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We first introduce a new mixed equilibrium problem with a relaxed monotone mapping in Banach spaces and prove the existence
of solutions of the equilibrium problem. Then we introduce a new iterative algorithm for finding a common element of the set
of solutions of the equilibrium problem and the set of fixed points of a quasi-𝜙-nonexpansive mapping and prove some strong
convergence theorems of the iteration. Our results extend and improve the corresponding ones given byWang et al., Takahashi and
Zembayashi, and some others.

1. Introduction

Let 𝐸 be a Banach space with the dual space 𝐸∗ and let 𝐾 be
a nonempty closed convex subset of 𝐸. Let Θ be a bifunction
from 𝐾 × 𝐾 to R, where R denotes the set of numbers. The
equilibrium problem is to find 𝑥∗ ∈ 𝐾 such that

Θ(𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾. (1)

The set of solutions of the above equilibrium problem is
denoted by EP(Θ).

In order to solve the equilibrium problem, the bifunction
Θ is usually to be assumed that following conditions are
satisfied:

(A1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐾;
(A2) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐾;
(A3) for all 𝑥, 𝑦, 𝑧 ∈ 𝐾,

lim sup
𝑡↓0

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (2)

(A4) for all 𝑥 ∈ 𝐾, Θ(𝑥, ⋅) is convex and lower semicontin-
uous.

Recently, Takahashi and Zembayashi [1] extended the
equilibrium problems and fixed point problems fromHilbert
spaces to Banach spaces. More precisely, they gave the
following iterative scheme:

𝑥
0
= 𝑥 ∈ 𝐾,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝐾 such that Θ(𝑢

𝑛
, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐾,

𝐻
𝑛
= {𝑧 ∈ 𝐾 : 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑊
𝑛
= {𝑧 ∈ 𝐾 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= Π
𝐻
𝑛
∩𝑊
𝑛

𝑥, ∀𝑛 ≥ 0,

(3)

where 𝑆 is a relatively nonexpansive mapping from 𝐾 into
itself such that 𝐹(𝑆) ∩ EP(Θ) ̸= 0, 𝐽 is the duality mapping
on 𝐸, and {𝛼

𝑛
} ⊂ [0, 1] satisfies lim inf

𝑛→∞
𝛼
𝑛
(1 − 𝛼

𝑛
) >

0 and {𝑟
𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0. They proved that

the sequence {𝑥
𝑛
} generated by (3) converges strongly to

Π
𝐹(𝑆)∩EP(Θ)𝑥, where Π𝐹(𝑆)∩EP(Θ) is the generalized projection

of 𝐸 onto 𝐹(𝑆) ∩ EP(Θ).
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Very recently, Qin et al. [2] introduced the following
hybrid algorithm to solve the equilibrium problems and
fixed point problems for quasi-𝜙-nonexpansive mappings in
a uniformly convex and uniformly smooth Banach space 𝐸
with a nonempty closed convex subset 𝐾 of 𝐸:

𝑥
0
∈ 𝐸 chosen arbitrarily,

𝐶
1
= 𝐾,

𝑥
1
= Π
𝐶
1

𝑥
0
,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ 𝛽
𝑛
𝐽𝑇𝑥
𝑛
+ 𝛾
𝑛
𝐽𝑆𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝐾 such that Θ(𝑢

𝑛
, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐾,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 0,

(4)

where 𝑇 and 𝑆 are two quasi-𝜙-nonexpansive mappings from
𝐾 into itself such that 𝐹 = 𝐹(𝑇)∩𝐹(𝑆)∩EP(Θ) ̸= 0, {𝛼

𝑛
}, {𝛽
𝑛
},

and {𝛾
𝑛
} are three sequences in [0, 1] satisfying some certain

conditions. They proved that the sequence {𝑥
𝑛
} generated by

(4) converges strongly to Π
𝐹
𝑥
0
, where Π

𝐹
is the generalized

projection of 𝐸 onto 𝐹.
In [3], Fang and Huang introduced a concept called a

relaxed 𝜂-𝛼-monotone mapping.
A mapping 𝐴 : 𝐾 → 𝐸∗ is said to be relaxed

𝜂-𝛼-monotone if there exist a mapping 𝜂 : 𝐾 × 𝐾 → 𝐸 and
a function 𝛼 : 𝐸 → R with 𝛼(𝑡𝑧) = 𝑡𝑝𝛼(𝑧) for all 𝑡 > 0 and
𝑧 ∈ 𝐸, where 𝑝 > 1 is a constant, such that

⟨𝐴𝑥 − 𝐴𝑦, 𝜂 (𝑥, 𝑦)⟩ ≥ 𝛼 (𝑥 − 𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (5)

Especially, if 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝐾 and 𝛼(𝑧) =
𝜅‖𝑧‖𝑝, where 𝑝 > 1 and 𝜅 > 1 are two constants, then 𝐴
is said to be 𝑝-monotone (see, e.g., [4–6]). They proved that,
under some suitable assumptions, the following variational
inequality is solvable: find 𝑥 ∈ 𝐾 such that

⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐾, (6)

where𝑓 is a function from𝐾 toR∪{∞}.They also proved that
the variational inequality (6) is equivalent to the following:
find 𝑥 ∈ 𝐾 such that

⟨𝐴𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 𝛼 (𝑦 − 𝑥) , ∀𝑦 ∈ 𝐾.
(7)

In this paper, let us denote the set of solutions of the
variational inequality (6) or (7) by Ω.

It is worthy to notice that it is possible thatΩ is a singleton
set, includes the finite elements or infinite elements. To show
this, we see the following example.

Example 1. Let 𝐸 = R × R and 𝐾 = [0, 1] × [0, 1]. Define
the mappings 𝐴 : 𝐾 → 𝐸∗ by 𝐴(𝑥

1
, 𝑥
2
) = (𝑥

1
, 𝑥
2
) for all

(𝑥
1
, 𝑥
2
) ∈ 𝐾, 𝛼 : 𝐸 → R by 𝛼((𝑥

1
, 𝑥
2
)) = 3𝑥2

1
+ 3𝑥2
2
for all

(𝑥
1
, 𝑥
2
) ∈ 𝐸, and 𝜂 : 𝐾 × 𝐾 → 𝐸 by 𝜂((𝑥

1
, 𝑥
2
), (𝑦
1
, 𝑦
2
)) =

(4(𝑥
1
−𝑦
1
), 4(𝑥
2
−𝑦
2
)) for all (𝑥

1
, 𝑥
2
)×(𝑦
1
, 𝑦
2
) ∈ 𝐾×𝐾.Then

the mapping 𝐴 is a relaxed 𝜂-𝛼-monotone mapping. In fact,
for all 𝑥 = (𝑥

1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
) ∈ 𝐾, we have

⟨𝐴𝑥 − 𝐴𝑦, 𝜂 (𝑥, 𝑦)⟩

= ⟨(𝑥
1
− 𝑦
1
, 𝑥
2
− 𝑦
2
) , (4 (𝑥

1
− 𝑦
1
) , 4 (𝑥

2
− 𝑦
2
))⟩

= 16 [(𝑥
1
− 𝑦
1
)
2

+ (𝑥
2
− 𝑦
2
)
2

]

≥ 3 [(𝑥
1
− 𝑦
1
)
2

+ (𝑥
2
− 𝑦
2
)
2

]

= 𝛼 (𝑥 − 𝑦) .

(8)

Hence, 𝐴 is a relaxed 𝜂-𝛼-monotone mapping. Now by
defining the different function 𝑓we find the solution setΩ of
(6). First we compute, for 𝑥 = (𝑥

1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
) ∈ 𝐾,

⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

= ⟨𝐴 (𝑥
1
, 𝑥
2
) , 𝜂 ((𝑦

1
, 𝑦
2
) , (𝑥
1
, 𝑥
2
))⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

= ⟨(𝑥
1
, 𝑥
2
) , (4 (𝑦

1
− 𝑥
1
) , 4 (𝑦

2
− 𝑥
2
))⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

= 4𝑥
1
(𝑦
1
− 𝑥
1
) + 4𝑥

2
(𝑦
2
− 𝑥
2
) + 𝑓 (𝑦) − 𝑓 (𝑥) .

(9)

(i) Let the function 𝑓(𝑥) = 𝑥
1
+ 𝑥
2
for all 𝑥 = (𝑥

1
, 𝑥
2
) ∈

𝐾. It is easy to see that the solution set Ω = {(0, 0)}.
That is, only when 𝑥 = (0, 0), (6) holds for all 𝑦 ∈ 𝐾.

(ii) Let the function𝑓(1, 1) = −20 and𝑓(𝑥
1
, 𝑥
2
) = 𝑥
1
+𝑥
2

for all𝐾 \ {(1, 1)}. By (9), it is not hard to see that the
solution set Ω = {(0, 0), (1, 1)}.

(iii) Let the function 𝑓(𝑥
1
, 𝑥
2
) = −20 for all (𝑥

1
, 𝑥
2
) =

(1/𝑛, 1/𝑛) ∈ 𝐾 where 𝑛 ∈ N and 𝑓(𝑥
1
, 𝑥
2
) = 𝑥
1
+ 𝑥
2

for all 𝐾 \ {(1/𝑛, 1/𝑛) : 𝑛 ∈ N}. Then by (9) we see
that Ω = {(0, 0), (1/𝑛, 1/𝑛) : 𝑛 ∈ N}. In this case, Ω
includes the unfinite elements.

Recently, Wang et al. [7] proposed the following equilib-
rium problem in a Hilbert space 𝐻 with a nonempty closed
convex bounded subset𝐾: find 𝑥 ∈ 𝐾 such that

Θ(𝑥, 𝑦) + ⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (10)
where 𝑇 : 𝐾 → 𝐻 is a relaxed 𝜂-𝛼-monotone mapping.
They introduced a new algorithm for solving the equilibrium
problem in Hilbert spaces.

In [3], Fang and Huang did not give the algorithm to
solve the variational inequality (6) or (7). In this paper,
motivated and inspired by the above results, we introduced a
new mixed equilibrium problem with the relaxed monotone
mapping and prove the existence of solutions of the mixed
equilibrium problem.Thenwe propose an iterative scheme to
find the common element of the set of solutions of the mixed
equilibrium problem and the set of fixed points of a quasi-
𝜙-nonexpansive mapping in Banach spaces. In particular,
the variational inequality (6) or (7) may be solved by the
algorithm proposed in this paper. Our results extend and
improve the corresponding ones given by Takahashi and
Zembayashi [1], Fang and Huang [3], and Wang et al. [7].
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2. Preliminaries

A Banach space 𝐸 is said to be strictly convex if ‖(𝑥 + 𝑦)/2‖ <
1 for all 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦. It is said
to be uniformly convex if lim

𝑛→∞
‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0 for any two

sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝐸 such that ‖𝑥

𝑛
‖ = ‖𝑦

𝑛
‖ = 1 and

lim
𝑛→∞

‖(𝑥
𝑛
+ 𝑦
𝑛
)/2‖ = 1.

Let 𝑈 = {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1} be the unit sphere of 𝐸. A
Banach space 𝐸 is said to be smooth provided

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡
(11)

exists for each 𝑥, 𝑦 ∈ 𝑈. It is said to be uniformly smooth if the
limit is attained uniformly for 𝑥, 𝑦 ∈ 𝐸.

Let 𝐸∗ be the topological dual space of 𝐸 and 𝐽 be the
normalized duality mapping from 𝐸 into 2𝐸

∗

given by

𝐽𝑥 = {𝑥
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
𝑥
∗ ,

𝑥
∗ = ‖𝑥‖} , ∀𝑥 ∈ 𝐸.

(12)

It is well known that if 𝐸 is uniformly convex, then 𝐽 is
uniformly continuous on bounded subsets of 𝐸 and if 𝐸 is
uniformly smooth, then 𝐸∗ is uniformly convex.

Recently, Alber [8] introduced a generalized projection
operatorΠ

𝐾
in a Banach space𝐸with a nonempty closed con-

vex subset 𝐾, which is an analogue of the metric projection
in Hilbert spaces:

let 𝜙 : 𝐸 × 𝐸 → R be a function defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
𝑦

2

, ∀𝑥, 𝑦 ∈ 𝐸. (13)

The generalized projection Π
𝐾
: 𝐸 → 𝐾 is amapping that

assigns to an arbitrary point 𝑥 ∈ 𝐸 the minimum point of the
functional 𝜙(𝑥, 𝑦); that is, Π

𝐾
𝑥 = 𝑥, where 𝑥 is a solution to

the minimization problem

𝜙 (𝑥, 𝑥) = inf
𝑦∈𝐾

𝜙 (𝑦, 𝑥) . (14)

The existence and uniqueness of Π
𝐾
follows from the

properties of the function 𝜙(𝑥, 𝑦) and the strict monotonicity
of the mapping 𝐽 (see, e.g., [8–12]).

Let 𝐸 be a smooth, strictly convex, and reflexive Banach
space 𝐸.Then, for all 𝑥, 𝑦 ∈ 𝐸, we have the following [8, 9, 11]:

(
𝑦
 − ‖𝑥‖)

2

≤ 𝜙 (𝑦, 𝑥) ≤ (
𝑦
 + ‖𝑥‖)

2

,

𝜙 (𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦.
(15)

Let 𝑇 be a mapping from 𝐾 into itself. A point 𝑝 ∈ 𝐾 is
said to be an asymptotic fixed point of 𝑇 [13] if 𝐾 contains a
sequence {𝑥

𝑛
} which converges weakly to 𝑝 such that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑥
𝑛

 = 0. (16)

The set of asymptotic fixed points of𝑇 is denoted by𝐹(𝑇).
The mapping 𝑇 is said to be relatively nonexpansive [14–16] if

𝐹 (𝑇) = 𝐹 (𝑇) , 𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) ,

∀𝑥 ∈ 𝐾, 𝑝 ∈ 𝐹 (𝑇) .
(17)

We recall that a mapping 𝑇 : 𝐾 → 𝐾 is said to be
nonexpansive if ‖𝑇𝑥−𝑇𝑦‖ ≤ ‖𝑥−𝑦‖ for all 𝑥, 𝑦 ∈ 𝐾, 𝑇 is said
to be 𝜙-nonexpansive if 𝜙(𝑇𝑥, 𝑇𝑦) ≤ 𝜙(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐾,
and 𝑇 is said to be quasi-𝜙-nonexpansive if

𝐹 (𝑇) ̸= 0, 𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐾, 𝑝 ∈ 𝐹 (𝑇) .
(18)

Notice that the class of quasi-𝜙-nonexpansive mappings
is more general than the class of relatively nonexpansive
mappings [14–16] which requires the strong restriction that
𝐹(𝑇) = 𝐹(𝑇). Some examples of quasi-𝜙-nonexpansive
mappings may be found in [2].

A mapping 𝑆 : 𝐸 → 𝐸 is said to be closed if for
any sequence {𝑥

𝑛
} ⊂ 𝐸 such that lim

𝑛→∞
𝑥
𝑛

= 𝑥
0
and

lim
𝑛→∞

𝑆𝑥
𝑛
= 𝑦
0
, then 𝑆𝑥

0
= 𝑦
0
.

The following lemmas are needed for the proof of our
main results in next section.

Lemma 2 (see [10]). Let 𝐸 be a uniformly convex and smooth
Banach space and let {𝑥

𝑛
}, {𝑦
𝑛
} be two sequences of 𝐸. If

𝜙(𝑥
𝑛
, 𝑦
𝑛
) → 0 and either {𝑥

𝑛
} or {𝑦

𝑛
} is bounded, then

𝑥
𝑛
− 𝑦
𝑛
→ 0.

Lemma 3 (see [8]). Let𝐾 be a nonempty closed convex subset
of a smooth Banach space 𝐸 and 𝑥 ∈ 𝐸. Then 𝑥

0
= Π
𝐾
𝑥 if and

only if

⟨𝑥
0
− 𝑦, 𝐽𝑥 − 𝐽𝑥

0
⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (19)

Lemma 4 (see [8]). Let 𝐸 be a reflexive, strictly convex, and
smooth Banach space, let𝐾 be a nonempty closed convex subset
of 𝐸 and 𝑥 ∈ 𝐸. Then

𝜙 (𝑦,Π
𝐾
𝑥) + 𝜙 (Π

𝐾
𝑥, 𝑥) ≤ 𝜙 (𝑦, 𝑥) , ∀𝑦 ∈ 𝐾. (20)

The following lemma is contained implicitly in Step 1 of
Theorem 3.1 of [17].

Lemma 5 (see [17]). Let 𝐸 be a uniformly convex and smooth
Banach space, let 𝐾 be a nonempty closed convex subset of 𝐸,
and let 𝑇 be a closed quasi-𝜙-nonexpansive mapping from 𝐾
into itself. Then 𝐹(𝑇) is a closed convex subset of 𝐾.

Lemma6 (see [18]). Let𝐸 be a uniformly convex Banach space
and let𝐵

𝑟
(0) be a closed ball of𝐸.Then there exists a continuous

strictly increasing convex function 𝑔 : [0,∞) → [0,∞) with
𝑔(0) = 0 such that

𝜆𝑥 + 𝜇𝑦 + 𝛾𝑧

2

≤ 𝜆‖𝑥‖
2

+ 𝜇
𝑦

2

+ 𝛾‖𝑧‖
2

− 𝜆𝜇𝑔 (
𝑥 − 𝑦

)

(21)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵
𝑟
(0) and 𝜆, 𝜇, 𝛾 ∈ [0, 1] with 𝜆 + 𝜇 + 𝛾 = 1.

3. Main Results

For our main results, we introduce some definitions and
lemmas as follows.
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Definition 7 (see [3]). Let 𝐸 be a Banach space with the dual
space 𝐸∗ and let 𝐾 be a nonempty subset of 𝐸. Let 𝐴 : 𝐾 →
𝐸∗ and 𝜂 : 𝐾 × 𝐾 → 𝐸 be two mappings. The mapping
𝐴 : 𝐾 → 𝐸∗ is said to be 𝜂-hemicontinuous if, for any fixed
𝑥, 𝑦 ∈ 𝐾, the function 𝑓 : [0, 1] → (−∞,∞) defined by
𝑓(𝑡) = ⟨𝐴((1 − 𝑡)𝑥 + 𝑡𝑦), 𝜂(𝑥, 𝑦)⟩ is continuous at 0+.

Definition 8. Let 𝐸 be a Banach space with the dual space 𝐸∗

and let𝐾 be a nonempty subset of 𝐸. Amapping 𝐹 : 𝐾 → 2𝐸

is called a KKMmapping if, for any {𝑥
1
, . . . , 𝑥

𝑛
} ⊂ 𝐾,

co {𝑥
1
, . . . , 𝑥

𝑛
} ⊂
𝑛

⋃
𝑖=1

𝐹 (𝑥
𝑖
) , (22)

where 2𝐸 denotes the family of all the nonempty subsets of 𝐸.

Lemma 9 (see [19]). Let 𝑀 be a nonempty subset of a
Hausdorff topological vector space 𝑋 and let 𝐹 : 𝑀 → 2𝑋

be a KKM mapping. If 𝐹(𝑥) is closed in 𝑋 for all 𝑥 ∈ 𝑋 in 𝐾
and compact for some 𝑥 ∈ 𝐾, then ∩

𝑥∈𝑀
𝐹(𝑥) ̸= 0.

Lemma 10. Let 𝐸 be a reflexive Banach space with the dual
space 𝐸∗ and let 𝐾 be a nonempty closed convex subset of 𝐸.
Let 𝐴 : 𝐾 → 𝐸∗ be an 𝜂-hemicontinuous and relaxed 𝜂-𝛼-
monotone mapping. Let Θ be a bifunction from 𝐾 × 𝐾 to R

satisfying (𝐴1) and (𝐴4) and let 𝑓 be a proper convex function
from 𝐾 × 𝐾 to R ∪ {+∞}. Let 𝑟 > 0 and 𝑧 ∈ 𝐸. Assume that

(i) 𝜂(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐾;
(ii) for any fixed 𝑢, V ∈ 𝐾, the mapping 𝑥 → ⟨𝐴V, 𝜂(𝑥, 𝑢)⟩

is convex.

Then the following problems (23) and (24) are equivalent:

(I) find 𝑥 ∈ 𝐾 such that

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐾;

(23)

(II) find 𝑥 ∈ 𝐾 such that

Θ(𝑥, 𝑦) + ⟨𝐴𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 𝛼 (𝑦 − 𝑥) , ∀𝑦 ∈ 𝐾.

(24)

Proof. Let 𝑥 ∈ 𝐾 be a solution of the problem (23). Since𝐴 is
relaxed 𝜂-𝛼monotone, we have

Θ(𝑥, 𝑦) + ⟨𝐴𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩

≥ Θ (𝑥, 𝑦) + 𝛼 (𝑦 − 𝑥) + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩

≥ 𝛼 (𝑦 − 𝑥) , ∀𝑦 ∈ 𝐾.

(25)

Thus, 𝑥 ∈ 𝐾 is a solution of the problem (24).

Conversely, let 𝑥 ∈ 𝐾 be a solution of the problem (24)
and let 𝑦 ∈ 𝐾 be any point with 𝑓(𝑦) < ∞. From (24), it
follows that 𝑓(𝑥) < ∞. Letting

𝑦
𝑡
= (1 − 𝑡) 𝑥 + 𝑡𝑦, ∀𝑡 ∈ (0, 1) , (26)

we have 𝑦
𝑡
∈ 𝐾. Since 𝑥 ∈ 𝐾 is a solution of the problem (24),

it follows that

Θ(𝑥, 𝑦
𝑡
) + ⟨𝐴𝑦

𝑡
, 𝜂 (𝑦
𝑡
, 𝑥)⟩ + 𝑓 (𝑦

𝑡
) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦
𝑡
− 𝑥, 𝐽𝑥 − 𝐽𝑧⟩

≥ 𝛼 (𝑦
𝑡
− 𝑥) = 𝑡

𝑝

𝛼 (𝑦 − 𝑥) .

(27)

The convexity of 𝑓 and conditions (i), (ii), (A1), and (A4)
imply that

𝑓 (𝑦
𝑡
) − 𝑓 (𝑥) = 𝑓 ((1 − 𝑡) 𝑥 + 𝑡𝑦)

− 𝑓 (𝑥) ≤ 𝑡 (𝑓 (𝑦) − 𝑓 (𝑥)) ,

⟨𝐴𝑦
𝑡
, 𝜂 (𝑦
𝑡
, 𝑥)⟩ ≤ (1 − 𝑡) ⟨𝐴𝑦

𝑡
, 𝜂 (𝑥, 𝑥)⟩

+ 𝑡⟨𝐴𝑦
𝑡
, 𝜂 (𝑦, 𝑥)⟩

= 𝑡 ⟨𝐴 (𝑥 + 𝑡 (𝑦 − 𝑥)) , 𝜂 (𝑦, 𝑥)⟩ ,

Θ (𝑥, 𝑦
𝑡
) ≤ (1 − 𝑡)Θ (𝑥, 𝑥) + 𝑡Θ (𝑥, 𝑦) = 𝑡Θ (𝑥, 𝑦) .

(28)

Thus, it follows from (27)-(28) that

Θ(𝑥, 𝑦) + ⟨𝐴 (𝑥 + 𝑡 (𝑦 − 𝑥)) , 𝜂 (𝑦, 𝑥)⟩

+ 𝑓 (𝑦) − 𝑓 (𝑥) +
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩

≥ 𝑡
𝑝−1

𝛼 (𝑦 − 𝑥) , ∀𝑦 ∈ 𝐾.

(29)

Since 𝐴 is 𝜂-hemicontinuous and 𝑝 > 1, letting 𝑡 → 0 in
(29), we get

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0

(30)

for all 𝑦 ∈ 𝐾 with 𝑓(𝑦) < ∞. When 𝑓(𝑦) = +∞, the relation

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0

(31)

is trivial. Therefore, 𝑥 ∈ 𝐾 is also a solution of the problem
(23). This completes the proof.

Lemma 11. Let 𝐸 be a reflexive Banach space with the dual
space𝐸∗ and let𝐾 be a nonempty closed convex bounded subset
of 𝐸. Let 𝐴 : 𝐾 → 𝐸∗ be an 𝜂-hemicontinuous and relaxed
𝜂-𝛼-monotone mapping, letΘ be a bifunction from𝐾×𝐾 toR
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satisfying (𝐴1) and (𝐴4), and let𝑓 be a proper convex function
from 𝐾 × 𝐾 to R ∪ {+∞}. Let 𝑟 > 0 and 𝑧 ∈ 𝐸. Assume that

(i) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐾;
(ii) for any fixed 𝑢, V ∈ 𝐾, the mapping 𝑥 → ⟨𝐴V, 𝜂(𝑥, 𝑢)⟩

is convex and lower semicontinuous;
(iii) 𝛼 : 𝐸 → R is weakly lower semicontinuous; that is, for

any net {𝑥
𝛽
}, {𝑥
𝛽
} converges to 𝑥 in 𝜎(𝐸, 𝐸∗) implying

that 𝛼(𝑥) ≤ lim inf 𝛼(𝑥
𝛽
).

Then the problem (23) is solvable.

Proof. Define two set-valued mappings 𝐹, 𝐺 : 𝐾 → 2𝐸 as
follows:

𝐹 (𝑦) = {𝑥 ∈ 𝐾 : Θ (𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0} , ∀𝑦 ∈ 𝐾,

𝐺 (𝑦) = {𝑥 ∈ 𝐾 : Θ (𝑥, 𝑦) + ⟨𝐴𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 𝛼 (𝑦 − 𝑥)} , ∀𝑦 ∈ 𝐾,

(32)

respectively.
Now, we claim that 𝐹 is a KKM mapping. If 𝐹 is not a

KKM mapping, then there exist {𝑦
1
, . . . , 𝑦

𝑛
} ⊂ 𝐾 and 𝑡

𝑖
> 0,

𝑖 = 1, . . . , 𝑛, such that
𝑛

∑
𝑖=1

𝑡
𝑖
= 1, 𝑦 =

𝑛

∑
𝑖=1

𝑡
𝑖
𝑦
𝑖
∉
𝑛

⋃
𝑖=1

𝐹 (𝑦
𝑖
) . (33)

By the definition of 𝐹, we have

Θ(𝑦, 𝑦
𝑖
) + ⟨𝐴𝑦, 𝜂 (𝑦

𝑖
, 𝑦)⟩ + 𝑓 (𝑦

𝑖
) − 𝑓 (𝑦)

+
1

𝑟
⟨𝑦
𝑖
− 𝑦, 𝐽𝑦 − 𝐽𝑧⟩ < 0, ∀𝑖 = 1, . . . , 𝑛.

(34)

It follows that

0 = Θ (𝑦, 𝑦)

= Θ(𝑦,
𝑛

∑
𝑖=1

𝑡
𝑖
𝑦
𝑖
) +⟨𝐴𝑦, 𝜂(

𝑛

∑
𝑖=1

𝑡
𝑖
𝑦
𝑖
, 𝑦)⟩

≤
𝑛

∑
𝑖=1

𝑡
𝑖
Θ(𝑦, 𝑦

𝑖
) +
𝑛

∑
𝑖=1

𝑡
𝑖
⟨𝐴𝑦, 𝜂 (𝑦

𝑖
, 𝑦)⟩

<
𝑛

∑
𝑖=1

𝑡
𝑖
(𝑓 (𝑦) − 𝑓 (𝑦

𝑖
) +

1

𝑟
⟨𝑦 − 𝑦

𝑖
, 𝐽𝑦 − 𝐽𝑧⟩)

= 𝑓 (𝑦) −
𝑛

∑
𝑖=1

𝑡
𝑖
𝑓 (𝑦
𝑖
) ≤ 𝑓 (𝑦) − 𝑓 (𝑦)

= 0,

(35)

which is a contradiction. This implies that 𝐹 is a KKM
mapping.

Now, we prove that

𝐹 (𝑦) ⊂ 𝐺 (𝑦) , ∀𝑦 ∈ 𝐾. (36)

For any given 𝑦 ∈ 𝐾, letting 𝑥 ∈ 𝐹(𝑦), then

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0.

(37)

Since 𝐴 is relaxed 𝜂-𝛼-monotone, we have

Θ(𝑥, 𝑦) + ⟨𝐴𝑦, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩

≥ Θ (𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝛼 (𝑦 − 𝑥)

+ 𝑓 (𝑦) − 𝑓 (𝑥) +
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩

≥ 𝛼 (𝑦 − 𝑥) ,

(38)

which implies that 𝑥 ∈ 𝐺(𝑦) and so

𝐹 (𝑦) ⊂ 𝐺 (𝑦) , ∀𝑦 ∈ 𝐾. (39)

As in the proof ofTheorem 2.2 in [3], also, we can obtain

⋂
𝑦∈𝐾

𝐹 (𝑦) = ⋂
𝑦∈𝐾

𝐺 (𝑦) ̸= 0. (40)

Hence, there exists 𝑥 ∈ 𝐾 such that

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥)

+
1

𝑟
⟨𝑦 − 𝑥, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐾.

(41)

This completes the proof.

Next, let us denote the set of solutions of the following
mixed equilibrium problem by EP(Θ, 𝐴): find 𝑥 ∈ 𝐾 such
that

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝜂 (𝑦, 𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐾.
(42)

It is easy to see that ifΘ(𝑥, 𝑦) ≡ 0 for all 𝑥, 𝑦 ∈ 𝐾, then the
above mixed equilibrium problem reduces to the variational
inequality problem (6) or (7).

Lemma 12. Let 𝐸 be a uniformly smooth, strictly convex
Banach space with the dual space 𝐸∗ and let 𝐾 be a nonempty
closed convex bounded subset of 𝐸. Let 𝐴 : 𝐾 → 𝐸∗ be an 𝜂-
hemicontinuous and relaxed 𝜂-𝛼-monotone mapping, let Θ be
a bifunction from 𝐾 × 𝐾 to R satisfying (A1), (A2), and (A4),
and let𝑓 be a proper convex function from𝐾×𝐾 toR∪{+∞}.
Let 𝑟 > 0 and define a mapping 𝑇

𝑟
: 𝐸 → 𝐾 as follows:

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐾 : Θ (𝑧, 𝑦) + ⟨𝐴𝑧, 𝜂 (𝑦, 𝑧)⟩ + 𝑓 (𝑦) − 𝑓 (𝑧)

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾}

(43)
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for all 𝑥 ∈ 𝐸. Assume that
(i) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐾;
(ii) for any fixed 𝑢, V ∈ 𝐾, the mapping 𝑥 → ⟨𝐴V, 𝜂(𝑥, 𝑢)⟩

is convex and lower semicontinuous;
(iii) 𝛼 : 𝐸 → R is weakly lower semicontinuous; that is,

for any net {𝑥
𝛽
}, 𝑥
𝛽
converges to 𝑥 in 𝜎(𝐸, 𝐸∗) implying that

𝛼(𝑥) ≤ lim inf 𝛼(𝑥
𝛽
);

(iv) for any 𝑥, 𝑦 ∈ 𝐾, 𝛼(𝑥 − 𝑦) + 𝛼(𝑦 − 𝑥) ≥ 0;
(v) ⟨𝐴(𝑡𝑧

1
+ (1 − 𝑡)𝑧

2
), 𝜂(𝑦, 𝑡𝑧

1
+ (1 − 𝑡)𝑧

2
)⟩ ≥

𝑡⟨𝐴𝑧
1
, 𝜂(𝑦, 𝑧

1
)⟩ + (1 − 𝑡)⟨𝐴𝑧

2
, 𝜂(𝑦, 𝑧

2
)⟩, for any 𝑧

1
, 𝑧
2
, 𝑦 ∈ 𝐾

and 𝑡 ∈ [0, 1].
Then the following hold:

(1) 𝑇
𝑟
is single-valued;

(2) 𝑇
𝑟
is a firmly nonexpansive-type mapping; that is, for

all 𝑥, 𝑦 ∈ 𝐸,

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦⟩ ≤ ⟨𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ ; (44)

(3) 𝐹(𝑇
𝑟
) = EP(Θ, 𝐴);

(4) 𝑇
𝑟
is quasi-𝜙-nonexpansive satisfying 𝜙(𝑤, 𝑇

𝑟
𝑥) +

𝜙(𝑇
𝑟
𝑥, 𝑥) ≤ 𝜙(𝑤, 𝑥) for all 𝑤 ∈ 𝐹(𝑇

𝑟
) and 𝑥 ∈ 𝐸;

(5) EP(Θ, 𝐴) is closed and convex.

Proof. We claim that 𝑇
𝑟
is single-valued. Indeed, for any 𝑥 ∈

𝐶 and 𝑟 > 0, let 𝑧
1
, 𝑧
2
∈ 𝑇
𝑟
𝑥. Then we have

Θ(𝑧
1
, 𝑧
2
) + ⟨𝐴𝑧

1
, 𝜂 (𝑧
2
, 𝑧
1
)⟩ + 𝑓 (𝑧

2
) − 𝑓 (𝑧

1
)

+
1

𝑟
⟨𝑧
2
− 𝑧
1
, 𝐽𝑧
1
− 𝐽𝑥⟩ ≥ 0,

Θ (𝑧
2
, 𝑧
1
) + ⟨𝐴𝑧

2
, 𝜂 (𝑧
1
, 𝑧
2
)⟩ + 𝑓 (𝑧

1
) − 𝑓 (𝑧

2
)

+
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑥⟩ ≥ 0.

(45)

Adding the two inequalities, it follows from (i) that

Θ(𝑧
1
, 𝑧
2
) + Θ (𝑧

2
, 𝑧
1
) + ⟨𝐴𝑧

1
− 𝐴𝑧
2
, 𝜂 (𝑧
2
, 𝑧
1
)⟩

+
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ ≥ 0.

(46)

Thus, from (A2), we have

⟨𝐴𝑧
1
− 𝐴𝑧
2
, 𝜂 (𝑧
2
, 𝑧
1
)⟩ +

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ ≥ 0;

(47)

that is,
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ ≥ ⟨𝐴𝑧

2
− 𝐴𝑧
1
, 𝜂 (𝑧
2
, 𝑧
1
)⟩ . (48)

Since 𝑇 is relaxed 𝜂-𝛼-monotone and 𝑟 > 0, one has

⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ ≥ 𝑟𝛼 (𝑧

2
− 𝑧
1
) . (49)

In (48), exchanging 𝑧
1
to 𝑧
2
, we get

1

𝑟
⟨𝑧
2
− 𝑧
1
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩ ≥ ⟨𝐴𝑧

1
− 𝐴𝑧
2
, 𝜂 (𝑧
1
, 𝑧
2
)⟩

≥ 𝛼 (𝑧
1
− 𝑧
2
) ;

(50)

that is,

⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ ≥ 𝑟𝛼 (𝑧

1
− 𝑧
2
) . (51)

Thus, it follows from (49), (51), and (iv) that

⟨𝑧
1
− 𝑧
2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ ≥ 0. (52)

Since 𝐸 is strictly convex, we have 𝑧
1
= 𝑧
2
.

Next, we claim that 𝑇
𝑟
is a firmly nonexpansive-type

mapping. Indeed, for any 𝑥, 𝑦 ∈ 𝐾, we have

Θ(𝑇
𝑟
𝑥, 𝑇
𝑟
𝑦) + ⟨𝐴𝑇

𝑟
𝑥, 𝜂 (𝑇

𝑟
𝑦, 𝑇
𝑟
𝑥)⟩ + 𝑓 (𝑇

𝑟
𝑦) − 𝑓 (𝑇

𝑟
𝑥)

+
1

𝑟
⟨𝑇
𝑟
𝑦 − 𝑇
𝑟
𝑥, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑥⟩ ≥ 0,

Θ (𝑇
𝑟
𝑦, 𝑇
𝑟
𝑥) + ⟨𝐴𝑇

𝑟
𝑦, 𝜂 (𝑇

𝑟
𝑥, 𝑇
𝑟
𝑦)⟩ + 𝑓 (𝑇

𝑟
𝑥) − 𝑓 (𝑇

𝑟
𝑦)

+
1

𝑟
⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑇
𝑟
𝑦 − 𝐽𝑦⟩ ≥ 0.

(53)

Adding the above two inequalities, by (i) and (A2), we get

⟨𝐴𝑇
𝑟
𝑥 − 𝐴𝑇

𝑟
𝑦, 𝜂 (𝑇

𝑟
𝑦, 𝑇
𝑟
𝑥)⟩

+
1

𝑟
⟨𝑇
𝑟
𝑦 − 𝑇
𝑟
𝑥, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦 − 𝐽𝑥 + 𝐽𝑦⟩ ≥ 0;

(54)

that is,
1

𝑟
⟨𝑇
𝑟
𝑦 − 𝑇
𝑟
𝑥, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦 − 𝐽𝑥 + 𝐽𝑦⟩

≥ ⟨𝐴𝑇
𝑟
𝑦 − 𝐴𝑇

𝑟
𝑥, 𝜂 (𝑇

𝑟
𝑦, 𝑇
𝑟
𝑥)⟩ .

(55)

Repeating the process from (48) to (52), we can obtain

⟨𝑇
𝑟
𝑦 − 𝑇
𝑟
𝑥, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦 − 𝐽𝑥 + 𝐽𝑦⟩ ≥ 0. (56)

Therefore, we have

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦⟩ ≤ ⟨𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ , (57)

which shows that 𝑇
𝑟
is firmly nonexpansive.

Next, we claim that 𝐹(𝑇
𝑟
) = EP(Θ, 𝐴). Indeed, we have

the following:

𝑢 ∈ 𝐹 (𝑇
𝑟
) ⇐⇒ 𝑢 = 𝑇

𝑟
𝑢

⇐⇒ Θ(𝑢, 𝑦) + ⟨𝐴𝑢, 𝜂 (𝑦, 𝑢)⟩ + 𝑓 (𝑦) − 𝑓 (𝑢)

+
1

𝑟
⟨𝑦 − 𝑢, 𝐽𝑢 − 𝐽𝑢⟩ ≥ 0, ∀𝑦 ∈ 𝐾

⇐⇒ Θ(𝑢, 𝑦) + ⟨𝐴𝑢, 𝜂 (𝑦, 𝑢)⟩

+ 𝑓 (𝑦) − 𝑓 (𝑢) ≥ 0, ∀𝑦 ∈ 𝐾

⇐⇒ 𝑢 ∈ EP (Θ, 𝐴) .
(58)

Finally, we prove (4) and (5). Indeed, we can obtain (4)
directly from Lemma 2.8 and Lemma 2.9 of [1]. Moreover,
since 𝑇

𝑟
is quasi-𝜙-nonexpansive, one sees that 𝑇

𝑟
is closed

and convex from Lemma 5.Therefore, EP(Θ, 𝐴) is also closed
and convex. This completes the proof.
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Remark 13. In (42), if 𝐴(𝑥) ≡ 0 for all 𝑥 ∈ 𝐾, then
the equilibrium problem (42) is reduced to the equilibrium
problem in [20] and if 𝜂(𝑦, 𝑥) = 𝑦 − 𝑥 for all 𝑥, 𝑦 ∈ 𝐾,
then then the equilibrium problem (42) is reduced to the
equilibrium problem in [21].

In the following, we give the main result of this paper.

Theorem 14. Let 𝐾 be a nonempty closed convex bounded
subset of a uniformly convex, uniformly smooth Banach space
𝐸 with the dual space 𝐸∗. Let 𝐴 : 𝐾 → 𝐸∗ be an 𝜂-
hemicontinuous and relaxed 𝜂-𝛼 monotone mapping, let Θ be
a bifunction from𝐾×𝐾 toR satisfying (A1)–(A4), and let𝑓 be
a proper convex and lower semicontinuous function from𝐾×𝐾
toR∪{+∞}. Let 𝑆 : 𝐸 → 𝐸 be a closed quasi-𝜙-nonexpansive
mapping such that 𝐹 = 𝐹(𝑆) ∩ EP(Θ, 𝐴) ̸= 0. Assume that
the conditions (i)–(v), Lemma 12, and the following condition
hold:

(vi) for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐾,

lim sup
𝑡↓0

⟨𝐴𝑧, 𝜂 (𝑥, 𝑡𝑦 + (1 − 𝑡) 𝑤)⟩ ≤ ⟨𝐴𝑧, 𝜂 (𝑥, 𝑤)⟩ . (59)

Let {𝑥
𝑛
} be a sequence in 𝐾 generated by the following

manner:

𝑥
1
= 𝑥 ∈ 𝐾 chosen arbitrarily,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝐾 such that Θ(𝑢

𝑛
, 𝑦)

+ ⟨𝐴𝑢
𝑛
, 𝜂 (𝑦, 𝑢

𝑛
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑢

𝑛
)

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐾,

𝐶
𝑛
= {𝑧 ∈ 𝐾 : 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝐷
𝑛
=
𝑛

⋂
𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= Π
𝐷
𝑛

𝑥, ∀𝑛 ≥ 1,

(60)

where 𝐽 is the duality mapping on 𝐸, {𝛼
𝑛
} ⊂ (0, 1) with

0 < lim inf
𝑛→∞

𝛼
𝑛
(1 − 𝛼

𝑛
), and {𝑟

𝑛
} ⊂ (𝑟,∞) with 𝑟 > 0.

Then the sequence {𝑥
𝑛
} generated by (52) converges strongly to

Π
𝐹
𝑥.

Proof. First, since the inequality 𝜙(𝑧, 𝑢
𝑛
) ≤ 𝜙(𝑧, 𝑥

𝑛
) is

equivalent to the following:

2 (⟨𝑧, 𝐽𝑥
𝑛
⟩ − ⟨𝑧, 𝐽𝑢

𝑛
⟩) ≤

𝑥𝑛

2

−
𝑢𝑛


2

, (61)

𝐶
𝑛
is closed and convex for all 𝑛 ≥ 1. It follows from the

definition of𝐷
𝑛
that𝐷

𝑛
is also closed and convex for all 𝑛 ≥ 1.

On the other hand, since every 𝑇
𝑟
𝑛

is quasi-𝜙-non-
expansive, according to Lemma 12 (4), we have, for any𝑤 ∈ 𝐹,

𝜙 (𝑤, 𝑢
𝑛
) = 𝜙 (𝑤, 𝑇

𝑟
𝑛

𝑦
𝑛
)

≤ 𝜙 (𝑤, 𝑦
𝑛
)

= 𝜙 (𝑤, 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛
))

= ‖𝑤‖
2

− 2𝛼
𝑛
⟨𝑤𝐽𝑥
𝑛
⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑤, 𝐽𝑆𝑥

𝑛
⟩

+
𝛼𝑛𝐽𝑥𝑛 + (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛


2

≤ ‖𝑤‖
2

− 2𝛼
𝑛
⟨𝑤𝐽𝑥
𝑛
⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑤, 𝐽𝑆𝑥

𝑛
⟩

+ 𝛼
𝑛

𝑥𝑛

2

+ (1 − 𝛼
𝑛
)
𝐽𝑆𝑥𝑛


2

= 𝛼
𝑛
𝜙 (𝑤, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑤, 𝑆𝑥

𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑤, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑤, 𝑥

𝑛
)

= 𝜙 (𝑤, 𝑥
𝑛
) ,

(62)

which shows that 𝑤 ∈ 𝐶
𝑛
for all 𝑛 ≥ 1. This implies that 𝐹 ⊂

𝐶
𝑛
for all 𝑛 ≥ 1.The definition of𝐷

𝑛
shows that𝐹 ⊂ 𝐷

𝑛
for all

𝑛 ≥ 1. Hence, the sequence {𝑥
𝑛
} generated by the algorithm

(60) is well defined.
Note that 𝐷

𝑛
⊂ 𝐷
𝑛−1

for all 𝑛 ≥ 1. Hence, by 𝑥
𝑛+1

=
Π
𝐷
𝑛

𝑥 ∈ 𝐷
𝑛
⊂ 𝐷
𝑛−1

and 𝑥
𝑛
= Π
𝐷
𝑛−1

𝑥, we have

𝜙 (𝑥
𝑛
, 𝑥) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥) , ∀𝑛 ≥ 1. (63)

Therefore, {𝜙(𝑥
𝑛
, 𝑥)} is nondecreasing. Since {𝑥

𝑛
} ⊂ 𝐾,

{𝜙(𝑥
𝑛
, 𝑥)} is bounded. It follows that the limit of {𝜙(𝑥

𝑛
, 𝑥)}

exists.
Let 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛. Since 𝑥

𝑚
= Π
𝐷
𝑚−1

𝑥 ∈ 𝐷
𝑚−1

⊂
𝐷
𝑛−1

, from Lemma 4 it follows that

𝜙 (𝑥
𝑚
, 𝑥
𝑛
) = 𝜙 (𝑥

𝑚
, Π
𝐷
𝑛−1

𝑥) ≤ 𝜙 (𝑥
𝑚
, 𝑥)

−𝜙 (Π
𝐷
𝑛−1

𝑥, 𝑥) = 𝜙 (𝑥
𝑚
, 𝑥) − 𝜙 (𝑥

𝑛
, 𝑥) .

(64)

Letting 𝑛 → ∞ in (64), it follows that 𝜙(𝑥
𝑚
, 𝑥
𝑛
) → 0. It

follows from Lemma 2 that ‖𝑥
𝑚
− 𝑥
𝑛
‖ → 0 as 𝑚, 𝑛 → ∞.

Hence {𝑥
𝑛
} is a Cauchy sequence.There exists a point 𝑥∗ ∈ 𝐾

such that 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞.

Next, we show that 𝑥∗ ∈ 𝐹(𝑆). By taking 𝑝 = 1 in (64),
one arrives at

lim
𝑛→∞

𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (65)

From Lemma 2, it follows that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (66)

Noticing that 𝑥
𝑛+1

∈ 𝐷
𝑛
⊂ 𝐶
𝑛
for all 𝑛 ≥ 1, we obtain

𝜙 (𝑥
𝑛+1

, 𝑢
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
) . (67)
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Thus, it follows from (65) that

lim
𝑛→∞

𝜙 (𝑥
𝑛+1

, 𝑢
𝑛
) = 0. (68)

It follows from Lemma 2 that

lim
𝑛→∞

𝑥𝑛+1 − 𝑢
𝑛

 = 0. (69)

Combining (66) with (69), one has

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛

 = 0. (70)

Since 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞, we have

𝑢
𝑛
→ 𝑥
∗

(𝑛 → ∞) . (71)

On the other hand, since 𝐽 is uniformly norm-to-norm
continuous on bounded sets, one has

lim
𝑛→∞

𝐽𝑥𝑛 − 𝐽𝑢
𝑛

 = 0. (72)

Since 𝐸 is a uniformly smooth Banach space, one knows
that 𝐸∗ is a uniformly convex Banach space. Let 𝑟 =
sup
𝑛≥1

{‖𝑥
𝑛
‖, ‖𝑆𝑥

𝑛
‖}. It follows from Lemma 6 that, for any

𝑤 ∈ 𝐹,

𝜙 (𝑤, 𝑢
𝑛
) = 𝜙 (𝑤, 𝑇

𝑟
𝑛

𝑦
𝑛
)

≤ 𝜙 (𝑤, 𝑦
𝑛
)

= 𝜙 (𝑤, 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛
))

= ‖𝑤‖
2

− 2𝛼
𝑛
⟨𝑤, 𝐽𝑥

𝑛
⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑤, 𝐽𝑆𝑥

𝑛
⟩

+
𝛼𝑛𝐽𝑥𝑛 + (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛


2

≤ ‖𝑤‖
2

− 2𝛼
𝑛
⟨𝑤, 𝐽𝑥

𝑛
⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑤, 𝐽𝑆𝑥

𝑛
⟩

+ 𝛼
𝑛

𝐽𝑥𝑛

2

+ (1 − 𝛼
𝑛
)
𝐽𝑆𝑥𝑛


2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝑔 (

𝐽𝑆𝑥𝑛 − 𝐽𝑥
𝑛

)

= 𝛼
𝑛
𝜙 (𝑤, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑤, 𝑆𝑥

𝑛
)

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝑔 (

𝐽𝑆𝑥𝑛 − 𝐽𝑥
𝑛

)

≤ 𝜙 (𝑤, 𝑥
𝑛
) − 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝑔 (

𝐽𝑆𝑥𝑛 − 𝐽𝑥
𝑛

) .

(73)

It follows that

𝛼
𝑛
(1 − 𝛼

𝑛
) 𝑔 (

𝐽𝑆𝑥𝑛 − 𝐽𝑥
𝑛

) ≤ 𝜙 (𝑤, 𝑥
𝑛
) − 𝜙 (𝑤, 𝑢

𝑛
) .

(74)

On the other hand, one has

𝜙 (𝑤, 𝑥
𝑛
) − 𝜙 (𝑤, 𝑢

𝑛
) =

𝑥𝑛

2

−
𝑢𝑛


2

− 2 ⟨𝑤, 𝐽𝑥
𝑛
− 𝐽𝑢
𝑛
⟩

≤
𝑥𝑛 − 𝑢

𝑛

 (
𝑥𝑛

 +
𝑢𝑛

)

+ 2 ‖𝑤‖
𝐽𝑥𝑛 − 𝐽𝑢

𝑛

 .

(75)

Thus, it follows from (70) and (72) that

𝜙 (𝑤, 𝑥
𝑛
) − 𝜙 (𝑤, 𝑢

𝑛
) → 0 as 𝑛 → ∞. (76)

Noting that 0 < lim inf
𝑛→∞

𝛼
𝑛
(1−𝛼
𝑛
) and using (74) and

(76), we get

𝑔 (
𝐽𝑥𝑛 − 𝐽𝑆𝑥

𝑛

) → 0 (𝑛 → ∞) . (77)

It follows from the continuousness of 𝑔 that
𝐽𝑥𝑛 − 𝐽𝑆𝑥

𝑛

 → 0 (𝑛 → ∞) . (78)

Since 𝐽−1 is also uniformly norm-to-norm continuous on
bounded sets, one gets

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0. (79)

From the closeness of 𝑆, we can conclude that 𝑥∗ ∈ 𝐹(𝑆).
Next, we show that 𝑥∗ ∈ EP(Θ, 𝐴). From (62), we arrived

at

𝜙 (𝑤, 𝑦
𝑛
) ≤ 𝜙 (𝑤, 𝑥

𝑛
) . (80)

From 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑦
𝑛
and Lemma 12 (4), one has

𝜙 (𝑢
𝑛
, 𝑦
𝑛
) = 𝜙 (𝑇

𝑟
𝑛

𝑦
𝑛
, 𝑦
𝑛
)

≤ 𝜙 (𝑤, 𝑦
𝑛
) − 𝜙 (𝑤, 𝑇

𝑟
𝑛

𝑦
𝑛
)

≤ 𝜙 (𝑤, 𝑥
𝑛
) − 𝜙 (𝑤, 𝑇

𝑟
𝑛

𝑦
𝑛
)

= 𝜙 (𝑤, 𝑥
𝑛
) − 𝜙 (𝑤, 𝑢

𝑛
) .

(81)

Thus, it follows from (76) that

𝜙 (𝑢
𝑛
, 𝑦
𝑛
) → 0 (𝑛 → ∞) . (82)

From Lemma 2, we get
𝑢𝑛 − 𝑦

𝑛

 → 0 (𝑛 → ∞) . (83)

Noting that 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑦
𝑛
, one obtains

Θ(𝑢
𝑛
, 𝑦) + ⟨𝐴𝑢

𝑛
, 𝜂 (𝑦, 𝑢

𝑛
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑢

𝑛
)

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐾.

(84)

From (A4) and (i), it follows that

1

𝑟
𝑛

𝑦 − 𝑢
𝑛


𝐽𝑢𝑛 − 𝐽𝑦

𝑛



≥ ⟨𝐴𝑢
𝑛
, 𝜂 (𝑢
𝑛
, 𝑦)⟩ + 𝑓 (𝑢

𝑛
) − 𝑓 (𝑦) − Θ (𝑢

𝑛
, 𝑦)

≥ ⟨𝐴𝑢
𝑛
, 𝜂 (𝑢
𝑛
, 𝑦)⟩ + 𝑓 (𝑢

𝑛
) − 𝑓 (𝑦) + Θ (𝑦, 𝑢

𝑛
) ,

∀𝑦 ∈ 𝐾.

(85)

Since 𝐽 is uniformly norm-to-norm continuous on
bounded sets, one has

lim
𝑛→∞

𝐽𝑢𝑛 − 𝐽𝑦
𝑛

 = 0. (86)
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Noticing that 𝑟
𝑛
≥ 𝑟 > 0 for all 𝑛 ≥ 1, it follows from (A4),

(ii), (85), and (86) that

0 ≥ ⟨𝐴𝑥
∗

, 𝜂 (𝑥
∗

, 𝑦)⟩ + 𝑓 (𝑥
∗

) − 𝑓 (𝑦) + Θ (𝑦, 𝑥
∗

) ,

∀𝑦 ∈ 𝐾.
(87)

For all 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐾, define 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑥∗.

Noticing that 𝑥∗, 𝑦 ∈ 𝐾, one obtains 𝑦
𝑡
∈ 𝐾, which yields

that

0 ≥ ⟨𝐴𝑥
∗

, 𝜂 (𝑥
∗

, 𝑦
𝑡
)⟩ + 𝑓 (𝑥

∗

) − 𝑓 (𝑦
𝑡
) + Θ (𝑦

𝑡
, 𝑥
∗

) .
(88)

It follows from (A1), (A4), (i), (ii), the convexity of 𝑓, and
(88) that

0 = Θ (𝑦
𝑡
, 𝑦
𝑡
) + ⟨𝐴𝑥

∗

, 𝜂 (𝑦
𝑡
, 𝑦
𝑡
)⟩ + 𝑓 (𝑦

𝑡
) − 𝑓 (𝑦

𝑡
)

≤ 𝑡 [Θ (𝑦
𝑡
, 𝑦) + ⟨𝐴𝑥

∗

, 𝜂 (𝑦, 𝑦
𝑡
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑦

𝑡
)]

+ (1 − 𝑡) [Θ (𝑦
𝑡
, 𝑥
∗

) + ⟨𝐴𝑥
∗

, 𝜂 (𝑝, 𝑦
𝑡
)⟩

+𝑓 (𝑥
∗

) − 𝑓 (𝑦
𝑡
)]

≤ 𝑡 [Θ (𝑦
𝑡
, 𝑦) + ⟨𝐴𝑥

∗

, 𝜂 (𝑦, 𝑦
𝑡
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑦

𝑡
)] ;

(89)

that is,

Θ(𝑦
𝑡
, 𝑦) + ⟨𝐴𝑥

∗

, 𝜂 (𝑦, 𝑦
𝑡
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑦

𝑡
) ≥ 0. (90)

Letting 𝑡 ↓ 0, it follows from (A3), (vi), and the lower
semicontinuity of 𝑓 that

Θ(𝑥
∗

, 𝑦) + ⟨𝐴𝑥
∗

, 𝜂 (𝑦, 𝑥
∗

)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥
∗

) ≥ 0,

∀𝑦 ∈ 𝐾.
(91)

This implies that 𝑥∗ ∈ EP(Θ, 𝐴).
Finally, we prove 𝑥∗ = Π

𝐹
𝑥. From 𝑥

𝑛+1
= Π
𝐷
𝑛

𝑥, we see
that

⟨𝑥
𝑛+1

− 𝑧, 𝐽𝑥 − 𝐽𝑥
𝑛+1

⟩ ≥ 0, ∀𝑧 ∈ 𝐷
𝑛
. (92)

Since 𝐹 ⊂ 𝐷
𝑛
for each 𝑛 ≥ 1, we have

⟨𝑥
𝑛+1

− 𝑤, 𝐽𝑥 − 𝐽𝑥
𝑛+1

⟩ ≥ 0, ∀𝑤 ∈ 𝐹. (93)

By taking the limit in (93), one has

⟨𝑥
∗

− 𝑤, 𝐽𝑥 − 𝐽𝑥
∗

⟩ ≥ 0, ∀𝑤 ∈ 𝐹. (94)

At this point, in view of Lemma 3, one sees that 𝑥∗ = Π
𝐹
𝑥.

This completes the proof.

IfΘ ≡ 0 inTheorem 14, then we have the following result.

Corollary 15. Let 𝐾 be a nonempty closed convex bounded
subset of a uniformly convex, uniformly smooth Banach space
𝐸 with the dual space 𝐸∗. Let 𝐴 : 𝐾 → 𝐸∗ be an 𝜂-
hemicontinuous and relaxed 𝜂-𝛼-monotone mapping and let
𝑓 be a proper convex and lower semicontinuous function from

𝐾 × 𝐾 to R ∪ {+∞}. Let 𝑆 : 𝐸 → 𝐸 be a closed quasi-𝜙-
nonexpansivemapping such that𝐹 = 𝐹(𝑆)∩Ω ̸= 0. Assume that
the conditions (i)–(v), Lemma 12, and the following condition
hold:

(vi) for all 𝑥, 𝑦, 𝑧, 𝑝 ∈ 𝐾,

lim sup
𝑡↓0

⟨𝐴𝑧, 𝜂 (𝑥, 𝑡𝑦 + (1 − 𝑡) 𝑝)⟩ ≤ ⟨𝐴𝑧, 𝜂 (𝑥, 𝑝)⟩ . (95)

Let {𝑥
𝑛
} be a sequence in 𝐾 generated by the following

manner:

𝑥
1
= 𝑥 ∈ 𝐾 chosen arbitrarily,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝐾 such that ⟨𝐴𝑢

𝑛
, 𝜂 (𝑦, 𝑢

𝑛
)⟩ + 𝑓 (𝑦) − 𝑓 (𝑢

𝑛
) ≥ 0,

∀𝑦 ∈ 𝐾,

𝐶
𝑛
= {𝑧 ∈ 𝐾 : 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝐷
𝑛
=
𝑛

⋂
𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= Π
𝐷
𝑛

𝑥, ∀𝑛 ≥ 1,

(96)

where 𝐽 is the duality mapping on 𝐸, {𝛼
𝑛
} ⊂ (0, 1) with 0 <

lim inf
𝑛→∞

𝛼
𝑛
(1 − 𝛼

𝑛
), and {𝑟

𝑛
} ⊂ (𝑟,∞) with 𝑟 > 0. Then the

sequence {𝑥
𝑛
} generated by (96) converges strongly to Π

𝐹
𝑥.

If𝐴 ≡ 0 and𝑓 ≡ 0 inTheorem 14, thenwe have following.

Corollary 16. Let 𝐾 be a nonempty closed convex subset of
a uniformly convex, uniformly smooth Banach space 𝐸 with
the dual space 𝐸∗. Let Θ be a bifunction from 𝐾 × 𝐾 to R

satisfying (A1)–(A4) and let 𝑆 : 𝐸 → 𝐸 be a closed quasi-
𝜙-nonexpansive mapping such that 𝐹 = 𝐹(𝑆) ∩ EP(Θ) ̸= 0. Let
{𝑥
𝑛
} be a sequence generated by the following manner:

𝑥
1
= 𝑥 ∈ 𝐸 chosen arbitrarily,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑆𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝐾 such that Θ(𝑢

𝑛
, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐾,

𝐶
𝑛
= {𝑧 ∈ 𝐸 : 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝐷
𝑛
=
𝑛

⋂
𝑖=1

𝐶
𝑖
,

𝑥
𝑛+1

= Π
𝐷
𝑛

𝑥, ∀𝑛 ≥ 1,

(97)

where 𝐽 is the duality mapping on 𝐸, {𝛼
𝑛
} ⊂ (0, 1) with 0 <

lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1 and {𝑟

𝑛
} ⊂ (𝑟,∞) with

𝑟 > 0. Then the sequence {𝑥
𝑛
} generated by (97) converges

strongly to Π
𝐹
𝑥.
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Remark 17. Theorem 14 improves the corresponding ones
of Wang et al. [7] from Hilbert spaces to Banach spaces
and those of Takahashi and Zembayashi [1] from relative
nonexpansive mapping to quasi-𝜙-nonexpansive mapping.
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