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A sequential quadratic programming method with line search is analyzed and studied for finding the local solution of a non-
linear semidefinite programming problem resulting from the discrete-time output feedback problem. The method requires an
initial feasible point with respect to two positive definite constraints. By parameterizing the optimization problem we ease that
requirement. The method is tested numerically on several test problems chosen from the benchmark collection (Leibfritz, 2004).

1. Introduction

In this paper, the following nonlinear semidefinite program-
ming (NSDP) problem is considered:

min 𝐽 (𝑋) s.t. 𝐻 (𝑋) = 0, 𝐺 (𝑋) ≻ 0, (1)

where 𝐽 : R𝑛×𝑛 × R𝑝×𝑟 → R, 𝐻 : R𝑛×𝑛 × R𝑝×𝑟 → R𝑛×𝑛,
𝐺 : R𝑛×𝑛 × R𝑝×𝑟 → R𝑛×𝑛 are sufficiently smooth matrix
functions, where 𝐺 ≻ 0 means that 𝐺 is positive definite.
This problem is assumed to be nonlinear and generally
nonconvex. The origin of the considered NSDP problem is
the static output feedback (SOF) design problem in which the
unknown 𝑋 is partitioned as 𝑋 = (𝐿, 𝐹), where 𝐿 ∈ R𝑛×𝑛

represents the state variable and 𝐹 ∈ R𝑝×𝑟 represents the
control variable.

In the last decade NSDP has attracted the attention of
many authors in the optimization community. For instance,
Jarre [1] introduced an interior-point method for nonconvex
semi-definite programs. Leibfritz and Mostafa [2] proposed
an interior-point trust region method for a special class
of NSDP problems resulting from the continuous-time
SOF problem. Kočvara et al. [3] considered an augmented
Lagrangian method for a similar NSDP problem. Sun et al.
[4] investigated the rate of convergence of the augmented
Lagrangian approach for NSDP. Correa and Ramirez [5]
proposed sequential semi-definite programming method for

nonlinear semi-definite programming. Yamashita and Yabe
[6] study local and superlinear convergence of a primal-dual
interior pointmethod. Freund et al. [7] proposed a sequential
semidefinite programming approach for a nonlinear program
with nonlinear semidefinite constraints.

The design problem of optimal output feedback con-
trollers is one of the most studied problems over the last
four decades in the community of systems and control.
Clearly, this is due to the existence of numerous practical
applications in system and control engineering, finance, and
statistics.Thebenchmark collection [8], for instance, contains
over 160 applications from system and control engineering
only. Mäkilä and Toivonen in the survey [9] summarized
several special purpose algorithms such as the Levine-Athans
method, the dual Levine-Athans method, and the descent
Anderson-Moore method as well as Newton’s method for
finding the local solution of a matrix optimization problem
that corresponds to the discrete-time SOF design problem.
Rautert and Sachs [10] proposed a structured quasi-Newton
method for the continuous-time SOF problem. Mäkilä [11]
introduced a matrix optimization problem related to the
discrete-time SOF design problem, which is an extension of
the former problem considered in [9]. However, it has not yet
been tested numerically.

Several constrained optimization techniques have been
developed for constrained optimization problems related
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to the continuous-time SOF design problem. For instance,
Apkarian et al. [12] introduced a linear matrix inequality
approach for the𝐻

2
synthesis problem. Leibfritz andMostafa

[13] proposed two trust region methods for two different
formulations of the continuous-time SOF problem. Mostafa
[14, 15] developed a trust regionmethod for the decentralized
SOF problem and an augmented Lagrangian SQP method
for the continuous-time SOF problem, respectively. More
recently, Mostafa [16] introduced a trust region method for a
particular constrained optimization problem that originates
from the discrete-time SOF problem.

In the current work a different formulation of the design
problem is considered that underlies the NSDP problem
formulation (1). In fact such an NSDP problem can be
seen as a generalization of the matrix optimization problem
introduced by Mäkilä [11]. The goal is to study and analyze
an SQP method with line search for finding a local solution
of such an NSDP problem. The reduced Hessian with a step
decomposition approach (see e.g., [17]) is employed with
the SQP method. Moreover, we compare the SQP method
numerically versusNewton’smethod proposed byMäkilä and
Toivonen [9] but applied on thematrix optimization problem
[11]. As is well known, SQP methods are among the most
effective techniques for nonlinear constrained optimization
problems; see, for example, [17]. In particular, the problem
structure is exploited with the considered method.

The existence of an initial feasible point 𝑋
0

= (𝐿
0
, 𝐹
0
)

with respect to the positive definite constraints is necessary
to start the iteration sequence of the SQP method. Such an
initial feasible point can be easy to find in simple problems
but can be difficult or very time consuming for moderate and
complex problems. A parametrization approach is employed
on the NSDP problem that overcomes this difficulty.

This paper is organized as follows. In the next section
the discrete-time SOF problem is introduced and the related
NSDP problem is stated. In Section 3 the SQP method that
finds a local solution of the NSDP is presented. Section 4 is
devoted to overcome the difficulty of finding an initial feasible
point (𝐿

0
, 𝐹
0
) to start the iteration sequence of the SQP

method. In order to demonstrate the considered approach
we have tested in Section 5 the SQP method on various test
problems derived from benchmark collection [8].

Notations. For a matrix 𝐺 ∈ R𝑛×𝑛 the notation 𝐺 ≻ 0 (𝐺 ⪰ 0)
denotes that 𝐺 is strictly positive (semi)definite. The symbol
⊗ denotes the Kronecker product of two matrices and ⟨⋅, ⋅⟩

denotes the inner product operator. Throughout the paper,
‖ ⋅ ‖ is the Frobenius norm; otherwise; it will be mentioned.
Moreover, 𝐼

𝑛
denotes the identity matrix of order 𝑛. We omit

the argument when it is known from the context; for example,
we use 𝐽

𝑘
to denote 𝐽(𝑋

𝑘
).

2. The Static Output Feedback
Control Problem

The problem of designing an optimal output feedback con-
troller for discrete-time control systems is an important and

extensively studied topic in system and control literature; see,
for example, the two survey papers by Mäkilä and Toivonen
[9] and Syrmos et al. [18] and numerous references therein,
includingGarcia et al. [19], Lee andKhargonekar [20],Mäkilä
[11], Mostafa [21, 22], and Sulikowski et al. [23].

Consider the linear time-invariant control system
described by the following discrete time state-space
realization:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
𝑘
+ V
𝑘
, 𝑦
𝑘
= 𝐶𝑥
𝑘
+ 𝑒
𝑘
, 𝑘 ≥ 0, (2)

where 𝑥
𝑘

∈ R𝑛 is the state vector, 𝑢
𝑘

∈ R𝑝 is the control
(input) vector, 𝑦

𝑘
∈ R𝑟 is the measured output vector, and

V
𝑘
∈ R𝑛 and 𝑒

𝑘
∈ R𝑟 are disturbance (noise) terms. Moreover

𝐴, 𝐵, and 𝐶 are given constant matrices of appropriate
dimensions.

We will consider the following quadratic cost function as
an objective function to be minimized:

𝐽 = E[

∞

∑

𝑘=0

⟨𝑥
𝑘
, 𝑄𝑥
𝑘
⟩ + ⟨𝑢

𝑘
, 𝑅𝑢
𝑘
⟩] , (3)

where E[⋅] is the expected value and 𝑄 ∈ R𝑛×𝑛 and 𝑅 ∈ R𝑝×𝑝

are given constant weight matrices.
The following control law is often used to close the above

control system:

𝑢
𝑘
= 𝐹𝑦
𝑘
, (4)

where 𝐹 ∈ R𝑝×𝑟 is the output feedback gain matrix
representing the unknown.

In order to remove the dependency of the problem on
the initial state vector 𝑥

0
the following assumption is often

imposed.

Assumption 1. Assume that𝑥
0
is a randomvariable uniformly

distributed over the unit ball such that E[𝑥
0
] = 0.

Under this assumption the optimal control problem (2)–
(4) can be transformed into the matrix optimization problem
(see [11]):

min
𝐹

𝐽 (𝐹) := 𝐽 (𝐿 (𝐹) , 𝐹)

= Tr (𝐿 (𝐹) (𝑄 + 𝐶
𝑇

𝐹
𝑇

𝑅𝐹𝐶)) + Tr (𝐹𝑇𝑅𝐹𝑅
𝑒
) ,

(5)

where Tr(⋅) is the trace operator and 𝐿(𝐹) solves the discrete
Lyapunov equation:

𝐿 (𝐹) = (𝐴 + 𝐵𝐹𝐶) 𝐿 (𝐹) (𝐴 + 𝐵𝐹𝐶)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

.

(6)

Assumption 2. Throughout the paper we assume that 𝐴 ∈

R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝, and 𝐶 ∈ R𝑟×𝑛 are given constant matrices.
Furthermore, we assume that 𝑄 ∈ R𝑛×𝑛 and 𝑅 ∈ R𝑝×𝑝 are
given constant weight matrices and 𝑅

𝑒
∈ R𝑟×𝑟 and 𝑉 ∈ R𝑛×𝑛

are given covariance matrices. We assume that 𝑄 ⪰ 0 while
𝑅, 𝑅
𝑒
and 𝑉 ≻ 0.
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From Lyapunov stability theory the unknown 𝐹 must be
chosen from the following set:

S
𝐹
= {𝐹 ∈ R

𝑝×𝑟

: 𝜌 (𝐴 + 𝐵𝐹𝐶) < 1} , (7)

where 𝜌(⋅) is the spectral radius. This restriction is required
ultimately to guarantee the existence of a unique solution of
the discrete Lyapunov equation (6); see, for example, [24].
Moreover, from the Lyapunov stability theory the next lemma
gives an equivalence between the asymptotic stability of the
system (2) and fulfilling two positive definite constraints.

Lemma 3 ([24, Lemma 5.7.19]). Consider the SOF problem
(2)–(4). An𝐹 ∈ S

𝐹
exists if and only if there exists (𝐿, 𝐹) ∈ D

𝑠
,

where

D
𝑠
= {(𝐿, 𝐹) ∈ R

𝑛×𝑛

×R
𝑝×𝑟

: 𝐿 ≻ 0, 𝑌 (𝐿, 𝐹) ≻ 0} , (8)

where

𝑌 (𝐿, 𝐹) = 𝐿 − (𝐴 + 𝐵𝐹𝐶) 𝐿(𝐴 + 𝐵𝐹𝐶)
𝑇

. (9)

According to Lemma 3 and by considering both of 𝐿

and 𝐹 as independent variables, where we skip the imposed
dependency of 𝐿 on 𝐹 that was considered in (5)-(6), then the
minimization problem can be stated as the following NSDP:

min
𝐿,𝐹

𝐽 (𝐿, 𝐹) = Tr (𝐿 (𝑄 + 𝐶
𝑇

𝐹
𝑇

𝑅𝐹𝐶)) + Tr (𝐹𝑇𝑅𝐹𝑅
𝑒
) ,

(10)

s.t. 𝐻 (𝐿, 𝐹) = − 𝐿 + (𝐴 + 𝐵𝐹𝐶) 𝐿(𝐴 + 𝐵𝐹𝐶)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

= 0,

(11)

𝑌 (𝐿, 𝐹) ≻ 0, 𝐿 ≻ 0. (12)

Instead of considering (5)–(7) we would rather consider
the constrained minimization problem (10)–(12) which can
be seen as a generalization of the former problem. The
equivalence between the stability condition (7) and the
positive definite constraints of (8) provides a straightforward
idea to fulfill such a constraint within the numerical algo-
rithm explicitly. There are, however, different alternatives to
handle the positive definite constraints within a numerical
algorithm. First, onemight incorporate those positive definite
terms within the objective function and apply an interior-
point technique on the corresponding constrained problem;
see [2]. We might also use slack matrix variables for the
inequality constraints.Then one solves the problemwith only
equality constraints.

We end this section by noting that the two sets S
𝐹
and

D
𝑠
are open. Therefore, it is convenient to replace them by

the two subsets Ω̂ andΩ, respectively, where both subsets are
assumed to be compact. For example, the level set

Ω̂ = {𝐹 ∈ S
𝐹
: 𝐽 (𝐹) ≤ 𝐽 (𝐹

0
)} ⊆ S

𝐹
(13)

is compact; see [9].

3. An SQP Method for the Design Problem

Let us consider the minimization problem (10)–(12). The
Lagrangian function associated with the equality constraint
is defined as

ℓ (𝐿, 𝐹, 𝐾) = 𝐽 (𝐿, 𝐹) + ⟨𝐾,𝐻 (𝐿, 𝐹)⟩, (14)

where 𝐾 ∈ R𝑛×𝑛 is the Lagrange multiplier. The next lemma
includes first- and second-order derivatives of ℓ and first
derivatives of the function𝐻. Similar results can be found in
[16, Lemma 2.1] but on a simpler problem. In the following
discussion we denote 𝐴(𝐹) = 𝐴 + 𝐵𝐹𝐶 and 𝑄(𝐹) = 𝑄 +

𝐶
𝑇

𝐹
𝑇

𝑅𝐹𝐶.

Lemma 4. Consider the NSDP problem (10)–(12). The
Lagrangian function ℓ(𝐿, 𝐹,𝐾) is twice continuously differen-
tiable and its first- and second-order directional derivatives as
well as first-order derivatives of the constraint function 𝐻 are
the following:

ℓ
𝐿
(⋅) Δ𝐿 = Tr ((𝐴(𝐹)𝑇𝐾𝐴 (𝐹) + 𝑄 (𝐹) − 𝐾)Δ𝐿) ,

ℓ
𝐹
(⋅) Δ𝐹 = Tr (2𝐾

𝐹
𝐿𝐶
𝑇

Δ𝐹
𝑇

+2 (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐹𝑅
𝑒
Δ𝐹
𝑇

) ,

ℓ
𝐿𝐿

(⋅) (Δ𝐿, Δ𝐿) = 0,

ℓ
𝐿𝐹

(⋅) (Δ𝐿, Δ𝐹) = ℓ
𝐹𝐿

(𝐿, 𝐹, 𝐾) (Δ𝐹, Δ𝐿)

= Tr (2𝐾
𝐹
Δ𝐿𝐶
𝑇

Δ𝐹
𝑇

) ,

ℓ
𝐹𝐹

(⋅) (Δ𝐹, Δ𝐹) = Tr (2 (𝐵𝑇𝐾𝐵+𝑅)Δ𝐹 (𝐶𝐿𝐶
𝑇

+𝑅
𝑒
) Δ𝐹
𝑇

) ,

𝐻
𝐿
(⋅) Δ𝐿 := ⟨Δ𝐿, ∇

𝐿
𝐻(⋅)⟩ = Δ𝐿 − 𝐴 (𝐹) Δ𝐿𝐴(𝐹)

𝑇

,

𝐻
𝐹
(⋅) Δ𝐹 := ⟨Δ𝐹, ∇

𝐹
𝐻(⋅)⟩ = 𝐵Δ𝐹𝐿

𝑇

𝐹
+ 𝐿
𝐹
Δ𝐹
𝑇

𝐵
𝑇

,

(15)

where𝐾
𝐹
= 𝐵
𝑇

𝐾𝐴(𝐹) + 𝑅𝐹𝐶 and 𝐿
𝐹
= 𝐴(𝐹)𝐿𝐶

𝑇

+ 𝐵𝐹𝑅
𝑒
.

Proof. By using the directional derivatives with both of ℓ and
𝐻 the above derivatives are obtained.

The Karush-Kuhn-Tucker (KKT) optimality conditions
yield a nonlinear system of matrix equations as given in the
next lemma.

Lemma 5 (see, e.g., [7, Section 5]). Let (𝐿, 𝐹) ∈ D
𝑠
be a local

minimizer of the problem (10)–(12) and let (10)–(12) be regular
at (𝐿, 𝐹). Then there exists a Lagrange multiplier 𝐾 ∈ R𝑛×𝑛

satisfying with 𝐿 and 𝐹 the following KKT conditions:

M (𝑈) = (

2𝐾
𝐹
𝐿𝐶
𝑇

+ 2 (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐹𝑅
𝑒

−𝐿 + 𝐴 (𝐹) 𝐿𝐴(𝐹)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

−𝐾 + 𝐴(𝐹)
𝑇

𝐾𝐴 (𝐹) + 𝑄 (𝐹)

)

= 0,

(16)

where 𝐾
𝐹
is as defined in Lemma 4 and 𝑈 = (𝐿, 𝐹,𝐾) ∈ D

𝑠
×

R𝑛×𝑛.
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Clearly, the system (16) is nonlinear in the unknowns 𝐿,
𝐹, and 𝐾. However, the last two equations of (16) might be
viewed as discrete Lyapunov equations of the following form

𝐿 = 𝐴 (𝐹) 𝐿𝐴(𝐹)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

, (17)

𝐾 = 𝐴(𝐹)
𝑇

𝐾𝐴 (𝐹) + 𝑄 (𝐹) . (18)

The SQP method is based on minimizing successfully a
quadratic program of the form:

min
(Δ𝐿,Δ𝐹)

𝑞 (Δ𝐿, Δ𝐹) s.t. ℎ (Δ𝐿, Δ𝐹) = 0, (19)

where

𝑞 (Δ𝐿, Δ𝐹)

= ℓ
𝐿
Δ𝐿 + ℓ

𝐹
Δ𝐹

+
1

2
(ℓ
𝐿𝐿

(Δ𝐿, Δ𝐿) + 2ℓ
𝐿𝐹

(Δ𝐿, Δ𝐹) + ℓ
𝐹𝐹

(Δ𝐹, Δ𝐹)) ,

ℎ (Δ𝐿, Δ𝐹) = 𝐻
𝐿
(𝐿, 𝐹) Δ𝐿 + 𝐻

𝐹
(𝐿, 𝐹) Δ𝐹 + 𝐻 (𝐿, 𝐹) .

(20)

All derivatives required for constructing this QP are given in
Lemma 4.

An SQP method known also as Newton-Lagrange
method generates a sequence of iterates by solving the
augmented linear system:

(

∇
2

𝐿𝐿
ℓ
𝑘

∇
2

𝐿𝐹
ℓ
𝑘

∇
𝐿
𝐻
∗

𝑘

∇
2

𝐹𝐿
ℓ
𝑘

∇
2

𝐹𝐹
ℓ
𝑘

∇
𝐹
𝐻
∗

𝑘

∇
𝐿
𝐻
𝑘

∇
𝐹
𝐻
𝑘

0

)(

Δ𝐿

Δ𝐹

Δ𝐾

) = −(

∇
𝐿
ℓ
𝑘

∇
𝐹
ℓ
𝑘

𝐻
𝑘

)

(21)

and updates the step by

(𝐿
𝑘+1

, 𝐹
𝑘+1

, 𝐾
𝑘+1

)

= (𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
, 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹
𝑘
, 𝐾
𝑘
+ 𝛼
𝑘
Δ𝐾
𝑘
) ,

(22)

where 𝛼 ∈ (0, 1] is the step size.

Assumption 6. Throughout this paper we make the following
assumptions.

(H1) Themappings 𝐽 and𝐻 are at least twice continuously
differentiable.

(H2) For a given (𝐿, 𝐹) ∈ D
𝑠
the mapping ∇

𝐿
𝐻(𝐿, 𝐹) is

invertible.
(H3) There exists an (𝐿

0
, 𝐹
0
) ∈ D

𝑠
. Moreover, assume that

for a given (𝐿
𝑘
, 𝐹
𝑘
) ∈ D

𝑠
there always exists an 𝛼

𝑘
> 0

such that (𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
, 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹
𝑘
) ∈ D

𝑠
.

The next theoremprovides us with the linearization of the
nonlinear system (16).

Theorem 7. For a given 𝑈 := (𝐿, 𝐹, 𝐾) ∈ D
𝑠
× R𝑛×𝑛 the

linearized equations of the KKT system (16) are the following:

(

(𝐵
𝑇

𝐾𝐵 + 𝑅)Δ𝐹 (𝐶𝐿𝐶
𝑇

+ 𝑅
𝑒
) + 𝐾
𝐹
Δ𝐿𝐶
𝑇

+ 𝐵
𝑇

Δ𝐾𝐿
𝐹

𝐵Δ𝐹𝐿
𝑇

𝐹
+ 𝐿
𝐹
Δ𝐹
𝑇

𝐵
𝑇

− Δ𝐿 + 𝐴 (𝐹) Δ𝐿𝐴(𝐹)
𝑇

𝐶
𝑇

Δ𝐹
𝑇

𝐾
𝐹
+ 𝐾
𝑇

𝐹
Δ𝐹𝐶 − Δ𝐾 + 𝐴(𝐹)

𝑇

Δ𝐾𝐴 (𝐹)

)

= −(

𝐾
𝐹
𝐿𝐶
𝑇

+ (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐹𝑅
𝑒

−𝐿 + 𝐴 (𝐹) 𝐿𝐴(𝐹)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

−𝐾 + 𝐴(𝐹)
𝑇

𝐾𝐴 (𝐹) + 𝑄 (𝐹)

) ,

(23)

where𝐾
𝐹
and 𝐿

𝐹
are as defined in Lemma 4.

Proof. The linearization of the nonlinear system M(𝑈) = 0

about the point 𝑈 = (𝐿, 𝐹,𝐾) in the direction of Δ𝑈 =

(Δ𝐿, Δ𝐹, Δ𝐾) takes the form

∇M(𝑈)
𝑇

Δ𝑈 = −M (𝑈) , (24)

where∇M(𝑈)
𝑇 is the Jacobianmatrix, withwhichwe directly

obtain the system (23).

Under certain assumptions it is possible to show that the
SQP direction Δ𝑈 given by (23) is well defined.The difficulty
that one faces when solving (23) is due to the fact that we do
not have an explicit representation of the Jacobian of M(𝑈).
However, if we write 𝑈 = (𝐿, 𝐹,𝐾) as a long column vector
vec(𝑈) ∈ R𝑝𝑟+2𝑛

2

such that 𝑓(vec(𝑈)) = M(𝑈), then we are
able to evaluate the Jacobian of 𝑓 using the basic properties
of the Kronecker product which is an (2𝑛

2

+ 𝑝𝑟) × (2𝑛
2

+ 𝑝𝑟)

matrix.

Theorem 8. Let 𝑈 = (𝐿, 𝐹,𝐾) ∈ D
𝑠
× R𝑛×𝑛 be given. The

Jacobian matrix ofM(𝑈) is given by:

∇M(𝑈)
𝑇

= (

(𝐶𝐿𝐶
𝑇

+ 𝑅
𝑒
) ⊗ (𝐵

𝑇

𝐾𝐵 + 𝑅) 𝐶 ⊗ 𝐾
𝐹

𝐿
𝑇

𝐹
⊗ 𝐵
𝑇

[𝐿
𝐹
⊗ 𝐵 + 𝐾

𝑛𝑛
(𝐿
𝐹
⊗ 𝐵)] 𝑆

𝐹
0

[𝐾
𝑟𝑛
(𝐶
𝑇

⊗𝐾
𝑇

𝐹
)+(𝐶

𝑇

⊗𝐾
𝑇

𝐹
)] 0 𝑆

𝑇

𝐹

),

(25)

where𝐾
𝐹
and𝐿

𝐹
are as defined in Lemma 4, 𝑆

𝐹
= −𝐼
𝑛
2+𝐴(𝐹)⊗

𝐴(𝐹), and𝐾
𝑚𝑛

is an𝑚𝑛 ×𝑚𝑛 commutation matrix defined as
vec(𝑊𝑇) = 𝐾

𝑟𝑛
vec(𝑊) for any𝑚×𝑛matrix𝑊. Furthermore,

the linear system (23) is explicitly written as

∇M(𝑈)
𝑇 vec (𝑈) = − vec (M) , (26)
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where
vec (M)

= (

vec (𝐾
𝐹
𝐿𝐶
𝑇

+ (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐹𝑅
𝑒
)

vec (−𝐿 + 𝐴 (𝐹) 𝐿𝐴(𝐹)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

)

vec (−𝐾 + 𝐴(𝐹)
𝑇

𝐾𝐴 (𝐹) + 𝑄 (𝐹))

) .

(27)

Proof. For any given threematrices𝐴,𝐵, and𝐶 of appropriate
dimensions the linear matrix equation

𝐴𝑋𝐵 = 𝐶 (28)

is equivalent to the explicit linear system

(𝐵
𝑇

⊗ 𝐴) vec (𝑋) = vec (𝐶) . (29)

If we apply this result on the above linear system the entries
of the Jacobian matrix can be easily obtained.

Indeed, the last result shows that the dimension of
the Jacobian matrix (25) can be very large because of the
Kronecker products.Moreover, the evaluation of the Jacobian
matrix explicitly in the SQP method is unnecessary and
makes the method impractical. By taking this fact in mind
the reducedHessian approach is rather considered as an ideal
candidate for finding the local solution of theNSDP (10)–(12);
see, for example, [2, 16].

3.1. The Reduced Hessian Approach. The reduced Hessian
approach relies on the existence of the null space and the
right inverse of the Jacobian ∇𝐻

𝑇. In optimal control such
operators are not available explicitly. However, it is possible
to construct them from the problem itself; for more details
see, for example, [2, 16, 25]. The two operators are defined as

𝑍 (𝐿, 𝐹) = (−𝐻
−1

𝐿
(𝐿, 𝐹)𝐻

𝐹
(𝐿, 𝐹) , 𝐼

𝑝
) ,

𝑅̂ (𝐿, 𝐹) = (−𝐻
−1

𝐿
(𝐿, 𝐹) , 0) ,

(30)

where 𝐼
𝑝
and 0 are the identity and the zero operators,

respectively. We note that if the Jacobian ∇𝐻
𝑇 is surjective

then such a right inverse 𝑅̂ exists. We also note that the range
space of𝑍 coincides with the null space of the Jacobian ∇𝐻

𝑇;
see [16, Lemma 2].

Next, with the help of 𝑍 and 𝑅̂ the following result shows
that the linearized equality constraint is decomposed into two
discrete Lyapunov equations.

Lemma 9. Let (𝐿, 𝐹) ∈ D
𝑠
be given and let (Δ𝐿, Δ𝐹) ∈

R𝑛×𝑛+𝑝×𝑟 be the solution of the QP (19). Then the linearized
equality constraint of (19) is decomposed into the following
discrete Lyapunov equations:

Δ𝐿
𝑛

= 𝐴 (𝐹) Δ𝐿
𝑛

(𝐴𝐹)
𝑇

+ 𝐻 (𝐿, 𝐹) , (31)

Δ𝐿
𝑡

= 𝐴 (𝐹) Δ𝐿
𝑡

𝐴(𝐹)
𝑇

+ 𝐵Δ𝐹𝐿
𝑇

𝐹
+ 𝐿
𝐹
Δ𝐹
𝑇

𝐵
𝑇

, (32)

where 𝐿
𝐹
is as given in Lemma 5.

Proof. (see also [16, Lemma 3]). The linearized equality
constraint of (19) can be rewritten as

∇
𝐿
𝐻(𝐿, 𝐹) Δ𝐿

𝑡

+ ∇
𝐹
𝐻(𝐿, 𝐹) Δ𝐹

+ ∇
𝐿
𝐻(𝐿, 𝐹) Δ𝐿

𝑛

+ 𝐻 (𝐿, 𝐹) = 0,

(33)

where Δ𝐿 = Δ𝐿
𝑛

+ Δ𝐿
𝑡. According to the definition of 𝑍 and

𝑅̂ the above equation can be decomposed as

∇
𝐿
𝐻(𝐿, 𝐹) Δ𝐿

𝑛

+ 𝐻 (𝐿, 𝐹) = 0 ∀Δ𝐿
𝑛

,

𝐻
𝐿
(𝐿, 𝐹) Δ𝐿

𝑡

(Δ𝐹) + 𝐻
𝐹
(𝐿, 𝐹) Δ𝐹 = 0 ∀Δ𝐹,

(34)

which yield the discrete Lyapunov equations (31) and (32),
respectively.

Following the proof of Lemma 9 the step (Δ𝐿, Δ𝐹) that
solves the QP (19) with the help of 𝑍 and 𝑅̂ is decomposed as

(Δ𝐿, Δ𝐹) = 𝑍 (𝐿, 𝐹) Δ𝐹 + 𝑅̂ (𝐿, 𝐹)𝐻 (𝐿, 𝐹)

=: (Δ𝐿
𝑡

(Δ𝐹) , Δ𝐹) + (Δ𝐿
𝑛

, 0) ,

(35)

where (Δ𝐿𝑡(Δ𝐹), Δ𝐹) and (Δ𝐿
𝑛

, 0) are the tangential and the
normal steps, respectively.

Consequently, one can obtain the normal step (Δ𝐿
𝑛

, 0) by
solving the discrete Lyapunov equation (31) for Δ𝐿𝑛. Having
obtained such a step component we solve the following
tangential subproblem for Δ𝐹:

min
Δ𝐹∈R𝑝×𝑟

𝜓 (Δ𝐹) := 𝑞 (Δ𝐿
𝑡

(Δ𝐹) , Δ𝐹)

= ⟨Δ𝐿
𝑡

(Δ𝐹) , ∇
𝐿
ℓ (⋅)⟩ + ⟨Δ𝐹, ∇

𝐹
ℓ (⋅)⟩

+ ⟨Δ𝐹, ∇
2

𝐹𝐿
ℓ (⋅) Δ𝐿

𝑛

⟩

+ ⟨Δ𝐿
𝑡

(Δ𝐹) , ∇
2

𝐿𝐿
ℓ (⋅) Δ𝐿

𝑛

⟩

+
1

2
⟨Δ𝐹, 𝑍

𝑇

∇
2

ℓ (⋅) 𝑍Δ𝐹⟩,

(36)

where

⟨Δ𝐹, 𝑍
𝑇

∇
2

ℓ (⋅) 𝑍Δ𝐹⟩ = ⟨Δ𝐿
𝑡

(Δ𝐹) , ∇
2

𝐿𝐿
ℓ (⋅) Δ𝐿

𝑡

(Δ𝐹)⟩

+ ⟨Δ𝐹, ∇
2

𝐹𝐹
ℓ (⋅) Δ𝐹⟩

+ 2⟨Δ𝐹, ∇
2

𝐹𝐿
ℓ (⋅) Δ𝐿

𝑡

(Δ𝐹)⟩

(37)

and Δ𝐿
𝑡

(Δ𝐹) is the corresponding solution of the discrete
Lyapunov equation (32).

In order to find the local solution of the minimization
problem (36) let us apply the necessary optimality conditions,
which give the following result.

Lemma 10. Let (𝐿, 𝐹, 𝐾) ∈ D
𝑠
× R𝑛×𝑛 and Δ𝐿

𝑛

∈ R𝑛×𝑛

be given. Moreover, let Δ𝐹 ∈ R𝑝×𝑟 be a local minimum for
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the problem (36). Then Δ𝐹 solves the following linear matrix
equation:

(𝐵
𝑇

𝐾𝐵 + 𝑅)Δ𝐹 (𝐶𝐿𝐶
𝑇

+ 𝑅
𝑒
) + 𝐾
𝐹
Δ𝐿
𝑡

(Δ𝐹)𝐶
𝑇

+ 𝐵
𝑇

Δ𝐾 (Δ𝐹) 𝐿
𝐹

= −𝐾
𝐹
(𝐿 + Δ𝐿

𝑛

) 𝐶
𝑇

− (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐹𝑅
𝑒
− 𝐵
𝑇

𝑆𝐿
𝐹
,

(38)

where Δ𝐿𝑡(Δ𝐹), Δ𝐾(Δ𝐹), and 𝑆, respectively, solve the discrete
Lyapunov equations (32) and

Δ𝐾 = 𝐴(𝐹)
𝑇

Δ𝐾𝐴 (𝐹) + 𝐾
𝑇

𝐹
Δ𝐹𝐶 + 𝐶

𝑇

Δ𝐹
𝑇

𝐾
𝐹
, (39)

𝑆 = 𝐴(𝐹)
𝑇

𝑆𝐴 (𝐹) +𝑀 +𝑀
𝑇

, (40)

where𝐾
𝐹
and 𝐿

𝐹
are as defined in Lemma 4 and

𝑀 = −𝐾 + 𝐴(𝐹)
𝑇

𝐾𝐴 (𝐹) + 𝑄 (𝐹) . (41)

Proof. We use the derivatives of ℓ given in Lemma 4 to
construct 𝜓(Δ𝐹). If we differentiate 𝜓 with respect to Δ𝐹 and
apply the necessary optimality conditions, we obtain

𝑍
𝑇

∇
2

ℓ (⋅) 𝑍Δ𝐹

= −∇
𝐹
ℓ (⋅) − ∇

2

𝐹𝐿
Δ𝐿
𝑛

−
𝜕

𝜕Δ𝐹
⟨Δ𝐿
𝑡

(Δ𝐹) , ∇
𝐿
ℓ (⋅)⟩,

(42)

which is another representation of (38). As an example of
evaluating these derivatives we obtain the last term of (42)
as follows:

𝜕

𝜕Δ𝐹
⟨Δ𝐿
𝑡

(Δ𝐹) , ∇
𝐿
ℓ (⋅)⟩

=
𝜕

𝜕Δ𝐹
Tr (𝑀Δ𝐿

𝑡

(Δ𝐹))

=
𝜕

𝜕Δ𝐹
Tr(𝑀

∞

∑

𝑘=0

𝐴(𝐹)
𝑘

(𝐵Δ𝐹𝐿
𝑇

𝐹

+𝐿
𝐹
Δ𝐹
𝑇

𝐵
𝑇

) (𝐴(𝐹)
𝑇

)
𝑘

)

= 𝐵
𝑇

(

∞

∑

𝑘=0

(𝐴(𝐹)
𝑇

)
𝑘

(𝑀 +𝑀
𝑇

)𝐴(𝐹)
𝑘

)𝐿
𝐹

= 𝐵
𝑇

𝑆𝐿
𝐹
,

(43)

where

Δ𝐿
𝑡

(Δ𝐹) =

∞

∑

𝑘=0

𝐴(𝐹)
𝑘

(𝐵Δ𝐹𝐿
𝑇

𝐹
+ 𝐿
𝐹
Δ𝐹
𝑇

𝐵
𝑇

) (𝐴(𝐹)
𝑇

)
𝑘

,

𝑆 =

∞

∑

𝑘=0

(𝐴(𝐹)
𝑇

)
𝑘

(𝑀 +𝑀
𝑇

)𝐴(𝐹)
𝑘

(44)

are the exact solutions of the discrete Lyapunov equations (32)
and (40), respectively.

Because of using directional derivatives the resulting
linear system (38)–(40) is not given explicitly. However,
one can modify the conjugate gradient (CG) method [17]
and solve this system iteratively. The problem structure is
exploited, where the partition of the unknown 𝑋 = (𝐿, 𝐹)

is utilized.
For a given Δ𝐹 calculated by the CG method both of

Δ𝐿
𝑡

(Δ𝐹) andΔ𝐾(Δ𝐹) are uniquely determined by solving the
discrete Lyapunov equations (32) and (39), respectively. The
CG algorithm for solving the system (38)–(40) is stated in the
following lines, wherewe use𝑇

𝑖
,𝐷
𝑖
, and𝐸

𝑖
at the 𝑖th CG inner

iteration to denote the approximation of the step component
Δ𝐹, the CG direction, and the residual, respectively.

Algorithm 11 (modified CG method). Let 𝑈 = (𝐿, 𝐹,𝐾) ∈

D
𝑠
× R𝑛×𝑛 and Δ𝐿

𝑛 be given. Moreover, let 𝐴, 𝐵, 𝐶, 𝑄, 𝑅,
𝑅
𝑒
, and 𝑉 be given constant matrices. Set 𝑇

0
= 0, 𝐸

0
=

−𝐾
𝐹
𝐿𝐶
𝑇

− (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐹𝑅
𝑒
, and 𝐷

0
= 𝐸
0
. Choose 𝜂 and

𝜖 ∈ (0, 1).

For 𝑖 = 0, 1, . . ., do

(1) Solve for Δ𝐿𝑡(𝐷
𝑖
) and Δ𝐾(𝐷

𝑖
) the discrete Lyapunov

equations (32) and (39), respectively.
(2) Calculate

𝑁(𝐷
𝑖
)

:= (𝐵
𝑇

𝐾𝐵 + 𝑅)𝐷
𝑖
(𝐶𝐿𝐶

𝑇

+ 𝑅
𝑒
)

+ 𝐾
𝐹
Δ𝐿
𝑡

(𝐷
𝑖
) 𝐶
𝑇

+ 𝐵
𝑇

Δ𝐾 (𝐷
𝑖
) 𝐿
𝐹
.

(45)

(3) If Tr(𝐷𝑇
𝑖
𝑁(𝐷
𝑖
)) ≤ 𝜖‖𝐷

𝑖
‖
2, update the step Δ𝐹 as

follows: if 𝑖 = 0, set Δ𝐹 = 𝐷
0
; else, set Δ𝐹 = 𝑇

𝑖
and

exit.
(4) Calculate the ratio 𝜃

𝑖
= Tr(𝐸𝑇

𝑖
𝐸
𝑖
)/Tr(𝐷𝑇

𝑖
𝑁(𝐷
𝑖
)). Set

𝑇
𝑖+1

= 𝑇
𝑖
+ 𝜃
𝑖
𝐷
𝑖
and 𝐸

𝑖+1
= 𝐸
𝑖
− 𝜃
𝑖
𝑁(𝐷
𝑖
).

(5) If ‖𝐸
𝑖+1

‖ ≤ 𝜂‖𝐸
0
‖ set Δ𝐹 = 𝑇

𝑖+1
and exit.

(6) Calculate the ratio

𝛽
𝑖
=
Tr (𝐸𝑇
𝑖+1

𝐸
𝑖+1

)

Tr (𝐸𝑇
𝑖
𝐸
𝑖
)

. (46)

Set𝐷
𝑖+1

= 𝐸
𝑖+1

+ 𝛽
𝑖
𝐷
𝑖
, 𝑖 := 𝑖 + 1, and go to (1).

End (do)

There are two exits in this CGmethod.The first one takes
place when a negative or zero curvature is encountered by the
calculated search direction. The second exit occurs when the
norm of the new residual is sufficiently small.

Having evaluated both of Δ𝐿𝑛
𝑘
and (Δ𝐿

𝑡

(Δ𝐹
𝑘
), Δ𝐹
𝑘
), then

according to the step decomposition (35) the total step
(Δ𝐿
𝑘
, Δ𝐹
𝑘
) is obtained. Consequently, the new iterate takes

the form

(𝐿
𝑘+1

, 𝐹
𝑘+1

) = (𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
, 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹
𝑘
) , (47)

where 𝛼
𝑘

> 0 is the step size. Starting from 𝛼
0

= 1, we
calculate the step size 𝛼

𝑘
by a backtracking rule (e.g., by
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halving 𝛼) until we satisfy the following sufficient decrease
condition:

Φ
𝜇
𝑘 (𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿, 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹)

≤ Φ
𝜇
𝑘

𝑘
+ 𝜏𝛼
𝑘
[Φ
𝜇
𝑘

𝐿
(𝐿
𝑘
, 𝐹
𝑘
) Δ𝐿 + Φ

𝜇
𝑘

𝐹
(𝐿
𝑘
, 𝐹
𝑘
) Δ𝐹] ,

(48)

where 𝜏 ∈ (0, 1/2) is a given parameter. Let 𝛼̃
𝑘
be the achieved

step size. Starting from that 𝛼̃
𝑘
we satisfy the following

stability condition by backtracking in the same way until an
𝛼
𝑘
> 0 is reached such that

𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
≻ 0, 𝑌 (𝐿

𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
, 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹
𝑘
) ≻ 0.

(49)

We assume that there always exists an 𝛼
𝑘
> 0 such that

(48) is satisfied. If 𝛼 is decreased and reached a lower bound
𝛼min > 0 without fulfilling (49), then we might follow one
of the ideas often used in modifying the Hessian matrix of
Newton-based methods; see, for example, [17, Section 6.3].
Let𝑊

𝑘
denote any of the twomatrices 𝐿

𝑘
+𝛼minΔ𝐿𝑘 or𝑌(𝐿𝑘+

𝛼minΔ𝐿𝑘, 𝐹𝑘 + 𝛼minΔ𝐹𝑘) with a spectral decomposition𝑊
𝑘
=

𝑄Λ𝑄
𝑇. A correction matrix Δ𝑊

𝑘
of minimum Frobenius

norm that ensures 𝜆min(𝑊𝑘 + Δ𝑊
𝑘
) ≥ 𝛿 > 0 is given by

Δ𝑊
𝑘
= 𝑄 diag (𝑡

𝑖
) 𝑄
𝑇

, (50)

where

𝑡
𝑖
= {

0 𝜆
𝑖
> 𝛿

𝛿 − 𝜆
𝑖

otherwise.
(51)

The modified matrix is

𝑊
𝑘
+ Δ𝑊

𝑘
= 𝑄 (Λ + diag (𝑡

𝑖
)) 𝑄
𝑇

, (52)

where 𝜆min(𝑊𝑘) means the smallest eigenvalue of 𝑊
𝑘
. Note

that the nature of the stability constraint is an inactive
constraint for most test problems.

The Matlab function [∼, 𝑗] = cholinc(𝑀) of the incom-
plete Cholesky factorization can be used for checking the
positive definiteness, where the indicator 𝑗 is used for that
purpose. On the other hand, as mentioned at the end of
Section 2 we can check the stability condition via the spectral
radius of the closed-loop system matrix; namely, 𝜌(𝐴(𝐹

𝑘
+

𝛼
𝑘
Δ𝐹
𝑘
)) < 1.

We use as a merit function the following 𝑙
1
-penalty

function for globalizing the SQP method:

Φ
𝜇

(𝐿, 𝐹) = 𝐽 (𝐿, 𝐹) + 𝜇‖𝐻 (𝐿, 𝐹)‖
1
, (53)

where 𝜇 > 0 is the penalty parameter. This function is
directionally differentiable.

The following update rule for the penalty parameter 𝜇 is
considered (see, e.g., [17, page 547]):

𝜇
𝑘
= {

𝜇
𝑘−1

if 𝜇
𝑘−1

≥
󵄩󵄩󵄩󵄩Δ𝐾𝑘

󵄩󵄩󵄩󵄩∞ + 𝛾
󵄩󵄩󵄩󵄩Δ𝐾𝑘

󵄩󵄩󵄩󵄩∞ + 2𝛾 otherwise,
(54)

where 𝛾 > 0 is a given constant andΔ𝐾
𝑘
is obtained by solving

the discrete Lyapunov equation (39).
The following algorithm demonstrates the SQP method

that finds the local solution of the NSDP (10)–(12).

Algorithm 12 (the method DSQP). Let (𝐿
0
, 𝐹
0
, 𝐾
0
) ∈ D

𝑠
×

R𝑛×𝑛 be given. Moreover, let 𝐴, 𝐵, 𝐶, 𝑄, 𝑅, 𝑅
𝑒
, and 𝑉 be

given constant matrices. Choose 𝜏 ∈ (0, 1/2), 𝛾 > 0, and
𝜖tol ∈ (0, 1).

While ‖∇
𝑈
ℓ
𝑘
‖ > 𝜖tol, do

(1) Calculate Δ𝐿
𝑛

𝑘
solution of the discrete Lyapunov

equation (31).

(2) For a given Δ𝐿
𝑛

𝑘
calculate the local solution

(Δ𝐿
𝑡

(Δ𝐹
𝑘
), Δ𝐹
𝑘
) of the problem (36) by Algorithm 11.

Then set (Δ𝐿
𝑘
, Δ𝐹
𝑘
) = (Δ𝐿

𝑛

𝑘
, 0) + (Δ𝐿

𝑡

(Δ𝐹
𝑘
), Δ𝐹
𝑘
).

(3) Calculate Δ𝐾
𝑘
by solving (39) and then update the

penalty parameter 𝜇
𝑘
using (54).

(4) Starting from 𝛼
0
= 1 apply a backtracking step-size

rule that satisfies the sufficient decrease conditions
(48).

(5) If (𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
, 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹
𝑘
)) ∉ D

𝑠
, then maintain the

positive definiteness of (49) as described above.

(6) Set 𝐹
𝑘+1

= 𝐹
𝑘
+ 𝛼
𝑘
Δ𝐹
𝑘
, 𝐿
𝑘+1

= 𝐿
𝑘
+ 𝛼
𝑘
Δ𝐿
𝑘
, 𝐾
𝑘+1

=

𝐾
𝑘
+ 𝛼
𝑘
Δ𝐾
𝑘
, and 𝑘 := 𝑘 + 1; then go to step (1).

End (While)

Step (5) of Algorithm 12 can also be modified as follows.
Set𝐹
𝑘+1

= 𝐹
𝑘
+𝛼
𝑘
Δ𝐹
𝑘
.Then obtain𝐿

𝑘+1
= 𝐿(𝐹

𝑘+1
) and𝐾

𝑘+1
=

𝐾(𝐹
𝑘+1

) by solving the discrete Lyapunov equations (17) and
(18), respectively. This means we project the search direction
from the spaceD

𝑠
to the control-variable space R𝑝×𝑟.

The global convergence behavior of the method DSQP is
beyond the scope of this work. However, we state some of the
main global convergence results, which can be shown under
the following general assumptions.

Assumption 13. In addition to Assumption 6 we further
assume that the functions 𝐽 and 𝐻 together with their
derivatives are in Ω ⊆ D

𝑠
. We further assume that the

operator 𝐻
−1

𝐿
is uniformly bounded in D

𝑠
; furthermore,

we assume that the sequences {∇2ℓ
𝑘
}, {𝐿
𝑘
}, {𝐹
𝑘
}, {𝐾
𝑘
}, and

{𝑍(𝐿
𝑘
, 𝐹
𝑘
)} are all bounded inΩ.

The next lemma provides an upper bound for the direc-
tional derivative of themerit function by the computed search
direction.

Lemma 14. Let (Δ𝐿, Δ𝐹, Δ𝐾) be generated by the SQP iter-
ation (21). Then the directional derivative of Φ𝜇(𝐿, 𝐹) in the
direction (Δ𝐿, Δ𝐹) satisfies

Φ
𝜇

𝐿
Δ𝐿 + Φ

𝜇

𝐹
Δ𝐹

≤ − [ℓ
𝐿𝐿

(Δ𝐿, Δ𝐿) + 2ℓ
𝐿𝐹

(Δ𝐿, Δ𝐹) + ℓ
𝐹𝐹

(Δ𝐹, Δ𝐹)]

− [𝜇 − ‖Δ𝐾‖
∞
] ‖𝐻‖
1
,

(55)
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where the directional derivatives of Φ𝜇(𝐿, 𝐹) are given by

Φ
𝜇

𝐿
Δ𝐿 + Φ

𝜇

𝐹
Δ𝐹

= 𝐽
𝐿
(𝐿, 𝐹) Δ𝐿 + 𝐽

𝐹
(𝐿, 𝐹) Δ𝐹 − 𝜇‖𝐻 (𝐿, 𝐹)‖

1

= Tr (Δ𝐿𝑄 (𝐹)) + 2Tr (Δ𝐹𝑇𝑅𝐹 (𝐶𝐿𝐶
𝑇

+ 𝑅
𝑒
))

− 𝜇‖𝐻 (𝐿, 𝐹)‖
1
.

(56)

Proof. See [17, Lemma 18.2].

Following [17, Theorem 18.3] the search direction com-
puted by the method DSQP is descent for the merit function
Φ.

Theorem 15. Suppose that (𝐿
𝑘
, 𝐹
𝑘
) ∈ D

𝑠
is not a stationary

point of theNSDP (10)–(12) and the reducedHessian𝑍
𝑘
∇
2

ℓ
𝑘
𝑍
𝑘

is positive definite. Then the search direction (Δ𝐿
𝑘
, Δ𝐹
𝑘
) by the

method DSQP is a descent direction for the merit functionΦ if
𝜇 is updated by (54).

4. Initial Feasible Solution

As can be seen in Algorithm 12 an initial (𝐿
0
, 𝐹
0
) ∈ D

𝑠
is

required to start the method DSQP. Such a matrix pair can
be obtained by using any method that calculates suboptimal
solutions (see, e.g., [21, Algorithm Fstab]) or by a pole assign-
ment method; see, for example, [18]. Another alternative is
to parameterize the system matrix 𝐴 such that 𝜌(𝐴) < 1

and therefore 𝐹
0
can be chosen as the zero matrix. Hence,

according to Lemma 3 one can obtain 𝐿
0
≻ 0 by solving the

discrete Lyapunov equation (17).This idea is described in [16]
and is stated herein for completeness. In the parametrization
approach one replaces the system matrix 𝐴 by 𝐴

𝑡
= (1 −

𝑡)𝐴, where 0 ≤ 𝑡 < 1 is a parameter. Then instead of
solving the NSDP problem (10)–(12) we solve the following
parameterized problem:

min
𝐿,𝐹

𝐽 (𝐿, 𝐹) = Tr (𝐿 (𝑄 + 𝐶
𝑇

𝐹
𝑇

𝑅𝐹𝐶)) + Tr (𝐹𝑇𝑅𝐹𝑅
𝑒
) ,

s.t. 𝐻
𝑡
(𝐿, 𝐹) = −𝐿 + 𝐴

𝑡
(𝐹) 𝐿𝐴

𝑡
(𝐹)
𝑇

+ 𝑉 + 𝐵𝐹𝑅
𝑒
𝐹
𝑇

𝐵
𝑇

=0,

𝑌
𝑡
(𝐿, 𝐹)=𝐿−(𝐴

𝑡
+𝐵𝐹𝐶) 𝐿(𝐴

𝑡
+𝐵𝐹𝐶)

𝑇

≻0, 𝐿≻0,

(57)

where 𝐴
𝑡
(𝐹) = 𝐴

𝑡
+ 𝐵𝐹𝐶 and the constant matrices 𝐴, 𝐵, 𝐶,

𝑄,𝑅
𝑒
, and𝑉 are as defined in Section 2.Thematrix pair (𝐿, 𝐹)

must be chosen from the following parameterized set:

D
𝑡

𝑠
= {(𝐿, 𝐹) ∈ R

𝑛×𝑛

×R
𝑝×𝑟

: 𝐿 ≻ 0, 𝑌
𝑡
(𝐿, 𝐹) ≻ 0} . (58)

Obviously as 𝑡 → 0 the setD𝑡
𝑠
approaches the setD

𝑠
.

The initialization of the method DSQP can be as follows.
Starting from 𝑡

0
= 0, where 𝑡

0
∈ [0, 1), we choose 𝑡

0
as the

first candidate such that 𝜌(𝐴
𝑡
0

) < 1 and set 𝐹
0
= 0. Having

(𝑡
0
, 𝐹
0
), then initial 𝐿

0
and𝐾

0
can be obtained by solving the

discrete Lyapunov equations:

𝐿 = 𝐴
𝑡
0

(𝐹
0
) 𝐿𝐴
𝑡
0

(𝐹
0
)
𝑇

+ 𝑉,

𝐾 = 𝐴
𝑡
0

(𝐹
0
)
𝑇

𝐾𝐴
𝑡
0

(𝐹
0
) + 𝑄.

(59)

Then Algorithm 12 can be applied directly on the parame-
terized problem (57) but after replacing 𝐴(𝐹) by 𝐴

𝑡
(𝐹). The

parameter 𝑡 is updated in the main iteration loop according
to the decreasing sequence {𝑡

𝑘
}:

𝑡
𝑘+1

= 𝑐
𝑘
𝑡
𝑘
, (60)

where {𝑐
𝑘
} ↓ 0. As mentioned above we choose 𝑡

0
∈ [0, 1) as

the first candidate such that 𝜌(𝐴
𝑡
0

) < 1, starting from 𝑡
0
= 0.

On the other hand, we might test the method DSQP for
finding feasible points of the problem (57), that is, finding
points that satisfy the equality constraints as well as the
positive definite constraints. This can be achieved if we solve
the problem with zero objective function. For that purpose
we set the objective function and all its derivatives to be
zero in Algorithm 12. As a result and with the exception
of (15), the simplification of all formulas has no drawbacks
on Algorithm 12. In that case the zero term of the objective
function in (15) implies (18) to reduce to

𝐾 = 𝐴
𝑡
(𝐹)
𝑇

𝐾𝐴
𝑡
(𝐹) , (61)

which cannot be used in its current form to update the
multiplier 𝐾 as suggested in Algorithm 12, because it yields
the trivial solution𝐾 = 0. In order to overcome this difficulty
the multiplier is updated instead by the modified equation:

𝐾 = 𝐴
𝑡
(𝐹)
𝑇

𝐾𝐴
𝑡
(𝐹) + 𝐼

𝑛
. (62)

5. Numerical Results

This section includes an implementation of the method
DSQP using Matlab. Moreover, the method DSQP is com-
pared versus Newton’s method (NM) [9] applied on the
minimization problem (5)-(6). Four test problems from
the benchmark collection COMPlib [8] are considered in
detail in addition to an application of a hydraulic turbine
[26]. The benchmark COMPlib includes mainly continuous-
time test problems. Therefore, the function c2d from the
control system toolbox of Matlab is considered to convert the
continuous-time model to the discrete-time counterpart.

For those test problems with 𝜌(𝐴) < 1 according to
Lemma 3 it is possible to start the method DSQP with 𝐹

0
= 0

and to obtain 𝐿
0
by solving the discrete Lyapunov equation

(17). However, for test problems with 𝜌(𝐴) ≥ 1 an initial
(𝐿
0
, 𝐹
0
) ∈ D

𝑠
is required; otherwise, the parametrization

approach described in Section 4 can be applied.The function
dlyap from the control system toolbox of Matlab is used
for calculating the approximate solutions of the discrete
Lyapunov equations. For all test problems the tolerance is
𝜖tol = 1 × 10

−6. The constant weight matrices 𝑄 and 𝑅 and
the covariancematrices𝑉 and𝑅

𝑒
are taken as the unit matrix.
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Table 1: Convergence behavior of the method DSQP for Example
16.

𝑘 𝐽
𝑘

‖∇
𝑈
ℓ
𝑘
‖ 𝜌(𝐴(𝐹

𝑘
)) 𝑖cg

1 3.1135𝑒 + 005 8.4992𝑒 + 007 9.9838𝑒 − 001 0
2 2.1007𝑒 + 005 3.7773𝑒 + 007 9.9745𝑒 − 001 1
3 1.4256𝑒 + 005 1.6786𝑒 + 007 9.9581𝑒 − 001 1
...

...
...

...
...

19 1.5151𝑒 + 003 2.8400𝑒 − 003 9.6853𝑒 − 001 6
20 1.5151𝑒 + 003 7.6411𝑒 − 005 9.6853𝑒 − 001 6
21 1.5151𝑒 + 003 9.0844𝑒 − 009 9.6853𝑒 − 001 8

Example 16. The first test problem is a supersonic transport
aircraft under Mach 2.7 flight condition; see [8, AC16]. The
discrete-time data matrices are as follows:

𝐴 =
[
[
[

[

0.9901 0.0012 0.0000 −0.0994

−0.0315 1.0000 0.0989 0.0014

−0.6269 −0.0004 0.9773 0.0376

0.1237 0.0001 0.0016 0.9892

]
]
]

]

,

𝐵 =
[
[
[

[

0.0005 0.0004

0.0004 0.0040

0.0078 0.0794

−0.0086 −0.0066

]
]
]

]

,

𝐶 = 𝐼
4
.

(63)

Given the data matrices𝐴, 𝐵, 𝐶,𝑄, 𝑅, 𝑅
𝑒
, and𝑉 the goal is to

calculate a local solution (𝐿
∗
, 𝐹
∗
) ∈ D

𝑠
of the NSDP problem

(10)–(12) using the method DSQP. The corresponding 𝐹
∗
is

considered as an approximate solution of the design problem
(2)–(4). The open-loop system is discrete-time Schur stable,
because 𝜌(𝐴) = 0.9989 < 1. Hence, according to Lemma 3
one can choose 𝐹

0
= 0 and obtain 𝐿

0
≻ 0 the corresponding

solution of the discrete Lyapunov equation (17). The two
methods NM and DSQP converge to the same local mini-
mum after 25 and 21 iterations, respectively. Moreover, we
have also tested the method DSQP for finding feasible points
as explained at the end of Section 4. The achieved KKT and
feasible points are, respectively

𝐹
∗
= [

−1.6109 0.1684 0.6795 6.3050

4.0166 −0.8769 −1.4994 −2.9913
] ,

𝐹feas = [
−107.5749 8.8006 10.7506 129.7845

18.3855 −12.8539 −13.9596 −13.1650
] ,

(64)

where 𝐿
∗
and 𝐿 feas are the corresponding solutions of the dis-

crete Lyapunov equation (17). Table 1 shows the convergence
behavior of the method DSQP to the local solution.

The method DSQP converges to a local minimum in less
number of iterations than the method NM for most of the
considered test problems.The next examples have also such a
behavior.

Example 17. This test problem is the discrete version of a
transport aircraft model [8, AC8]. The problem has the

dimensions 𝑛 = 9, 𝑝 = 1, and 𝑟 = 5. Therefore, we do not
list the data matrices 𝐴, 𝐵, and 𝐶.

The open-loop system of this example is not discrete-time
Schur stable, where 𝜌(𝐴) = 1.0012 > 1. The two methods
NM and DSQP are considered with the parametrization
approach, where 𝑡

0
= 0.002 and 𝑐

𝑘
= (0.8)

𝑘. Both methods
successfully converge to the same local minimum after 21
and 18 iterations, respectively.The achieved KKT and feasible
points are, respectively

𝐹
∗
= [2.1458 −0.5334 −1.4506 0.0386 1.0690] ,

𝐹feas = [2.5640 −0.6294 −1.6525 0.0469 1.2302] ,

(65)

where 𝐿
∗
and 𝐿 feas are the corresponding solutions of the

discrete Lyapunov equation (17).
Table 2 shows the behavior of the two methods while

converging to the local solution. The objective functions and
the convergence criteria are listed columnwise in that table.
The two methods show fast local convergence rate starting
from 𝐹

0
= 0.

Figure 1 shows the state variables for the open- and
closed-loop systems of the current example, where the
achieved output feedback controller matrix 𝐹

∗
enforces all

state variables to decay to the zero state.

Example 18. This test problem is the decentralized intercon-
nected system [8, DIS3]. The problem has the dimensions
𝑛 = 8, 𝑝 = 4, and 𝑟 = 4. Therefore, we do not list the data
matrices 𝐴, 𝐵, and 𝐶.

The open-loop system for this example is discrete-time
Schur stable, where 𝜌(𝐴) = 0.9620 < 1. Starting from
𝐹
0
= 0 where 𝐿

0
is the corresponding solution of (17) the

methodDSQP successfully converges to aKKTpoint (𝐿
∗
, 𝐹
∗
)

in 14 iterations, while the method NM requires 16 iterations
to converge to the same local minimum. Furthermore, the
method DSQP requires 17 iterations to reach a feasible point.
Both of the KKT and the feasible points are, respectively,

𝐹
∗
=
[
[
[

[

−1.7344 −0.5988 −0.1937 0.0938

0.2451 −0.1286 0.4894 −0.5011

0.0037 −0.0705 −0.3206 0.0853

0.0606 −0.2429 −0.1231 −0.1806

]
]
]

]

,

𝐹feas =
[
[
[

[

−10.5946 −0.7911 −0.4047 0.7671

5.5324 −2.1539 3.5120 −3.1956

0.2289 −1.8917 −12.0235 1.9402

0.4861 −2.2963 −0.3051 −2.0438

]
]
]

]

,

(66)

where 𝐿
∗
and 𝐿 feas are the corresponding solutions of (17).

Furthermore, Table 3 shows the convergence behavior of the
method DSQP to the local solution (𝐿

∗
, 𝐹
∗
) ∈ D

𝑠
.

Example 19. This test problem represents a nuclear reactor
model [8, REA3].The dimensions of this example are 𝑛 = 12,
𝑝 = 1, and 𝑟 = 3. Therefore, we skip listing the data matrices
𝐴, 𝐵, and 𝐶.

The open-loop system for this example is not discrete-
time Schur stable. By applying the parametrization approach,
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Table 2: Convergence behavior of the methods NM and DSQP for Example 17.

𝑘 𝐽
𝑘

‖∇𝐽
𝑘
‖ 𝑘 𝐽

𝑘
‖∇
𝑈
ℓ
𝑘
‖ 𝑡

𝑘

1 2.7105𝑒 + 003 1.3120𝑒 + 005 1 1.9178𝑒 + 003 5.4776𝑒 + 004 2.00𝑒 − 003

2 4.0079𝑒 + 003 2.2196𝑒 + 005 2 1.9541𝑒 + 003 3.9033𝑒 + 004 1.60𝑒 − 003

3 6.0553𝑒 + 003 3.4516𝑒 + 005 3 2.4908𝑒 + 003 3.4364𝑒 + 004 1.02𝑒 − 003

...
...

...
...

...
...

...
19 1.5413𝑒 + 003 2.3402𝑒 − 001 16 1.5413𝑒 + 003 1.9083𝑒 − 002 1.32𝑒 − 016

20 1.5413𝑒 + 003 4.6373𝑒 − 003 17 1.5413𝑒 + 003 2.2029𝑒 − 006 2.98𝑒 − 018

21 1.5413𝑒 + 003 7.4319𝑒 − 007 18 1.5413𝑒 + 003 3.8485𝑒 − 011 5.36𝑒 − 020
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Figure 1: Open- and closed-loop systems for the aircraft model of Example 17.

Table 3: Convergence behavior of the method DSQP for Example
18.

𝑘 𝐽
𝑘

‖∇
𝑈
ℓ
𝑘
‖ 𝜌(𝐴(𝐹

𝑘
)) 𝑖cg

1 1.3612𝑒 + 003 1.7167𝑒 + 004 9.6199𝑒 − 001 1
2 9.6941𝑒 + 002 7.6729𝑒 + 003 9.4539𝑒 − 001 1
3 6.9504𝑒 + 002 3.4950𝑒 + 003 9.6356𝑒 − 001 1
...

...
...

...
...

12 6.7653𝑒 + 001 1.2410𝑒 − 002 9.0019𝑒 − 001 5
13 6.7653𝑒 + 001 7.0258𝑒 − 005 9.0021𝑒 − 001 8
14 6.7653𝑒 + 001 1.3558𝑒 − 008 9.0021𝑒 − 001 13

the methods NM and DSQP converge to the same local min-
imizer after 31 and 27 iterations, respectively. The achieved
KKT and feasible points are, respectively,

𝐹
∗
= [−0.0350 −0.3937 −8.3675] ,

𝐹feas = [−0.1269 −1.4385 −3.0157] ,

(67)

where 𝐿
∗
and 𝐿 feas are the corresponding solutions of (17).

Table 4 shows the convergence behavior of the method
DSQP to the KKT point.

Example 20 (hydraulic turbine monitoring). This model was
considered byWang andDaley [26], where their objectivewas
to study a fault detectionmethod for thatmodel. However, we
aim to apply the SQPmethod for calculating the required SOF

controller𝐹
∗
. Such a controller is supposed to simultaneously

stabilize the control system (2) and minimize the quadratic
cost function (3) as well.

The hydraulic turbine generating set consists of a reser-
voir, an inlet pipe, a hydraulic turbine, a generator, a trans-
mission line, and an infinite bus of the produced current. At
the end of the inlet pipe a gate is located to control the water
flow rate inside the pipe. A change in the gate position yields
a change in the speed of the turbine and the produced power.

The dynamical behavior of the hydraulic turbine generat-
ing set is represented by the following equations (see [26]):

𝑇
𝑎
𝑁̇ (𝑡) = 𝑀 (𝑁 (𝑡) ,𝐻 (𝑡) , 𝐺 (𝑡)) − 𝑀

𝑑
(𝑡) ,

𝐻 (𝑡) = −𝑇
𝑤
𝑄̇ (𝑡) ,

𝑄 (𝑡) = 𝑄 (𝑁 (𝑡) ,𝐻 (𝑡) , 𝐺 (𝑡)) ,

(68)

where𝑁(𝑡), 𝐻(𝑡), and𝐺(𝑡) are the speed of the turbine, water
pressure at the gate, and the gate opening position, respec-
tively. Moreover, 𝑀(𝑁(𝑡),𝐻(𝑡), 𝐺(𝑡)), 𝑄(𝑁(𝑡),𝐻(𝑡), 𝐺(𝑡)),
and𝑀

𝑑
(𝑡) are the driving torque on the gate, water flow inside

the pipe, and the load into the infinite bus, respectively; 𝑇
𝑎

and 𝑇
𝑤
are total inertia and water starting time constant,

respectively. Both of 𝑀 and 𝑄 are assumed to be nonlinear
and unknown functions in the variables𝑁(𝑡), 𝐻(𝑡), and𝐺(𝑡).
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Table 4: Convergence behavior of the method DSQP for Example 19.

𝑘 𝐽
𝑘

‖∇
𝑈
ℓ
𝑘
‖ 𝜌(𝐴

𝑡𝑘
(𝐹
𝑘
)) 𝑡

𝑘
𝑖cg

0 3.0141𝑒 + 008 1.5819𝑒 + 010 9.9779𝑒 − 001 2.00𝑒 − 003 1
1 2.7360𝑒 + 008 1.2031𝑒 + 010 9.9819𝑒 − 001 1.60𝑒 − 003 1
2 2.7696𝑒 + 008 1.0624𝑒 + 010 9.9877𝑒 − 001 1.02𝑒 − 003 1
...

...
...

...
...

...
25 1.8154𝑒 + 004 8.4501𝑒 − 001 9.9979𝑒 − 001 6.39𝑒 − 035 3
26 1.8154𝑒 + 004 5.7828𝑒 − 004 9.9979𝑒 − 001 1.93𝑒 − 037 3
27 1.8154𝑒 + 004 7.7346𝑒 − 007 9.9979𝑒 − 001 4.67𝑒 − 040 4

Let 𝑃
𝑛
(𝑁
𝑛
, 𝐻
𝑛
, 𝐺
𝑛
) be a nominated reference point. By

linearizing the system (68) about𝑃
𝑛
one obtains the following

continuous-time linear control system (see [26] for details):

𝑥̇ (𝑡) = 𝐴
𝑐
𝑥 (𝑡) + 𝐵

𝑐
𝑢 (𝑡) + 𝐸

𝑐
V (𝑡) , (69)

where

𝐴
𝑐
= [

[

−50.0 0 0

0.2500 −0.1250 0.3570

1000.05 −0.0250 −2.2450

]

]

, 𝐵
𝑐
= [

[

50

0

−100

]

]

,

𝐸
𝑐
= [

[

0

−0.2500

−0.0050

]

]

.

(70)

The corresponding discrete-time state space model takes the
following form:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
𝑘
+ 𝐸V
𝑘
, 𝑦

𝑘
= 𝐶𝑥
𝑘
, (71)

where

𝐴 = 𝑒
𝐴
𝑐
̂
𝑇

, 𝐵 = ∫

̂
𝑇

0

𝑒
𝐴
𝑐
𝜏

𝐵
𝑐
𝑑𝜏, 𝐸 = ∫

̂
𝑇

0

𝑒
𝐴
𝑐
𝜏

𝐸
𝑐
𝑑𝜏.

(72)

By choosing the sample time period 𝑇̂ = 0.1 sec., the follow-
ing data matrices are obtained:

𝐴 = [

[

0.0067 0 0

0.0590 0.9875 0.0331

1.6359 −0.0022 0.7846

]

]

, 𝐵 = [

[

0.9933

−0.0341

−1.6315

]

]

,

(73)

𝐸 = [

[

0

−0.250

−0.005

]

]

. (74)

The discrete-time system (71) is Schur stable, where 𝜌(𝐴) =

0.9871 < 1. Similar to the above examples we run the
methods NM and DSQP on this model using the above data
matrices. The two methods converge to the same stationary
point after 12 and 11 iterations, respectively, where

𝐹
∗
= [−0.0083 −0.0117] . (75)
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Figure 2: Open- and closed-loop systems for the hydraulic turbine
model of Example 20.

Figure 2 shows the state variables of the open- and closed-
loop systems. Although the open-loop system is Schur stable,
the computed SOF controller 𝐹

∗
accelerates the decay of the

state variables to the zero state.
In Table 5 we further compare the SQP method for

finding the local solution of the NSDP (10)–(12) versus
Newton’s method applied on the special formulation of the
optimization problem (5)-(6). The comparison is performed
on 50 test problems from the benchmark collection [8]. In
that table we list the problem name, the problem dimensions,
the stability indicators for the open- and closed-loop control
systems, and the number of iterations of the two methods
to reach the stationary points. A dash “–” in the last two
columns indicates that the method could not achieve the
prescribed accuracy. The obtained results quite show that the
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Table 5: Comparison between the methods NM and DSQP for finding the local solutions of the problems (5)-(6) and (10)–(12), respectively;
test problems are from [8].

Problem Problem dimension Stability indicator No. of iterations

𝑛 𝑝 𝑟 𝜌(𝐴) 𝜌(𝐴(𝐹
∗
)) NM DSQP

AC1 5 3 3 1.0000 9.6958𝑒 − 001 11 7

AC3 5 2 4 0.9991 9.5419𝑒 − 001 20 19

AC4 4 1 2 1.2942 9.9501𝑒 − 001 11 10

AC6 7 2 4 0.9992 9.1586𝑒 − 001 19 17

AC7 9 1 2 1.0174 9.9693𝑒 − 001 7 5

AC8 9 1 5 1.0012 9.6072𝑒 − 001 21 18

AC15 4 2 3 0.9990 9.6497𝑒 − 001 23 22

AC16 4 2 4 0.9989 9.6853𝑒 − 001 25 21

AC17 4 1 2 0.9723 9.4295𝑒 − 001 13 11

HE1 4 2 1 1.0280 9.9116𝑒 − 001 5 4

HE2 4 2 2 0.9971 9.6999𝑒 − 001 16 13

HE3 8 4 6 1.0088 9.6678𝑒 − 001 9 6

REA1 4 2 2 1.2203 8.9332𝑒 − 001 8 4

REA2 4 2 3 1.2227 8.9821𝑒 − 001 7 4

REA3 12 1 3 1.0000 9.9979𝑒 − 001 31 27

DIS1 8 4 4 0.9912 9.5066𝑒 − 001 13 11

DIS2 3 2 2 1.1824 7.7117𝑒 − 001 8 4

DIS3 6 4 4 0.9620 9.0021𝑒 − 001 16 14

DIS4 6 4 6 1.1551 8.7595𝑒 − 001 9 6

AGS 12 2 2 0.9786 9.7976𝑒 − 001 7 5

TG1 10 2 2 0.9768 9.6791𝑒 − 001 19 17

UWV 8 2 2 0.9989 3.0749𝑒 − 001 20 19

IH 21 11 10 1.0000 9.7497𝑒 − 001 5 3

EB1 10 1 1 0.9990 9.9370𝑒 − 001 14 8

EB2 10 1 1 0.9990 9.9370𝑒 − 001 9 8

TF1 7 2 4 1 9.9241𝑒 − 001 — 8

PSM 7 2 3 0.9495 9.1393𝑒 − 001 11 9

NN2 2 1 1 1.0000 9.4185𝑒 − 001 3 2

NN4 4 2 3 0.9969 9.3285𝑒 − 001 14 12

NN8 3 2 2 0.9971 9.5459𝑒 − 001 14 13

NN11 16 3 5 0.9048 9.0783𝑒 − 001 8 6

NN13 6 2 2 1.2147 8.0133𝑒 − 001 7 4

NN15 3 2 2 1 9.9880𝑒 − 001 7 6

NN16 8 4 4 1.0000 9.8135𝑒 − 001 10 6

HF2D10 5 2 3 1.0133 9.2187𝑒 − 001 4 3

HF2D11 5 2 3 1.0253 8.0074𝑒 − 001 4 2
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Table 5: Continued.

Problem Problem dimension Stability indicator No. of iterations

𝑛 𝑝 𝑟 𝜌(𝐴) 𝜌(𝐴(𝐹
∗
)) NM DSQP

HF2D12 5 2 4 0.9830 9.4527𝑒 − 001 13 —

HF2D13 5 2 4 0.9756 8.0712𝑒 − 001 13 12

HF2D14 5 2 4 1.0227 9.6188𝑒 − 001 14 27

HF2D15 5 2 4 1.1689 8.7364𝑒 − 001 8 6

HF2D17 5 2 4 1.0557 8.0215𝑒 − 001 9 5

HF2D18 5 2 2 1.0285 9.9607𝑒 − 001 8 6

MFP 4 3 2 0.9979 9.9567𝑒 − 001 — 11

TMD 6 2 4 1 9.8667𝑒 − 001 8 5

LAH 48 1 1 0.9742 9.7416𝑒 − 001 3 2

DLR1 10 2 2 0.9995 9.9902𝑒 − 001 9 6

DLR2 40 2 2 0.9995 9.9943𝑒 − 001 6 5

DLR3 40 2 2 0.9995 9.9943𝑒 − 001 7 5

HF1 130 1 2 0.9981 9.9573𝑒 − 001 7 6

ISS1 270 3 3 0.9997 9.9962𝑒 − 001 11 7

SQP method outperforms Newton’s method with respect to
number of iterations.

6. Conclusion

In this paper, an SQP method with line search is intro-
duced for finding the local solution of some NSDP problem
resulting from the discrete-time static output feedback design
problem. One of the two unknowns of the KKT point
obtained by the numerical method is the output feedback
controller matrix 𝐹 that represents the approximate solution
of the design problem.

In order to initialize the SQP method a straightforward
strategy was considered to create a starting feasible point
with respect to the positive definite constraints (12). The
method DSQP outperformed Newton’s method [9] applied
on a special formulation of the optimization problem. Fur-
thermore, the obtained results quite show that the method
DSQP converges from remote starting points to a KKT point
at a fast local rate, which is typical for SQP methods. Feasible
points of the NSDP problem have been also calculated by
the SQP method. Such feasible points can be utilized, for
example, by methods that look for the optimal solutions.
Finally, the considered numerical experiments show that
the proposed algorithm is effective in practical applications
related to this problem class.
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