 = 250.

Ω∗ Sequence of software versions 𝑇min 𝑇max Ω 𝑅(250) 𝜀(∞)
160 231 | 541 | 37162 | 324 | 214 166 307 159 0.913 188.34
140 34 | 241 | 64231 | 234 | 123 173 301 140 0.868 194.43
120 5 | 431 | 31562 | 43 | 21 205 249 119 0.752 217.07
100 3 | 241 | 4562 | 43 | 41 205 270 100 0.598 220.52

6. Illustrative Examples

Consider a fault-tolerant cloud services composition applica-
tion consisting of five cloud services in serial running on fully
available hardware. The parameters of the software versions
that can be used in these cloud services are presented in
Table 1. This table contains the values of 𝑘

𝑐
and 𝐿

𝑐
for each

cloud service and the cost, reliability, and response time for
each software version.

Two sets of solutions were obtained for the maximal
allowable application response times 𝑤 = 250 and 𝑤 = 300.
For each value of 𝑤, four different solutions were obtained
for different cost constraints.These solutions are presented in
Tables 2 and 3.The tables contain the application correspond-
ing cost and reliability for each optimal solution, the expected
conditional response time, minimal and maximal possible
application response times, and the corresponding optimal
execution sequences of the software versions chosen.

Comparing the entire application cost and the reliability
of the optimal solutions corresponding to 𝑤 = 250 and
𝑤 = 300 in Tables 2 and 3, it can be seen that the entire
application cost and the reliability of the optimal solution cor-
responding to 𝑤 = 300 are always equal or greater than ones
corresponding to𝑤 = 250 in the case of the same value ofΩ∗.

Comparing the entire application cost and the reliability
of the optimal solutions corresponding to the different 4max-
imal allowable application costs in Tables 2 and 3, it can be
seen that the entire application cost and the reliability of the
optimal solution corresponding to largerΩ∗ are always equal
or greater than ones corresponding to smallerΩ∗ in the case
of the same value of 𝑤.

From Tables 2 and 3, it can also be seen that the software
versions executed in practice gradually become more and
more along with the growth of the value of Ω∗.

These phenomenon above indicates that the selection of
suitable Ω∗ and 𝑤 is helpful to improve the reliability of the
cloud services composition application and cut down the
cost.

To help the designers of the cloud services composition
application to select the suitable Ω

∗ and 𝑤, the values of
the functions 𝑅(𝑤) of all of solutions obtained are drawn in
Figure 1. At first, the designers can intuitively find out which
curves cross over the value of reliability demand. On this
basis, the designers can easily findwhich points (solution) can
meet the maximal allowable response time. The approach
abovementioned can be easily realized by software. Thus, it
can be applied in online prediction and optimization situa-
tion.

Journal of Applied Mathematics 11

Table 3: Parameters of solutions obtained for 𝑤 = 300.

Ω∗ Sequence of software versions 𝑇min 𝑇max Ω 𝑅(300) 𝜀(∞)

160 341 | 4521 | 85632 | 324 | 41 188 369 160 0.951 210.82
140 53 | 541 | 28361 | 431 | 51 173 301 140 0.868 194.43
120 6 | 241 | 61372 | 241 | 31 240 307 120 0.813 252.87
100 4 | 142 | 2386 | 43 | 41 219 295 100 0.672 238.05

7. Conclusions

The traditional reliability and performance prediction and
optimization techniques, for example, Markov model and
state space analysis, have some defects such as being too
time consuming and easy to cause state space explosion
and unsatisfied the assumptions of component execution
independence by Markov model. Aiming at the defects of
Markov model, an optimization model of reliability and
performance based on MSS for cloud services application
is proposed in this paper, which eliminates the limitation
for component execution independence, and more fits the
actual execution of cloud services composition application.
On this basis, aiming at the defects of state space analysis
technique, a fast optimization algorithmwith very small time
consumption based on UGF and GA for the reliability and
performance of cloud services composition application is
presented in this paper, which eliminates the risk of state
space explosion. The model and algorithm presented in this
paper can be applied in online prediction and optimization
for reliability and performance of cloud services composition
application.

Acknowledgment

This research was supported by the National Natural Science
Funds Fund of China (61172084); Science and Technology
Support Program of Hubei Province of China (2013BHE022);
Natural Science Foundation of Hubei Province of China
(2013CFC026); Key new product research and development
of Hubei Province of China (2012BBA25002, 2012IHA015).

References

[1] W. Venters and E. A. Whitley, “A critical review of cloud com-
puting: researching desires and realities,” Journal of Information
Technology, vol. 27, no. 3, pp. 179–197, 2012.

[2] L. Qi, W. Dou, X. Zhang, and J. Chen, “A QoS-aware compo-
sition method supporting cross-platform service invocation in
cloud environment,” Journal of Computer and System Sciences,
vol. 78, no. 5, pp. 1316–1329, 2012.

[3] J. Leukel, S. Kirn, and T. Schlegel, “Supply chain as a service:
a cloud perspective on supply chain systems,” IEEE Systems
Journal, vol. 5, no. 1, pp. 16–27, 2011.

[4] C. Y. Ming and P. Y. Jen, “A QoS aware services mashup
model for cloud computing applications,” Journal of Industrial
Engineering and Management, vol. 5, no. 2, pp. 457–472, 2012.

[5] L. Zhao, Y. Ren,M. Li, andK. Sakurai, “Flexible service selection
with user-specific QoS support in service-oriented architec-
ture,” Journal of Network and Computer Applications, vol. 35,
no. 3, pp. 962–973, 2012.

[6] W. Dou, L. Qi, X. Zhang, and J. Chen, “An evaluationmethod of
outsourcing services for developing an elastic cloud platform,”
Journal of Supercomputing, vol. 63, no. 1, pp. 1–23, 2010.

[7] Q. Wu, Z. B. Li, Y. Y. Yin, and H. Zeng, “Adaptive service
selection method in mobile cloud computing,” China Commu-
nications, vol. 9, no. 12, pp. 46–55, 2012.

[8] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen, “Dynamic
web service selection for reliable web service composition,”
IEEE Transactions on Services Computing, vol. 1, no. 2, pp. 104–
116, 2008.

[9] Y.-K. Lin and P.-C. Chang, “Reliability evaluation of a computer
network in cloud computing environment subject to mainte-
nance budget,” Applied Mathematics and Computation, vol. 219,
no. 8, pp. 3893–3902, 2012.

[10] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A.
Menychtas, and T. Varvarigou, “A self-adaptive hierarchical
monitoring mechanism for clouds,” Journal of Systems and
Software, vol. 85, no. 5, pp. 1029–1041, 2012.

[11] M. L. Chiang, “Efficient diagnosis protocol to enhance the reli-
ability of a cloud computing environment,” Journal of Network
and Systems Management, vol. 20, no. 4, pp. 579–600, 2012.

[12] X. Yang and H. Zhang, “Cloud computing and SOA conver-
gence research,” in Proceedings of the 5th International Sympo-
sium on Computational Intelligence and Design (ISCID ’12), vol.
1, pp. 330–335, Hangzhou, China, 2012.

[13] R. Sharma, M. Sood, and D. Sharma, “Modeling Cloud SaaS
with SOA and MDA,” in Proceedings of the 1st International
Conference on Advances in Computing and Communications,
vol. 190, pp. 511–518, Kochi, India, July 2011.

[14] R. K. Das, S. Patnaik, and A. K. Misro, “Adoption of cloud com-
puting in e-governance,” in Proceedings of the 1st International
Conference on Computer Science and Information Technology,
vol. 133 of Communications in Computer and Information
Science, pp. 161–172, January 2011.

[15] L. Qi, W. Dou, X. Zhang, and J. Chen, “A QoS-aware compo-
sition method supporting cross-platform service invocation in
cloud environment,” Journal of Computer and System Sciences,
vol. 78, no. 5, pp. 1316–1329, 2012.

[16] X.Chen, X. Liu, F. Fang, X. Zhang, andG.Huang, “Management
as a service: an empirical case study in the internetware cloud,”
in Proceedings of the IEEE International Conference on E-
Business Engineering (ICEBE ’10), pp. 470–473, Shanghai, China,
November 2010.

[17] P. Kumar, V. K. Sehgal, D. S. Chauhan, P. K. Gupta, and M.
Diwakar, “Effective ways of secure, private and trusted cloud
computing,” International Journal of Computer Science Issues,
vol. 8, no. 3, pp. 412–420, 2011.

[18] X. Xu, C. Cheng, and J. Xiong, “Reliable integrated model of
cloud & client computing based on multi-agent,” Journal of
Computational Information Systems, vol. 6, no. 14, pp. 4767–
4774, 2010.

[19] J. Liu, J. Zhou, J. Wang, X. Chen, and H. Zhou, “Cloud ser-
vice: automatic construction and evolution of software process

12 Journal of Applied Mathematics

problem-solving resource space,” Journal of Supercomputing, pp.
1–25, 2010.

[20] J.Murhland, “Fundamental concepts and relations for reliability
analysis of multistate system,” in Reliability and Fault Tree
Analysis. Theoretical and Applied Aspects of System Reliability,
pp. 581–618, SIAM, 1975.

[21] E. El-Neweihi, F. Proschan, and J. Sethuraman, “Multistate
coherent systems,” Journal of Applied Probability, vol. 15, no. 4,
pp. 675–688, 1978.

[22] R. E. Barlow and A. S. Wu, “Coherent systems with multistate
components,”Mathematics of Operations Research, vol. 3, no. 4,
pp. 275–281, 1978.

[23] S. Ross, “Mulivalued state element system,” Annals of Probabil-
ity, no. 7, pp. 379–383, 1979.

[24] A. Lisnianski and G. Levitin, Multi-State System Reliability:
Assessment, Optimization and Applications, vol. 6 of Series on
Quality, Reliability & Engineering Statistics, World Scientific,
River Edge, NJ, USA, 2003.

[25] I. Ushakov, “Optimal standby problems and a universal gener-
ating function,” Soviet Journal of Computer Systems Science, vol.
25, pp. 79–82, 1987.

