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The problem of iterative learning control (ILC) is considered for a class of time-varying systems with random packet dropouts.
It is assumed that an ILC scheme is implemented via a remote control system and that packet dropout occurs during the packet
transmission between the ILC controller and the actuator of remote plant. The packet dropout is viewed as a binary switching
sequence which is subject to the Bernoulli distribution. In order to eliminate the effect of packet dropouts on the convergence
property of output error, the hold-input scheme is adopted to compensate the packet dropout at the actuator. It is shown that the
hold-input scheme with average ILC can achieve asymptotical convergence along the iteration axis for discrete time-varying linear
system. Numerical examples are provided to show the effectiveness of the proposed method.

1. Introduction

Iterative learning control (ILC) is an attractive technique
when dealing with systems that execute the same task repeat-
edly over a finite time interval [1]. This technique has been
the center of interest of many researchers over the two
decades [2–5] and covered a wide scope of research issues
such asmodel uncertainty [6–8], disturbance uncertainty and
stochastic noise [9], the initial condition and desired trajec-
tory uncertainty [10–12], continuous-time nonlinear system
control [13], and parameter interval uncertainty [14].

On the other hand, the remote control systems have
been the focus of several research studies over the last few
years [15–21]. In the remote control systems, one feature is
that the control loops are closed through a real-time com-
munication channel which transmits signals from the sensors
to the controller and from the controller to the actuators
[17]. The remote control systems eliminate unnecessary
wiring reducing the complexity and overall cost in design-
ing and implementing the control systems. However, the
introduction of communication networks makes the analysis
and control design more complicated than classical feedback

loops. Data packet dropout can randomly occur due to node
failure or network congestion and impose one of the most
important issues in remote control systems. In [18, 19], the
authors are concerned with the stability problem for remote
control systems with the packet dropout. In the work [20, 21],
decentralized stabilization of remote control systems with
nonlinear perturbations is studied.

Besides the stability issue, trajectory tracking is a chal-
lenging issue for remote control systems. Fortunately, for
periodic systems, iterative learning control offers a systematic
design that can improve the tracking performance by itera-
tions in a fixed time interval. ILC is in principle a feedforward
technique; thus it can send the controller signals obtained
from previous trials. It is still an open research area in ILC
which is implemented via a remote systems setting, except
for certain pioneer works [22–29]. In [22, 23], the authors
designed an optimal ILC controller for a class of linear
systems with random packet dropouts. Bu et al. [26] studied
the stability of first and high order ILC with data dropout
when the plant is subject to measurement signal dropout.
In [24, 25], the authors investigated the implementation of
ILC in a remote control systems environment and specifically
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focused on compensation when both random data dropouts
and delays occur at the communication network between
the sensors and the controller. In [27], a sampled-data ILC
approach was proposed for a class of nonlinear remote
control systems to analyze the effect of packet loss. In [28], the
author considered the problem of ILC for a class of nonlinear
systemswith control signal dropouts andmeasurement signal
dropouts, but the convergence analysis needs controller and
actuator to know the received signal whether lost or not.
Huang and Fang [29] discussed the wireless remote iterative
learning control system with random data dropouts.

In this paper, we proposed an ILC for a time-varying
system with random packet dropouts. As depicted in pre-
vious studies [22–29], there are two different kinds of
packet dropouts in remote ILC systems: control input signal
dropouts and output measurement signal dropouts. For the
sake of convenience, we only consider the control signal
dropouts in this paper, but the results can be extended to the
measurement signal dropouts.The packet dropouts would be
described as a binary sequence which is subject to a Bernoulli
distribution taking the value of one or zero with certain
probability.The ILC law adopts an iteration-average operator
and a revised learning gain that takes into consideration
the probabilities of data-dropout factors. As a result, the
ensemble average of the output tracking errors can be made
to converge along the iteration axis. In this paper, we consider
a class of discrete time linear plants with output matrixC and
input matrix B; our results refer only to CB of full-column
rank.

The paper is organized as follows. Section 2 formulates
the system problem. Section 3 formulates the hold-input
scheme with average ILC algorithm and proves the conver-
gence property of ILC for linear varying discrete-time plants.
Section 4 presents numerical examples, and Section 5 draws
the conclusions.

2. Problem Formulation

Consider the ILC system with network communication
depicted in Figure 1. The discrete time linear plant with actu-
ators and sensors is described by

x
𝑖 (𝑡+1) = A (𝑡) x𝑖 (𝑡)+B (u𝑖 (𝑡)+w𝑖 (𝑡))

𝑡∈{0, 1, 2, . . . , 𝑇} ,

y
𝑖 (𝑡) = Cx

𝑖 (𝑡) + v
𝑖 (𝑡) ,

(1)

where 𝑖 ∈ Z
+
denotes the iteration index; 𝑇 ∈ Z

+
is a given

finite time; x
𝑖
(𝑡) ∈ R𝑛, u

𝑖
(𝑡) ∈ R𝑞, and y

𝑖
(𝑡) ∈ R𝑚 are state,

control, and output, respectively; A(𝑡) ∈ R𝑛×𝑛 is unknown
matrix, while B ∈ R𝑛×𝑞 and C ∈ R𝑚×𝑛 are known; w

𝑖
(𝑡) ∈ R𝑞

and v
𝑖
(𝑡) ∈ R𝑚 are random noises with E[w

𝑖
(𝑡)] = 0 and

E[v
𝑖
(𝑡)] = 0; for all 𝑖 ∈ Z

+
, the initial state x

𝑖
(0) is a random

variable of E[x
𝑖
(0)] = x

0
with a fixed point x

0
∈ R𝑛. Assume

that CB has full-column rank. The discrete time controller
consists of a ILC algorithm and amemory.The controller and
the actuators are connected via a communication network
through which the controller transmits data to the actuators,
while the controller is directly connected to the sensors. The

plant and the controller are assumed to be time driven and
synchronized.

At each 𝑡 ∈ {0, . . . , 𝑇} of the 𝑖th iteration stage, the con-
troller output û

𝑖
(𝑡) is computed, the controller transmits û

𝑖
(𝑡)

to the actuators through the network. The transmission may
succeed or fail. For a successful transmission, it is assumed
that the transmission delay through the network is negligible.
With the negligible delay, the actuators can employ u

𝑖
(𝑡) =

û
𝑖
(𝑡), when û

𝑖
(𝑡) is transmitted successfully. Of course, when

the transmission fails, the actuators receive no û
𝑖
(𝑡) and have

to employ u
𝑖
(𝑡) = u

𝑖
(𝑡 − 1) (this paper prescribes u

𝑖
(−1) = 0).

Overall, the scheme of actuators is

u
𝑖 (𝑡) = 𝛾𝑖 (𝑡) û𝑖 (𝑡) + (1 − 𝛾𝑖 (𝑡)) u𝑖 (𝑡 − 1) , (2)

where

𝛾
𝑖 (𝑡) = {

1, if the transmission of û
𝑖 (𝑡) succeeds,

0, if the transmission of û
𝑖 (𝑡) fails.

(3)

Specially, this paper assumes that, for all 𝑖 ∈ Z
+
, for all

𝑡 ∈ {0, . . . , 𝑇}, 𝛾
𝑖
(𝑡) is a random variable of E[𝛾

𝑖
(𝑡)] =

𝛾 with a constant 𝛾 ∈ (0, 1) as well as that 𝛾
𝑖
(𝑡
1
) and

𝛾
𝑗
(𝑡
2
) are independent either when 𝑖 ̸= 𝑗 or when 𝑡

1
̸= 𝑡
2
. In

addition, TCP-like protocol is assumed, in which there is an
acknowledgment for a successful transmission, and hence the
controller has indicators of whether the current controller
output is received or not by the actuators.

Assumption 1. Given an output reference trajectory y
𝑑
(𝑡),

which is realizable; that is, there exists a unique desired con-
trol input u

𝑑
(𝑡) ∈ R𝑞 such that

x
𝑑 (𝑡 + 1) = A (𝑡) x𝑑 (𝑡) + Bu

𝑑 (𝑡)

y
𝑑 (𝑡) = Cx

𝑑 (𝑡) ,
x
𝑑 (0) = x

0
. (4)

The purpose of this paper is to design an iterative learning
control law for the above plant with network communication
such that y

𝑖
(𝑡) tracks y

𝑑
(𝑡) as closely as possible when 𝑖 is large

enough.

3. ILC Algorithms and Convergence Analysis

Denote e
𝑖
(𝑡) ≜ y

𝑑
(𝑡) − y

𝑖
(𝑡). The control law is a D-type ILC

with average operator that employs updating mechanism:

û
𝑖+1 (𝑡) =

1

𝑖

𝑖

∑
𝑗=1

u
𝑗 (𝑡) +

𝑖 + 1

𝑖
L
𝑖

∑
𝑗=1

e
𝑗 (𝑡 + 1)

= A [u
𝑖 (𝑡)] + (𝑖 + 1) LA [e𝑖 (𝑡 + 1)] ,

(5)

where the gain matrix L ∈ R𝑞×𝑚. From (2) and (5), the hold-
input scheme with average ILC is expressed as

u
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) û𝑖+1 (𝑡) + (1 − 𝛾𝑖+1 (𝑡)) u𝑖+1 (𝑡 − 1)

= 𝛾
𝑖+1 (𝑡) (A [u𝑖 (𝑡)] + (𝑖 + 1) LA [e𝑖 (𝑡 + 1)])

+ (1 − 𝛾
𝑖+1 (𝑡)) u𝑖+1 (𝑡 − 1) .

(6)
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Figure 1: The schematic diagram of the networked control system.

Define the input and state errors

Δu
𝑖+1 (𝑡) ≜ u

𝑑 (𝑡) − u
𝑖+1 (𝑡) ,

Δx
𝑖+1 (𝑡) ≜ x

𝑑 (𝑡) − x
𝑖+1 (𝑡) .

(7)

And subtracting u
𝑑
(𝑡) from both sides of (6) yields

Δu
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) (A [Δu𝑖 (𝑡)] − (𝑖 + 1) LA [e𝑖 (𝑡 + 1)])

+ (1 − 𝛾
𝑖+1 (𝑡)) (Δu𝑖+1 (𝑡 − 1) + 𝛿 (𝑡)) ,

(8)

where (this paper prescribes u
𝑑
(−1) = 0 and hence 𝛿 (0) =

u
𝑑
(0)) 𝛿 (𝑡) ≜ u

𝑑
(𝑡) − u

𝑑
(𝑡 − 1). Noticing that 𝛾

𝑖+1
(𝑡) is

independent ofA[Δu
𝑖
(𝑡)],A[e

𝑖
(𝑡 + 1)] and Δu

𝑖+1
(𝑡 − 1) and

taking expectation on both sides of (8), we have

E [Δu
𝑖+1 (𝑡)]

= 𝛾 (E [A [Δu
𝑖 (𝑡)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡 + 1)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (𝑡 − 1)] + 𝛿 (𝑡)) .

(9)

Expanding expression (9) from E[Δu
𝑖+1
(𝑡 − 1)] to

E[Δu
𝑖+1
(0)], we have

E [Δu
𝑖+1 (𝑡 − 1)]

= 𝛾 (E [A [Δu
𝑖 (𝑡 − 1)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (𝑡 − 2)] + 𝛿 (𝑡 − 1)) ,

E [Δu
𝑖+1 (𝑡 − 2)]

= 𝛾 (E [A [Δu
𝑖 (𝑡 − 2)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡 − 1)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (𝑡 − 3)] + 𝛿 (𝑡 − 2))

...

E [Δu
𝑖+1 (0)]

= 𝛾 (E [A [Δu
𝑖 (0)]] − (𝑖 + 1) LE [A [e𝑖 (1)]])

+ (1 − 𝛾) (E [Δu
𝑖+1 (−1)] + 𝛿 (0))

= 𝛾 (E [A [Δu
𝑖 (0)]] − (𝑖 + 1) LE [A [e𝑖 (1)]])

+ (1 − 𝛾) 𝛿 (0) .

(10)

The above expression can be arranged later below (this paper
prescribes ∑𝑘2

𝑘=𝑘
1

= 0 when 𝑘
2
< 𝑘
1
)

E [Δu
𝑖+1 (𝑡 − 1)] =

𝑡−1

∑
𝑘=0

𝛾(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘 − 1)]]

− (𝑖 + 1) L
𝑡−1

∑
𝑘=0

𝛾(1 − 𝛾)
𝑘
E [A [e

𝑖 (𝑡 − 𝑘)]]

+

𝑡−1

∑
𝑘=0

(1 − 𝛾)
𝑘+1
𝛿 (𝑡 − 𝑘 − 1) .

(11)

From (1) and (4), we have

Δx
𝑖 (𝑡 + 1) = A (𝑡) Δx𝑖 (𝑡) + B (Δu

𝑖 (𝑡) − w
𝑖 (𝑡))

e
𝑖 (𝑡) = CΔx

𝑖 (𝑡) − k
𝑖 (𝑡) .

(12)



4 Journal of Applied Mathematics

Taking expectation on both sides of (12) and expanding
expression from E[Δx

𝑖
(𝑡 + 1)] to E[Δx

𝑖
(1)], we obtain

E [Δx
𝑖 (𝑡 + 1)] = A (𝑡)E [Δx𝑖 (𝑡)] + BE [Δu

𝑖 (𝑡)] ,

E [Δx
𝑖 (𝑡)] = A (𝑡 − 1)E [Δx𝑖 (𝑡 − 1)]

+ BE [Δu
𝑖 (𝑡 − 1)] ,

...

E [Δx
𝑖 (1)] = A (0)E [Δx𝑖 (0)] + BE [Δu

𝑖 (0)] .

(13)

The above expression can be arranged later (this paper pre-
scribes∏𝜏2

𝜏=𝜏
1

= I when 𝜏
2
< 𝜏
1
)

E [Δx
𝑖 (𝑡 + 1)] =

𝑡

∑
𝜏=0

𝑡

∏
]=𝜏+1

A (])BE [Δu𝑖 (𝜏)]

E [A [e
𝑖 (𝑡 + 1)]] = CE [A [Δx

𝑖 (𝑡 + 1)]]

= C
𝑡

∑
𝜏=0

𝑡

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] .

(14)

For any 𝑎 > 1 and any 𝜆 > 1, denote

E [A [Δu𝑖]]
(𝜆,𝑎) ≜ max

𝑡∈{0,1,...,𝑇}

𝑎
−𝜆𝑡E [A [Δu𝑖 (𝑡)]]

2,

(15)

E [A [e𝑖]]
(𝜆,𝑎) ≜ max

𝑡∈{0,1,...,𝑇}

𝑎
−𝜆𝑡E [A [e𝑖 (𝑡)]]

2. (16)

Lemma 2. For all 𝑎 > 1, for all 𝜆 > 1, and for all 𝑖 ∈ Z
+
,

𝛾 max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘
𝑡−𝑘−1

∑
𝜏=0

𝑎
𝑡−𝑘−𝜏E [A [Δu𝑖 (𝜏)]]

2

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(17)

Proof. From (17), we have

𝛾 max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑
𝜏=0

𝑎
𝑡−𝑘−𝜏E [A [Δu𝑖 (𝜏)]]

2

≤ 𝛾 max
𝑡∈{0,...,𝑇}

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑
𝜏=0

𝑎
−𝜆𝜏E [A [Δu𝑖 (𝜏)]]

2𝑎
−(𝜆−1)𝑡

𝑎
(𝜆−1)𝜏

≤ 𝛾 max
𝑡∈{0,...,𝑇}

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘E [A [Δu𝑖]]

(𝜆,𝑎)

×

𝑡−𝑘−1

∑
𝜏=0

𝑎
−(𝜆−1)𝑡

𝑎
(𝜆−1)𝜏

≤
E [A [Δu𝑖]]

(𝜆,𝑎) max
𝑡∈{0,...,𝑇}

𝛾

×

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘 𝑎
−(𝜆−1)𝑘 − 𝑎−(𝜆−1)𝑡

𝑎𝜆−1 − 1

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
max
𝑡∈{0,...,𝑇}

𝛾
1 − (1 − 𝛾)

𝑡+1

1 − (1 − 𝛾)

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(18)

Theorem 3. For the system with network communication
described in Section 2 and the iterative learning controller (5),
suppose

𝜌 ≜
I − 𝛾LCB

 < 1. (19)

Then for all A
0
, . . . ,A

𝑇
∈ R𝑛×𝑛, for all 𝜖 > 0, there exist 𝑎 > 1

and 𝜆 > 1 such that

lim
𝑖→∞

E [e𝑖]
(𝜆,𝑎) < 𝜖. (20)

Proof. From definition of average operator, note the relation

A [Δu
𝑖+1 (𝑡)] =

1

𝑖 + 1
(Δu
𝑖+1 (𝑡) +

𝑖

∑
𝑗=1

Δu
𝑗 (𝑡))

=
1

𝑖 + 1
(Δu
𝑖+1 (𝑡) + 𝑖A [Δu𝑖 (𝑡)]) .

(21)

Applying the ensemble operatorE[⋅] to both sides of (21)
and substituting the relationship (8), we can obtain

E [A [Δu
𝑖+1 (𝑡)]]

=
1

𝑖 + 1
E [Δu

𝑖+1 (𝑡)] +
𝑖

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]]

=
𝛾

𝑖 + 1
(E [A [Δu

𝑖 (𝑡)]] − (𝑖 + 1) LE [A [e𝑖 (𝑡 + 1)]])

+
1 − 𝛾

𝑖 + 1
(E [Δu

𝑖+1 (𝑡 − 1)] + 𝛿 (𝑡))

+
𝑖

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] .

(22)
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Substituting (11) into (22) leads to the following relationship:

E [A [Δu
𝑖+1 (𝑡)]]

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] − 𝛾LE [A [e𝑖 (𝑡 + 1)]]

+
𝛾

𝑖 + 1

𝑡−1

∑
𝑘=0

(1 − 𝛾)
𝑘+1

E [A [Δu
𝑖 (𝑡 − 𝑘 − 1)]]

− 𝛾L
𝑡−1

∑
𝑘=0

(1 − 𝛾)
𝑘+1

E [A [e
𝑖 (𝑡 − 𝑘)]]

+
1 − 𝛾

𝑖 + 1
(

𝑡−1

∑
𝑘=0

(1 − 𝛾)
𝑘+1
𝛿 (𝑡 − 𝑘 − 1) + 𝛿 (𝑡))

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡−1

∑
𝑘=0

(1 − 𝛾)
𝑘+1

E [A [Δu
𝑖 (𝑡 − 𝑘 − 1)]]

− 𝛾L
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘
E [A [e

𝑖 (𝑡 − 𝑘 + 1)]]

+
1

𝑖 + 1

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘+1
𝛿 (𝑡 − 𝑘) .

(23)

Now let us handle the third term on the right hand side
of (23); we will express E[A[e

𝑖
(𝑡 − 𝑘 + 1)]] with E[A[u

𝑖
]].

Substituting the state error dynamics (14) into (23) leads to
the following relationship:

E [A [Δu
𝑖+1 (𝑡)]]

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡−1

∑
𝑘=0

(1 − 𝛾)
𝑘+1

E [A [Δu
𝑖 (𝑡 − 𝑘 − 1)]]

− 𝛾LC
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘

∑
𝜏=0

𝑡−𝑘

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] + 𝜇𝑖 (𝑡)

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡

∑
𝑘=1

(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LC
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑
𝜏=0

𝑡−𝑘

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]]

− 𝛾LC
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘BE [A [Δu

𝑖 (𝑡 − 𝑘)]] + 𝜇𝑖 (𝑡) ,

(24)

where 𝜇
𝑖
(𝑡) ≜ (1/(𝑖 + 1))∑

𝑡

𝑘=0
(1 − 𝛾)

𝑘+1
𝛿(𝑡 − 𝑘).

Next, combining analogous terms on the right hand of
(22), we obtain

E [A [Δu
𝑖+1 (𝑡)]]

=
𝑖 + 𝛾

𝑖 + 1
E [A [Δu

𝑖 (𝑡)]] +
𝛾

𝑖 + 1

×

𝑡

∑
𝑘=1

(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LC
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑
𝜏=0

𝑡−𝑘

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]]

− 𝛾LC
𝑡

∑
𝑘=1

(1 − 𝛾)
𝑘BE [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LCBE [A [Δu
𝑖 (𝑡)]] + 𝜇𝑖 (𝑡)

= (
𝑖 + 𝛾

𝑖 + 1
I − 𝛾LCB)E [A [Δu

𝑖 (𝑡)]]

+ (
𝛾

𝑖 + 1
I − 𝛾LCB)

𝑡

∑
𝑘=1

(1 − 𝛾)
𝑘
E [A [Δu

𝑖 (𝑡 − 𝑘)]]

− 𝛾LC
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑
𝜏=0

𝑡−𝑘

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] + 𝜇𝑖 (𝑡) .

(25)

The relationship (25) can be rewritten as follows:

E [A [Δu
𝑖+1 (𝑡)]]

= (
𝑖 + 𝛾

𝑖 + 1
I − 𝛾LCB)E [A [Δu

𝑖 (𝑡)]]

+ (
𝛾

𝑖 + 1
I − 𝛾LCB)

𝑡−1

∑
𝜏=0

(1 − 𝛾)
𝑡−𝜏

E [A [Δu
𝑖 (𝜏)]]
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− 𝛾LC
𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘

×

𝑡−𝑘−1

∑
𝜏=0

𝑡−𝑘

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] + 𝜇𝑖 (𝑡) .

(26)

To simplify expression of ((𝑖+𝛾)/(𝑖+1))I−𝛾LCB, (𝛾/(𝑖+1))I−
𝛾LCB, and 𝛾LC∑𝑡

𝑘=0
(1−𝛾)

𝑘, we choose 𝑎 > 1 and 𝜆 > 1 such
that

𝑎 > ‖A (])‖ ∀] ∈ {0, . . . , 𝑇} , (27)

𝛾 ‖LCB‖ + 𝛾 + ‖LC‖ ‖B‖
𝑎𝜆−1 − 1

<
1 − 𝜌

4
, (28)

‖C‖ ‖B‖ 1

𝑎𝜆−1 − 1

2𝛼

1 − 𝜌
< 𝜖, (29)

where

𝛼 ≜ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

2

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘+1
‖𝛿 (𝑡 − 𝑘)‖2

≥ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡𝜇𝑖 (𝑡)

2.

(30)

Taking 𝜆-norm on both sides of (26), we obtain

E [A [Δu𝑖+1]]
(𝜆,𝑎)

≤

I − 𝛾LCB − 1 − 𝛾

𝑖 + 1
I


E [A [Δu𝑖]]
(𝜆,𝑎)

+ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡𝜇𝑖 (𝑡)

2

+


𝛾

𝑖 + 1
I − 𝛾LCB


max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

×

𝑡−1

∑
𝜏=0

(1 − 𝛾)
𝑡−𝜏E [A [Δu𝑖 (𝜏)]]

2

+ 𝛾 ‖LC‖ ‖B‖ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

×

𝑡

∑
𝑘=0

(1 − 𝛾)
𝑘
𝑡−𝑘−1

∑
𝜏=0

𝑎
𝑡−𝑘−𝜏E [A [Δu𝑖 (𝜏)]]

2.

(31)

Using Lemma 2, it can be proved that, for all, 𝑎 > 1, for
all 𝜆 > 1, and for all 𝑖 ∈ Z

+
,

max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡−1

∑
𝜏=0

(1 − 𝛾)
𝑡−𝜏E [A [Δu𝑖 (𝜏)]]

2

≤

E [A [Δu𝑖]]
(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(32)

Combining Lemma 2, (31) and (32) yields
E [A [Δu𝑖+1]]

(𝜆,𝑎)

≤ (𝜌 +
1 − 𝛾

𝑖 + 1
+
𝛾 ‖LCB‖ + 𝛾 + ‖LC‖ ‖B‖

𝑎𝜆−1 − 1
)

×
E [A [Δu𝑖 (𝑡)]]

(𝜆,𝑎) + 𝛼.

(33)

There exists𝑀 ∈ Z
+
such that (1−𝛾)/(𝑖+1) < (1−𝜌)/4when

𝑖 ≥ 𝑀. Now for 𝑖 > 𝑀, (28) and (33) imply that

E [A [Δu𝑖+1]]
(𝜆,𝑎) ≤

1 + 𝜌

2

E [A [Δu𝑖]]
(𝜆,𝑎) + 𝛼,

E [A [Δu𝑖+1]]
(𝜆,𝑎)

≤ (
1 + 𝜌

2
)
𝑖+1−𝑀

E [A [Δu𝑀]]
(𝜆,𝑎)

+

𝑖−𝑀

∑
𝑗=0

(
1 + 𝜌

2
)
𝑗

𝛼

≤ (
1 + 𝜌

2
)
𝑖+1−𝑀

E [A [Δu𝑀]]
(𝜆,𝑎)

+
1 − ((1 + 𝜌) /2)

𝑖+1−𝑀

1 − ((1 + 𝜌) /2)
𝛼.

(34)

Consequently, we obtain

lim
𝑖→∞

E [A [Δu𝑖+1]]
(𝜆,𝑎) ≤

2𝛼

1 − 𝜌
. (35)

According to the relationship (14) between the input error
and output error, we have

E [A [e
𝑖 (𝑡)]] = C

𝑡−1

∑
𝜏=0

𝑡−1

∏
]=𝜏+1

A (])BE [A [Δu𝑖 (𝜏)]] . (36)

Similar to the proof of Lemma 2, one can prove that

max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡E [A [e𝑖 (𝑡)]]

2

≤ ‖C‖ ‖B‖ max
𝑡∈{0,...,𝑇}

𝑎
−𝜆𝑡

𝑡−1

∑
𝜏=0

𝑎
𝑡−1−𝜏E [A [Δu𝑖]]

2

≤ ‖C‖ ‖B‖
E [A [Δu𝑖]]

(𝜆,𝑎)

𝑎𝜆−1 − 1
.

(37)

Finally, from (29), (35), and (37), we can obtain

lim
𝑖→∞

E [A [e𝑖+1]]
(𝜆,𝑎) ≤ ‖C‖ ‖B‖

2𝛼

1 − 𝜌

1

𝑎𝜆−1 − 1
< 𝜖

(38)

because lambda can be chosen arbitrarily large in (38).
This completes the proof.
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Figure 2: The max tracking error versus iteration with 5% packet
dropout.

Remark 4. In this paper, we consider D-type iterative learn-
ing control with average operator, and the result obtained can
be extended to P-type iterative learning control with average
operator.

4. Numerical Examples

In this simulation test, let us consider system (1) andmatrices
given by

A (𝑡) = [
0 1

−1 − 10
−3𝑡 −2 − 10−3𝑡

] ,

B = [0
1
] , C = [1 1] .

(39)

The random noises w
𝑖
(𝑡) and v

𝑖
(𝑡) have uniform distribution

on the intervals [−0.05, 0.05] and [−0.01, 0.01], respectively.
In this control problem, the desired output trajectory for
𝑡 ∈ {0, 1, . . . , 50} is given to be y

𝑑
(𝑡) = sin(2𝜋𝑡/50), and the

initial states 𝑥
1𝑖
(0) and 𝑥

2𝑖
(0) have uniform distribution on

the intervals [−0.01, 0.01] and [−0.02, 0.02], respectively. The
fixed time interval 𝑇 is 50. The control profile of the first
iteration is 𝑢

1
(𝑡) = 0. Random packet dropout in controller-

actuator channel is subject to Bernoulli distribution of
expected value 𝛾 (1 means transmission success while 0
means transmission failure).

For expected value 𝛾 = 0.95, we compare our algorithm
with the other 2 algorithms.

Algorithm 1 (classic ILC). The control signal is constructed as

𝑢
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) (𝑢𝑖 (𝑡) + L𝑒

𝑖 (𝑡 + 1))

+ (1 − 𝛾
𝑖+1 (𝑡)) 𝑢𝑖+1 (𝑡 − 1)

(40)

with L = 0.2 satisfying ‖ 1 − 𝛾LCB ‖= 0.81 < 1.
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Figure 3:Themathematical expectation of the tracking error versus
iteration with 5% packet dropout.

Algorithm 2 (zero-input scheme with average ILC). The con-
trol signal is constructed as

𝑢
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) (A [𝑢𝑖 (𝑡)] + (𝑖 + 1) 𝐿A [𝑒𝑖 (𝑡 + 1)]) (41)

with 𝐿 = 0.2.

Algorithm 3.Now, we consider the proposed algorithm. From
(2) and (5), the control signal 𝑢

𝑖+1
(𝑡) is constructed as

𝑢
𝑖+1 (𝑡) = 𝛾𝑖+1 (𝑡) �̂�𝑖+1 (𝑡) + (1 − 𝛾𝑖+1 (𝑡)) 𝑢𝑖+1 (𝑡 − 1)

= 𝛾
𝑖+1 (𝑡) (A [𝑢𝑖 (𝑡)] + (𝑖 + 1) LA [𝑒𝑖 (𝑡 + 1)])

+ (1 − 𝛾
𝑖+1 (𝑡)) 𝑢𝑖+1 (𝑡 − 1) ,

(42)

where the learning gain 𝐿 = 0.2 and expected value 𝛾 = 0.95.

As shown in Figure 2, the tracking error profiles for
the proposed algorithm are much lower than the other two
algorithms with 5% packet dropout. In Figure 3, the math-
ematical expectation of the tracking error versus iterations
is shown, and the proposed hold-input scheme with average
ILC achieves the convergent performance.

5. Conclusion

In this work we address a remote control system problem
with random packet dropout in controller-actuator channel.
The hold-input scheme with average ILC is applied to handle
this remote control problem with repeated tracking tasks.
Through analysis we illustrate the desired convergence prop-
erty of the hold-input scheme with average ILC. In our future
work, we will also explore the extension to more generic
stochastic process such as Markov chain.
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Nomenclature

R: The set of all real numbers
Z
+
: The set of all positive integers

A[k
𝑚
]: The average operatorA[k

𝑚
] = (1/𝑚)∑

𝑚

𝑖=1
k
𝑖

E[⋅]: The expected value of a random variable
P[⋅]: The probability of an event
‖ ⋅ ‖: The maximal singular value of a matrix
‖ ⋅ ‖
2
: The Euclidean norm of a vector

I: Identity matrix of appropriate dimensions
0: Zero matrix of appropriate dimensions.
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