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We introduce a general iterationmethod for a finite family of generalized asymptotically quasi-nonexpansive mappings.The results
presented in the paper extend and improve some recent results in the works by Shahzad and Udomene (2006); L. Qihou (2001);
Khan et al. (2008).

1. Introduction and Preliminaries

Let 𝐶 be a nonempty subset of a real Banach space 𝐸 and 𝑇 a
self-mapping of 𝐶. The set of fixed points of 𝑇 is denoted by
𝐹(𝑇) and we assume that 𝐹(𝑇) ̸= 0. The mapping 𝑇 is said to
be

(i) contractive mapping if there exists a constant 𝛼 in
(0, 1) such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝛼‖𝑥 − 𝑦‖, for all
𝑥, 𝑦 ∈ 𝐶;

(ii) asymptotically nonexpansivemapping if there exists a
sequence {𝑢

𝑛
} in [0,∞)with lim

𝑛→∞
𝑢
𝑛
= 0 such that

‖𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦‖ ≤ (1 + 𝑢
𝑛
)‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶 and

𝑛 = 1, 2, 3, . . .;
(iii) asymptotically quasi-nonexpansive if there exists a

sequence {𝑢
𝑛
} in [0,∞)with lim

𝑛→∞
𝑢
𝑛
= 0 such that

‖𝑇
𝑛

𝑥−𝑝‖ ≤ (1+𝑢
𝑛
)‖𝑥−𝑝‖, for all𝑥 ∈ 𝐶,𝑝 ∈ 𝐹(𝑇) and

𝑛 = 1, 2, 3, . . .;
(iv) generalized asymptotically quasi-nonexpansive [1] if

there exist two sequences {𝑢
𝑛
}, {ℎ
𝑛
} in [0,∞) with

lim
𝑛→∞

𝑢
𝑛
= 0 and lim

𝑛→∞
ℎ
𝑛
= 0 such that

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 + 𝑢

𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩 + ℎ
𝑛
, ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ,

(1)

where 𝑛 = 1, 2, 3, . . .;
(v) uniformly 𝐿-Lipschitzian if there exists a constant 𝐿 >

0 such that ‖𝑇𝑛𝑥−𝑇𝑛𝑦‖ ≤ 𝐿‖𝑥−𝑦‖, for all𝑥, 𝑦 ∈ 𝐶 and
𝑛 = 1, 2, 3, . . .;

(vi) (𝐿−𝛾)uniform𝐿-Lipschitz if there are constants𝐿 > 0

and 𝛾 > 0 such that ‖𝑇𝑛𝑥 − 𝑇
𝑛

𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖
𝛾, for all

𝑥, 𝑦 ∈ 𝐶 and 𝑛 = 1, 2, 3, . . .;

(vii) semicompact if for a sequence {𝑥
𝑛
} in 𝐶 with

lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0, there exists a subsequence

{𝑥
𝑛𝑖
} of {𝑥

𝑛
} such that 𝑥

𝑛𝑖
→ 𝑝 ∈ 𝐶.

In (1), if ℎ
𝑛
= 0 for all 𝑛 ≥ 1, then 𝑇 becomes an asymp-

totically quasi-nonexpansive mapping; if 𝑢
𝑛
= 0 and ℎ

𝑛
= 0

for all 𝑛 ≥ 1, then 𝑇 becomes a quasi-nonexpansive mapping.
It is known that an asymptotically nonexpansive mapping is
an asymptotically quasi-nonexpansive and a uniformly 𝐿-
Lipschitzian mapping is (𝐿 − 1) uniform 𝐿-Lipschitz.

The mapping 𝑇 : 𝐶 → 𝐸 is said to be demiclosed at 0 if
for each sequence {𝑥

𝑛
} ⊂ 𝐶 convergingweakly to𝑥

0
and{𝑇𝑥

𝑛
}

converging strongly to 0, we have 𝑇𝑥
0
= 0.

A Banach space 𝐸 is said to satisfy Opial’s property if for
each 𝑥 ∈ 𝐸 and each sequence {𝑥

𝑛
} weakly convergent to 𝑥,

the following condition holds for all 𝑥 ̸= 𝑦:

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 . (2)

Let𝐶 be a nonempty closed convex subset of a real Banach
space 𝐸 and {𝑇

𝑖
: 𝑖 = 1, 2, . . . 𝑘} a finite family of asymptot-

ically nonexpansive mappings of 𝐶 into itself. Suppose that
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𝛼
𝑖𝑛

∈ [0, 1], 𝑛 = 1, 2, 3, . . ., and 𝑖 = 1, 2, . . . 𝑘.Thenwe consider
the following mapping of 𝐶 into itself:

𝑈
1𝑛

= (1 − 𝛼
1𝑛
) 𝐼 + 𝛼

1𝑛
𝑇
𝑛

1
𝑈
0𝑛
,

𝑈
2𝑛

= (1 − 𝛼
2𝑛
) 𝐼 + 𝛼

2𝑛
𝑇
𝑛

2
𝑈
1𝑛
,

...

𝑈
(𝑘−1)𝑛

= (1 − 𝛼
(𝑘−1)𝑛

) 𝐼 + 𝛼
(𝑘−1)𝑛

𝑇
𝑛

𝑘−1
𝑈
(𝑘−2)𝑛

,

𝑊
𝑛
= 𝑈
𝑘𝑛

= (1 − 𝛼
𝑘𝑛
) 𝐼 + 𝛼

𝑘𝑛
𝑇
𝑛

𝑘
𝑈
(𝑘−1)𝑛

,

(3)

where 𝑈
0𝑛

= 𝐼 (identity mapping). Such a mapping 𝑊
𝑛
is

called the modified 𝑊-mapping generated by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘

and 𝛼
1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
(see [2, 3]).

In the sequel, we assume that 𝐹 = ⋂
𝑘

𝑖=1
𝐹(𝑇
𝑖
).

In 2008, Khan et al. [4] introduced the following iteration
process for a family of asymptotically quasi-nonexpansive
mappings, for an arbitrary 𝑥

1
∈ 𝐶:

𝑦
1𝑛

= (1 − 𝛼
1𝑛
) 𝑥
𝑛
+ 𝛼
1𝑛
𝑇
𝑛

1
𝑦
0𝑛
,

𝑦
2𝑛

= (1 − 𝛼
2𝑛
) 𝑥
𝑛
+ 𝛼
2𝑛
𝑇
𝑛

2
𝑦
1𝑛
,

...

𝑦
(𝑘−1)𝑛

= (1 − 𝛼
(𝑘−1)𝑛

) 𝑥
𝑛
+ 𝛼
(𝑘−1)𝑛

𝑇
𝑛

𝑘−1
𝑦
(𝑘−2)𝑛

,

𝑥
𝑛+1

= (1 − 𝛼
𝑘𝑛
) 𝑥
𝑛
+ 𝛼
𝑘𝑛
𝑇
𝑛

𝑘
𝑦
(𝑘−1)𝑛

,

(4)

where 𝑦
0𝑛

= 𝑥
𝑛
, 𝛼
𝑖𝑛

∈ [0, 1], 𝑖 = 1, 2, . . . , 𝑘, 𝑛 = 1, 2, . . . and
proved that the iterative sequence {𝑥

𝑛
} defined by (4) con-

verges strongly to a common fixed point of the family ofmap-
pings if and only if lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹) = 0, where 𝑑(𝑥, 𝐹) =

inf
𝑝∈𝐹

‖𝑥 − 𝑝‖. With the help of (3), we write (4) as

𝑥
𝑛+1

= 𝑊
𝑛
𝑥
𝑛
. (5)

Recently, Chang et al. [5] introduced the following iter-
ation process of asymptotically nonexpansive mappings in
Banach space:

𝑥
𝑛+1

= 𝜆
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝜆

𝑛
) 𝑇
𝑛

𝑦
𝑛
,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑥
𝑛
,

(6)

where {𝜆
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1] and𝑓 is a fixed contractivemapping,

and necessary and sufficient conditions are given for the iter-
ative sequence {𝑥

𝑛
} to converge to the fixed points of 𝑇.

For a family of mappings, it is quite significant to devise
a general iteration scheme which extends the iteration pro-
cesses (4) and (6), simultaneously. Thereby, to achieve this
goal, we introduce a new iteration process for a family ofmap-
pings as follows.

Let𝐶 be a nonempty closed convex subset of a real Banach
space 𝐸, {𝑇

𝑖
: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . , 𝑘} a family of generalized

asymptotically quasi-nonexpansive mappings, and 𝑓 : 𝐶 →

𝐶 a fixed contractivemappingwith contractive coefficient𝛼 ∈

(0, 1). For a given 𝑥
1
∈ 𝐶, the iteration scheme is defined as

follows:

𝑥
𝑛+1

= 𝜆
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝜆

𝑛
)𝑊
𝑛
𝑥
𝑛
, (7)

where {𝜆
𝑛
} ∈ [0, 1] and 𝑊

𝑛
is the modified 𝑊-mapping gen-

erated by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
, and 𝛼

1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
for all positive

integers 𝑛.
The purpose of this paper is to study the convergence pro-

blem of the iterative sequences {𝑥
𝑛
} defined by (7). The ob-

tained results extend the corresponding results in [4–8], and
Lemma 11 partly improves the method of proof of Lemma 3.1
in [4].

In what follows, we need the following useful known
lemmas.

Lemma 1 (see [9]). Let {𝑎
𝑛
}, {𝛿
𝑛
}, and {𝛾

𝑛
} be nonnegative real

sequences satisfying the following condition:

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
, (8)

where ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑

∞

𝑛=1
𝛾
𝑛
< ∞; then lim

𝑛→∞
𝑎
𝑛
exists.

Moreover, if in addition, lim inf
𝑛→∞

𝑎
𝑛

= 0, then
lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma2 (see [4]). Let𝐸 be a uniformly convex Banach space,
0 < 𝑏 ≤ 𝑡

𝑛
≤ 𝑐 < 1 for all 𝑛 ≥ 1, and let {𝑥

𝑛
} and {𝑦

𝑛
} be

sequences in 𝐸. Assume that lim sup
𝑛→∞

‖𝑥
𝑛
‖ ≤ 𝑎,

lim sup
𝑛→∞

‖𝑦
𝑛
‖ ≤ 𝑎, and lim

𝑛→∞
‖𝑡
𝑛
𝑥
𝑛
+(1−𝑡

𝑛
)𝑦
𝑛
‖ = 𝑎 for

some 𝑎 ≥ 0. Then lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

2. Main Results

Lemma 3. Let 𝐶 be a nonempty closed convex subset of a real
Banach space 𝐸 and 𝑇 an asymptotically quasi-nonexpansive
self-mapping of 𝐶 with {𝑢

𝑛
} ⊂ [0,∞) for all 𝑛 ≥ 1. Suppose

𝐹(𝑇) ̸= 𝜙. Then 𝐹(𝑇) is a closed subset in 𝐶.

Proof. Let {𝑧
𝑛
} be an arbitrary sequence of𝐹(𝑇) and 𝑧

𝑛
→ 𝑧
0

as 𝑛 → ∞. Since 𝐶 is closed, we have 𝑧
0
∈ 𝐶. For any 𝜖 > 0,

there exists a natural number𝑁 such that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

0

󵄩󵄩󵄩󵄩 <
𝜖

2 + 𝑢
1

, ∀𝑛 ≥ 𝑁. (9)

Thus, we get
󵄩󵄩󵄩󵄩𝑇𝑧0 − 𝑧

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑇𝑧0 − 𝑧

𝑁

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑁 − 𝑧

0

󵄩󵄩󵄩󵄩

≤ (1 + 𝑢
1
)
󵄩󵄩󵄩󵄩𝑧𝑁 − 𝑧

0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑁 − 𝑧

0

󵄩󵄩󵄩󵄩

= (2 + 𝑢
1
)
󵄩󵄩󵄩󵄩𝑧𝑁 − 𝑧

0

󵄩󵄩󵄩󵄩 < 𝜖.

(10)

Since 𝜖 is arbitrary, it follows that ‖𝑇𝑧
0
−𝑧
0
‖ = 0; that is,𝑇𝑧

0
=

𝑧
0
. Hence 𝑧

0
∈ 𝐹(𝑇) and 𝐹(𝑇) is closed. This completes the

proof.

Lemma 4. Let 𝐶 be a nonempty closed convex subset of a real
Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be 𝑘 generalized

asymptotically quasi-nonexpansive self-mappings of 𝐶 with
{𝑢
𝑖𝑛
}, {ℎ
𝑖𝑛
} ⊂ [0,∞) such that ∑∞

𝑛=1
𝑢
𝑖𝑛

< ∞ and ∑
∞

𝑛=1
ℎ
𝑖𝑛

<

∞ for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘}. Suppose𝐹 ̸= 0 and {𝛼
𝑖𝑛
}
𝑛≥1

⊂ [0, 1]

for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘}. Let 𝑊
𝑛
be the modified 𝑊-map-

ping generated by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
and 𝛼

1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Let the

sequence {𝑥
𝑛
} be defined by (7) and assuming ∑

∞

𝑛=1
𝜆
𝑛
< ∞,

then
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(1) there exist two sequences {]
𝑛
} and {𝜉

𝑛
} in [0,∞) with

∑
∞

𝑛=1
]
𝑛
< ∞,∑

∞

𝑛=1
𝜉
𝑛
< ∞ such that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 + ]

𝑛
)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑛
, ∀𝑝 ∈ 𝐹, 𝑛 ≥ 1;

(11)

(2) there exists a constant𝑀
1
> 0, such that

󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑀

1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑀

1

∞

∑

𝑖=𝑛

𝜉
𝑖
,

∀𝑝 ∈ 𝐹, 𝑛,𝑚 = 1, 2, 3, . . . ,

(12)

where {𝜉
𝑛
} ∈ [0,∞) and Σ

∞

𝑛=1
𝜉
𝑛
< ∞.

Proof. (1) Let ]
𝑛
= max

1≤𝑖≤𝑘
𝑢
𝑖𝑛
, for all 𝑛. Since ∑∞

𝑛=1
𝑢
𝑖𝑛

< ∞

for each 𝑖, we can get ∑∞
𝑛=1

]
𝑛
< ∞. For all 𝑝 ∈ 𝐹, it follows

from (3) that

󵄩󵄩󵄩󵄩𝑈1𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

1𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼
1𝑛

󵄩󵄩󵄩󵄩𝑇
𝑛

1
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
1𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
1𝑛

[(1 + 𝑢
1𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + ℎ
1𝑛
]

≤ (1 + 𝑢
1𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + ℎ
1𝑛

≤ (1 + ]
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + ℎ
1𝑛
.

(13)

Assume that ‖𝑈
𝑗𝑛
𝑥
𝑛
−𝑝‖ ≤ (1+]

𝑛
)
𝑗

‖𝑥
𝑛
−𝑝‖+(1+]

𝑛
)
𝑗−1

∑
𝑗

𝑖=1
ℎ
𝑖𝑛

for some 1 ≤ 𝑗 ≤ 𝑘 − 1. Then

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗+1)𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
(𝑗+1)𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
(𝑗+1)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗+1
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
(𝑗+1)𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
(𝑗+1)𝑛

((1 + 𝑢
(𝑗+1)𝑛

)
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ ℎ
(𝑗+1)𝑛

)

≤ (1 − 𝛼
(𝑗+1)𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼
(𝑗+1)𝑛

ℎ
(𝑗+1)𝑛

+ 𝛼
(𝑗+1)𝑛

(1 + 𝑢
(𝑗+1)𝑛

)

× ((1 + ]
𝑛
)
𝑗 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 + ]
𝑛
)
𝑗−1

𝑗

∑

𝑖=1

ℎ
𝑖𝑛
)

≤ ((1 − 𝛼
(𝑗+1)𝑛

) + 𝛼
(𝑗+1)𝑛

(1 + ]
𝑛
)
𝑗+1

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 + ]
𝑛
)
𝑗

𝑗

∑

𝑖=1

ℎ
𝑖𝑛
+ ℎ
(𝑗+1)𝑛

≤ ((1 − 𝛼
(𝑗+1)𝑛

) (1 + ]
𝑛
)
𝑗+1

+ 𝛼
(𝑗+1)𝑛

(1 + ]
𝑛
)
𝑗+1

)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 + ]
𝑛
)
𝑗

𝑗+1

∑

𝑖=1

ℎ
𝑖𝑛

≤ (1 + ]
𝑛
)
𝑗+1 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 + ]
𝑛
)
𝑗

𝑗+1

∑

𝑖=1

ℎ
𝑖𝑛
.

(14)
Thus, by induction, we have

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
≤ (1 + ]

𝑛
)
𝑗 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 + ]
𝑛
)
𝑗−1

𝑗

∑

𝑖=1

ℎ
𝑖𝑛
,

(15)
for all 𝑗 = 1, 2, . . . , 𝑘. Hence,

󵄩󵄩󵄩󵄩𝑊𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑈𝑘𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 + ]

𝑛
)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 + ]
𝑛
)
𝑘−1

𝑘

∑

𝑖=1

ℎ
𝑖𝑛
.

(16)

By (7) and (16), we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑊𝑛𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 + 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑊𝑛𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜆
𝑛
𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝜆

𝑛
)

× [(1 + ]
𝑛
)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 + ]
𝑛
)
𝑘−1

𝑘

∑

𝑖=1

ℎ
𝑖𝑛
]

≤ (1 + ]
𝑛
)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 − 𝜆
𝑛
) (1 + ]

𝑛
)
𝑘−1

𝑘

∑

𝑖=1

ℎ
𝑖𝑛

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 .

(17)

Since ∑
∞

𝑛=1
]
𝑛

< ∞, {]
𝑛
}
∞

𝑛=1
is bounded. Setting 𝑀 =

max{sup
𝑛
(1 + ]

𝑛
)
𝑘−1

, ‖𝑓(𝑝) − 𝑝‖}, we get that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 + ]
𝑛
)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑛
, ∀𝑝 ∈ 𝐹, 𝑛 ≥ 1,

(18)

where 𝜉
𝑛
= 𝑀(∑

𝑘

𝑖=1
ℎ
𝑖𝑛
+𝜆
𝑛
) and∑

∞

𝑛=1
𝜉
𝑛
< ∞.This completes

the proof of (1).
(2) If 𝑡 ≥ 0, then 1+𝑡 ≤ 𝑒

𝑡 and consequently, (1+𝑡)
𝑘

≤ 𝑒
𝑘𝑡,

𝑘 = 1, 2, . . .. Thus, from part (1), we get
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 + ]
𝑛+𝑚−1

)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛+𝑚−1 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑛+𝑚−1

≤ exp {𝑘]
𝑛+𝑚−1

}
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚−1 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑛+𝑚−1

≤ exp {𝑘]
𝑛+𝑚−1

}

× (exp {𝑘]
𝑛+𝑚−2

}
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚−2 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑛+𝑚−2

)

+ 𝜉
𝑛+𝑚−1
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≤ exp {𝑘 (]
𝑛+𝑚−1

+ ]
𝑛+𝑚−2

)}
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚−2 − 𝑝

󵄩󵄩󵄩󵄩

+ exp {𝑘]
𝑛+𝑚−1

} (𝜉
𝑛+𝑚−2

+ 𝜉
𝑛+𝑚−1

)

...

≤ exp{𝑘

𝑛+𝑚−1

∑

𝑖=𝑛

]
𝑖
}

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ exp{𝑘

𝑛+𝑚−1

∑

𝑖=𝑛+1

]
𝑖
}

𝑛+𝑚−1

∑

𝑖=𝑛

𝜉
𝑖

≤ 𝑀
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑀

1

∞

∑

𝑖=𝑛

𝜉
𝑖
,

(19)

for any positive integers 𝑚, 𝑛, where 𝑀
1

= exp{𝑘∑
∞

𝑖=1
]
𝑖
},

∑
∞

𝑖=1
𝜉
𝑖
< ∞. This completes the proof of (2).

Remark 5. Lemma 4 generalizes Lemma 2.1 in [4].

Theorem6. Let𝐶 be a nonempty closed convex subset of a real
Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be 𝑘 generalized

asymptotically quasi-nonexpansive self-mappings of 𝐶 with
{𝑢
𝑖𝑛
}, {ℎ
𝑖𝑛
} ⊂ [0,∞) such that ∑∞

𝑛=1
𝑢
𝑖𝑛

< ∞ and ∑
∞

𝑛=1
ℎ
𝑖𝑛

<

∞ for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘}. Let {𝛼
𝑖𝑛
}
𝑛≥1

⊂ [0, 1] for all 𝑖 ∈

{1, 2, 3, . . . , 𝑘} and let𝑊
𝑛
be a modified𝑊-mapping generated

by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
and 𝛼

1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Suppose that 𝐹 ̸= 0 is

closed and ∑
∞

𝑛=1
𝜆
𝑛

< ∞. Starting from arbitrary 𝑥
1

∈ 𝐶,
define the sequence {𝑥

𝑛
} by the recursion (7); then the sequ-

ence {𝑥
𝑛
} converges strongly to 𝑝 ∈ 𝐹 if and only if

lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0.

Proof. We will only prove the sufficiency; the necessity is
obvious. From Lemma 4(1), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 + ]

𝑛
)
𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑛
, (20)

for all 𝑝 ∈ 𝐹 and all 𝑛. Therefore,

𝑑 (𝑥
𝑛+1

, 𝐹) ≤ (1 + ]
𝑛
)
𝑘

𝑑 (𝑥
𝑛
, 𝐹) + 𝜉

𝑛

= (1 +

𝑘

∑

𝑟=1

𝑘 (𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑟 + 1)

𝑟!
]𝑟
𝑛
)

× 𝑑 (𝑥
𝑛
, 𝐹) + 𝜉

𝑛
.

(21)

As ∑∞
𝑛=1

]
𝑛
< ∞, so ∑

𝑘

𝑟=1
(𝑘(𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑟 + 1)/𝑟!)]𝑟

𝑛
< ∞.

By Lemma 1 and lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0, we get that

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0. Next, we prove that {𝑥

𝑛
} is a Cauchy

sequence. From Lemma 4(2), we have

󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑀

1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑀

1

∞

∑

𝑖=𝑛

𝜉
𝑖

∀𝑝 ∈ 𝐹, 𝑛,𝑚 ≥ 1.

(22)

Hence, for all integers𝑚 ≥ 1 and all 𝑝 ∈ 𝐹,
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (𝑀
1
+ 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑀

1

∞

∑

𝑗=𝑛

𝜉
𝑗
.

(23)

Taking infimum over 𝑝 ∈ 𝐹 in (23) gives

󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ (𝑀
1
+ 1) 𝑑 (𝑥

𝑛
, 𝐹) + 𝑀

1

∞

∑

𝑗=𝑛

𝜉
𝑗
. (24)

Now, since lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0 and ∑

∞

𝑗=1
𝜉
𝑗
< ∞, given 𝜖 >

0, there exists an integer 𝑁
1

> 0 such that for all 𝑛 ≥ 𝑁
1
,

𝑑(𝑥
𝑛
, 𝐹) < 𝜖/(2(𝑀

1
+ 2)) and∑

∞

𝑗=𝑛
𝜉
𝑛
< 𝜖/(2(𝑀

1
+ 1)). So for

all integers 𝑛 ≥ 𝑁
1
,𝑚 ≥ 1, we obtain from (24) that

󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 < 𝜖, ∀𝑛 ≥ 𝑁
1
, 𝑚 ≥ 1. (25)

Hence, {𝑥
𝑛
} is a Cauchy sequence in 𝐸. Since 𝐸 is complete,

there exists 𝑞 ∈ 𝐸 such that lim
𝑛→∞

𝑥
𝑛
= 𝑞.Wenow show that

𝑞 ∈ 𝐹. Since 𝑑(𝑥
𝑛
, 𝐹) → 0 and 𝑥

𝑛
→ 𝑞 as 𝑛 → ∞, for each

𝜖 > 0, there exists an integer 𝑁
2
> 0 such that, 𝑑(𝑥

𝑛
, 𝐹) =

inf
𝑝∈𝐹

‖𝑥
𝑛
− 𝑝‖ < 𝜖/3 and ‖𝑥

𝑛
− 𝑞‖ < 𝜖/2 for all 𝑛 ≥ 𝑁

2
. In

particular, we have 𝑑(𝑥
𝑁2

, 𝐹) = inf
𝑝∈𝐹

‖𝑥
𝑁2

−𝑝‖ < 𝜖/3; that is,
there exists a 𝑝 ∈ 𝐹 such that ‖𝑥

𝑁2
− 𝑝‖ < 𝜖/2; hence

󵄩󵄩󵄩󵄩𝑞 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁2

− 𝑞
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁2

− 𝑝
󵄩󵄩󵄩󵄩󵄩
< 𝜖. (26)

Since𝐹 is a closed subset of𝐸, we obtain 𝑞 ∈ 𝐹.This completes
the proof.

Remark 7. Theorem 6 generalizes and extendsTheorem 2.2 of
Khan et al. [4], Theorem 3.1 of Ghosh and Debnath [8],
Theorem 3.2 of Shahzad and Udomene [6], andTheorem 1 of
Qihou [7] together with its Corollaries 1 and 2.

Asymptotically nonexpansive mappings and asymptoti-
cally quasi-nonexpansive mappings are all generalized asym-
ptotically quasi-nonexpansive, by Theorem 6 and Lemma 3,
so we have

Corollary 8. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be 𝑘 asymptoti-

cally quasi-nonexpansive self-mappings of 𝐶 with {𝑢
𝑖𝑛
} ⊂

[0,∞) such that ∑∞
𝑛=1

𝑢
𝑖𝑛

< ∞ for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘}. Let
{𝛼
𝑖𝑛
}
𝑛≥1

⊂ [0, 1] for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘} and let 𝑊
𝑛
be a

modified 𝑊-mapping generated by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
and

𝛼
1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Suppose 𝐹 ̸= 0 and ∑

∞

𝑛=1
𝜆
𝑛

< ∞. Starting
from arbitrary 𝑥

1
∈ 𝐶, define the sequence {𝑥

𝑛
} by the recur-

sion (7). Then the sequence {𝑥
𝑛
} converges strongly to 𝑝 ∈ 𝐹 if

and only if lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0.

Corollary 9. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be 𝑘 asymp-

totically nonexpansive self-mappings of 𝐶 with {𝑢
𝑖𝑛
} ⊂ [0,∞)

such that∑∞
𝑛=1

𝑢
𝑖𝑛

< ∞ for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘}. Let {𝛼
𝑖𝑛
}
𝑛≥1

⊂

[0, 1] for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘} and let 𝑊
𝑛
be a modified

𝑊-mapping generated by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
and 𝛼

1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
.
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Suppose 𝐹 ̸= 0 and ∑
∞

𝑛=1
𝜆
𝑛
< ∞. Starting from arbitrary 𝑥

1
∈

𝐶, define the sequence {𝑥
𝑛
} by the recursion (7). Then the sequ-

ence {𝑥
𝑛
} converges strongly to 𝑝 ∈ 𝐹 if and only if

lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0.

Corollary 10. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be 𝑘 generalized

asymptotically quasi-nonexpansive self-mappings of 𝐶 with
{𝑢
𝑖𝑛
}, {ℎ
𝑖𝑛
} ⊂ [0,∞) such that ∑∞

𝑛=1
𝑢
𝑖𝑛

< ∞ and ∑
∞

𝑛=1
ℎ
𝑖𝑛

<

∞ for all 𝑖 ∈ {1, 2, 3, . . . , 𝑘}. Let {𝛼
𝑖𝑛
}
𝑛≥1

⊂ [0, 1] for all 𝑖 ∈

{1, 2, 3, . . . , 𝑘} and let𝑊
𝑛
be a modified𝑊-mapping generated

by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
and 𝛼

1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Suppose that 𝐹 ̸= 0 is

closed and ∑
∞

𝑛=1
𝜆
𝑛

< ∞. Starting from arbitrary 𝑥
1

∈ 𝐶,
define the sequence {𝑥

𝑛
} by the recursion (7).Then the sequence

{𝑥
𝑛
} converges strongly to 𝑝 ∈ 𝐹 if and only if there exists a

subsequence {𝑥
𝑛𝑗
} of {𝑥

𝑛
} which converges to 𝑝.

3. Results in Uniformly Convex Banach Spaces

Lemma 11. Let𝐶 be a nonempty closed convex subset of a uni-
formly convex Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be

𝑘 (𝐿 − 𝛾) uniform Lipschitz and generalized asymptotically
quasi-nonexpansive self-mappings of 𝐶 with {𝑢

𝑖𝑛
}, {ℎ
𝑖𝑛
} ⊂

[0,∞) such that ∑∞
𝑛=1

𝑢
𝑖𝑛

< ∞ and ∑
∞

𝑛=1
ℎ
𝑖𝑛

< ∞ for all 𝑖 ∈

{1, 2, 3, . . . , 𝑘}. Let 𝛼
𝑖𝑛

∈ [𝛿, 1 − 𝛿] for some 𝛿 ∈ (0, 1/2) and let
𝑊
𝑛
be a modified 𝑊-mapping generated by 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
and

𝛼
1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Suppose 𝐹 = ⋂

𝑘

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and ∑

∞

𝑛=1
𝜆
𝑛

<

∞. Starting from arbitrary 𝑥
1
∈ 𝐶, define the sequence {𝑥

𝑛
} by

the recursion (7). Then lim
𝑛→∞

‖𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛
‖ = 0 for each 𝑗 ∈

{1, 2, 3, . . . 𝑘}.

Proof. Let 𝑝 ∈ 𝐹 and ]
𝑛
= max

1≤𝑖≤𝑘
𝑢
𝑖𝑛
, for all 𝑛. By Lemma 1

and Lemma 4(1), it follows that lim
𝑛→∞

‖𝑥
𝑛
−𝑝‖ exists for all

𝑝 ∈ 𝐹. Assume that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = 𝑐. (27)

From (2) and (27) we obtain that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
≤ 𝑐, ∀1 ≤ 𝑗 ≤ 𝑘. (28)

From (7), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝜆𝑛𝑓 (𝑥
𝑛
) + (1 − 𝜆

𝑛
)𝑊
𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜆
𝑛
𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑘𝑛𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ;

(29)

therefore,

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑈𝑘𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≥ 𝑐. (30)

From (28) and (30) we can obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑈𝑘𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = 𝑐. (31)

Suppose that lim
𝑛→∞

‖𝑈
(𝑗+1)𝑛

𝑥
𝑛
− 𝑝‖ = 𝑐 for some 1 ≤ 𝑗 ≤

𝑘 − 1. Since
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗+1)𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝛼

(𝑗+1)𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
(𝑗+1)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗+1
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
(𝑗+1)𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼
(𝑗+1)𝑛

× [(1 + 𝑢
(𝑗+1)𝑛

)
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ ℎ
(𝑗+1)𝑛

] ,

(32)

so we obtain that

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
≥ 𝑐. (33)

From (28) and (33), we have that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
= 𝑐. (34)

Thus, by induction, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
= 𝑐, (35)

for each 𝑗 = 1, 2, 3, . . . , 𝑘. That is,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(1 − 𝛼

𝑗𝑛
) (𝑥
𝑛
− 𝑝) + 𝛼

𝑗𝑛
(𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩
= 𝑐,

(36)

for each 𝑗 = 1, 2, 3, . . . , 𝑘. From (28), we obtain

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
≤ 𝑐, (37)

for each 𝑗 = 1, 2, 3, . . . , 𝑘. By Lemma 2, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, ∀1 ≤ 𝑗 ≤ 𝑘. (38)

If 𝑗 = 1, from (38), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

1
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (39)

If 𝑗 = 2, 3, . . . , 𝑘, then we have
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑥
𝑛
− 𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑈
(𝑗−1)𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝛾

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

= 𝐿(𝛼
(𝑗−1)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑛

𝑗−1
𝑈
(𝑗−2)𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)
𝛾

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑈
(𝑗−1)𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(40)

Hence,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, ∀1 ≤ 𝑗 ≤ 𝑘. (41)

Note that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝜆𝑛𝑓 (𝑥

𝑛
) + (1 − 𝜆

𝑛
)𝑊
𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝜆
𝑛
(𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩)
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+ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑊𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

= 𝜆
𝑛
(𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩)

+ (1 − 𝜆
𝑛
) 𝛼
𝑘𝑛

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑘
𝑈
(𝑘−1)𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ;

(42)

therefore, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (43)

Now, we observe that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑗
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑗
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑗
𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑗
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

𝛾

+ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

𝑗
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝛾

.

(44)

By (41) and (43), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, (45)

for 𝑗 = 1, 2, 3, . . . , 𝑘. This completes the proof.

Theorem 12. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be

𝑘 (𝐿 − 𝛾) uniform Lipschitz and generalized asymptotically
quasi-nonexpansive self-mappings of 𝐶 with {𝑢

𝑖𝑛
}, {ℎ
𝑖𝑛
} ⊂

[0,∞) such that ∑∞
𝑛=1

𝑢
𝑖𝑛

< ∞ and ∑
∞

𝑛=1
ℎ
𝑖𝑛

< ∞ for all 𝑖 ∈

{1, 2, 3, . . . , 𝑘}. Let 𝛼
𝑖𝑛

∈ [𝛿, 1 − 𝛿] for some 𝛿 ∈ (0, 1/2) and let
𝑊
𝑛
be a modified 𝑊-mapping generated by 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
and

𝛼
1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Suppose 𝐹 = ⋂

𝑘

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0, ∑∞

𝑛=1
𝜆
𝑛

< ∞

and there exists one member in {𝑇
𝑚

𝑖
: 𝑖 = 1, 2, . . . , 𝑘}

which is semicompact for some positive integer𝑚. Starting from
arbitrary 𝑥

1
∈ 𝐶, define the sequence {𝑥

𝑛
} by the recursion (7).

Then {𝑥
𝑛
} converges strongly to some common fixed point of the

family {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑘}.

Proof. By Lemma 11, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, (46)

for each 𝑗 = 1, 2, 3, . . . 𝑘. Without loss of generality, we may
assume that𝑇𝑚

1
is semicompact for some𝑚 ≥ 1; then we have

󵄩󵄩󵄩󵄩𝑇
𝑚

1
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑚

1
𝑥
𝑛
− 𝑇
𝑚−1

1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑚−1

1
𝑥
𝑛
− 𝑇
𝑚−2

1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑇1𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇1𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + (𝑚 − 1) 𝐿
󵄩󵄩󵄩󵄩𝑇1𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

𝛾

󳨀→ 0.

(47)

Since 𝑇
𝑚

1
is semicompact, then there exists a subsequence

{𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that 𝑥

𝑛𝑗
→ 𝑞 ∈ 𝐶. Hence, we have

󵄩󵄩󵄩󵄩𝑞 − 𝑇
𝑖
𝑞
󵄩󵄩󵄩󵄩 = lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗

− 𝑇
𝑗
𝑥
𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
= 0, (48)

for each 𝑖 = 1, 2, 3, . . . , 𝑘. This implies that 𝑞 ∈ 𝐹. By
Corollary 10, {𝑥

𝑛
} converges strongly to some common fixed

point of the family {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑘}.

Theorem 13. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex Banach space 𝐸. Let {𝑇

𝑖
: 𝑖 = 1, 2, . . . , 𝑘} be

𝑘 (𝐿 − 𝛾) uniform Lipschitz and generalized asymptotically
quasi-nonexpansive self-mappings of 𝐶 with {𝑢

𝑖𝑛
}, {ℎ
𝑖𝑛
} ⊂

[0,∞) such that ∑∞
𝑛=1

𝑢
𝑖𝑛

< ∞ and ∑
∞

𝑛=1
ℎ
𝑖𝑛

< ∞ for all 𝑖 ∈

{1, 2, 3, . . . , 𝑘}. Let 𝛼
𝑖𝑛

∈ [𝛿, 1 − 𝛿] for some 𝛿 ∈ (0, 1/2) and let
𝑊
𝑛
be a modified 𝑊-mapping generated by 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
and

𝛼
1𝑛
, 𝛼
2𝑛
, . . . , 𝛼

𝑘𝑛
. Suppose 𝐹 = ⋂

𝑘

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0, ∑∞

𝑛=1
𝜆
𝑛

< ∞

and each 𝐼 − 𝑇
𝑖
, 𝑖 = 1, 2, . . . , 𝑘, is demiclosed at 0. If 𝐸

satisfies Opial’s condition, then the sequence {𝑥
𝑛
} defined by (7)

converges weakly to a common fixed point of the family {𝑇
𝑖
: 𝑖 =

1, 2, . . . , 𝑘}.

Proof. From the proof of Lemma 11, we know that {𝑥
𝑛
} is a

bounded sequence in 𝐶. Since 𝐸 is uniformly convex, it must
be reflexive.Therefore, there exists a subsequence {𝑥

𝑛𝑗
} in {𝑥

𝑛
}

converging weakly to 𝑢 ∈ 𝐶. By Lemma 11, lim
𝑗→∞

‖𝑥
𝑛𝑗

−

𝑇
𝑖
𝑥
𝑛𝑗
‖ = 0 and 𝐼−𝑇

𝑖
is demiclosed at 0 for 𝑖 = 1, 2, . . . 𝑘, so we

obtain 𝑇
𝑖
𝑢 = 𝑢. That is, 𝑢 ∈ 𝐹. Suppose that there exists

another subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} converging weakly to V ∈

𝐶. As above, we can prove V ∈ 𝐹. By (27) we know that
lim
𝑛→∞

‖𝑥
𝑛
− 𝑢‖ and lim

𝑛→∞
‖𝑥
𝑛
− V‖ exist. Assume V ̸= 𝑢.

Then by the Opial’s condition, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩 = lim
𝑛𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗

− 𝑢
󵄩󵄩󵄩󵄩󵄩󵄩
< lim
𝑛𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗

− V
󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − V󵄩󵄩󵄩󵄩 = lim
𝑛𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− V
󵄩󵄩󵄩󵄩󵄩

< lim
𝑛𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑢
󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩 ,

(49)

which is a contradiction. Hence 𝑢 = V. This implies that {𝑥
𝑛
}

converges weakly to a common fixed point of the family {𝑇
𝑖
:

𝑖 = 1, 2, . . . , 𝑘}.

Remark 14. Lemma 11, Theorem 12, and Theorem 13 extend
Lemma 3.1, Theorem 3.3, andTheorem 3.2 of Khan et al. [4],
respectively.
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