Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 160608, 11 pages
http://dx.doi.org/10.1155/2014/160608

Research Article

Reliability Evaluation of Service-Oriented Architecture Systems
Considering Fault-Tolerance Designs

Kuan-Li Peng and Chin-Yu Huang

Department of Computer Science, National Tsinghua University, Hsinchu 30013, Taiwan

Correspondence should be addressed to Chin-Yu Huang; cyhuang@cs.nthu.edu.tw

Received 18 September 2013; Accepted 15 November 2013; Published 9 January 2014

Academic Editor: Osamu Mizuno

Copyright © 2014 K.-L. Peng and C.-Y. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Service-oriented architecture (SOA) provides an elastic and automatic way to discover, publish, and compose individual services.
SOA enables faster integration of existing software components from different parties, makes fault tolerance (FT) feasible, and is
also one of the fundamentals of cloud computing. However, the unpredictable nature of SOA systems introduces new challenges
for reliability evaluation, while reliability and dependability have become the basic requirements of enterprise systems. This paper
proposes an SOA system reliability model which incorporates three common fault-tolerance strategies. Sensitivity analysis of SOA
at both coarse and fine grain levels is also studied, which can be used to efficiently identify the critical parts within the system. Two
SOA system scenarios based on real industrial practices are studied. Experimental results show that the proposed SOA model can
be used to accurately depict the behavior of SOA systems. Additionally, a sensitivity analysis that quantizes the effects of system
structure as well as fault tolerance on the overall reliability is also studied. On the whole, the proposed reliability modeling and
analysis framework may help the SOA system service provider to evaluate the overall system reliability effectively and also make

smarter improvement plans by focusing resources on enhancing reliability-sensitive parts within the system.

1. Introduction

Service-oriented architecture (SOA) has become a major
distributed computing framework [1]. With characteristics
like standardized interfaces, loosely coupled structure, cross-
platform as well as elastic service discovery, deployment,
and reuse capabilities, SOA opens a new door to faster
integration of existing software components from different
parties, especially in the scheme of Web services (WS). Legacy
components may still live within the system via service
adapters [2], which is good for enterprises which prefer
system upgrades in gentle and stable way.

It is noted that SOA also makes fault-tolerance (FT)
techniques feasible for building reliable systems. Since it is
difficult to build failure-free useful systems under limited
development costs and the pressure of time to market,
software fault tolerance [3], whose concepts originated from
hardware reliability assurance, was proposed as an effective
way to utilize redundancy to mask software failures and
recover to normal operational states in a long running
system. However, the extra costs of bringing out alternative

software designs (redundancy) basically limit the applications
of software fault tolerance to the fields that require ultrahigh
reliabilities such as military, transportation, and aerospace.
The emergence of service-oriented computing (SOC) helps
lower the costs of making redundant software logic by reusing
similar services published by different parties [4].

The unpredictability of open distributed environments
where SOA systems are exposed, such as service fail-outs,
service modification, linkage failures, and traffic conges-
tion, threatens the dependability of the overall system. To
ensure sufficient SOA system dependability, suitable reliabil-
ity assessment and improvement methodologies are needed.
Reliability modeling has been studied extensively in the
field of software engineering, and many elegant solutions
have emerged [5, 6], among which the component-based or
architecture-based models [7, 8] appear to be most concep-
tually suited to be mapped to SOA systems. However, one
of the major distinctions between traditional software system
reliability models and SOA system reliability models are that
the former models usually assume reliable communication

http://dx.doi.org/10.1155/2014/160608

between components and high transparency of system oper-
ation information, which generally is not applicable for SOA
systems.

Based upon our previous research [9], in this paper,
we further investigate the sensitivity analysis of each of the
system’s subparts, which may be useful in making critical sys-
tem maintenance plans for resource allocation. Note that the
proposed model is an extended version of the work by Wang
et al. [10], whereas a large portion of changes and extensions
have been made for SOA systems such as the incorporation
of service-based concepts and more detailed considerations
of fault-tolerance mechanisms. The major contributions of
this paper are twofold. (1) The first is elegant SOA system
reliability modeling considering unreliable services, unreli-
able communication links, and internal mechanisms of three
typical fault-tolerance strategies. Note that existing reliabil-
ity modeling methods tend to ignore the unreliabilities of
communication links and oversimplify the FT mechanisms,
which may deviate from the real situations. This paper is also
among the earliest SOA reliability studies that adopt Markov-
based analysis rather than popular path-based analysis, and
therefore the complexities of tricky path analysis involving
various branches and loops are eliminated. (2) The second is
sensitivity analysis of SOA at two grain levels, which helps the
system service provider to identify reliability-critical subparts
and make smarter system improvement plans.

The remainder of the paper is organized as follows.
Section 2 presents some work on the reliability modeling
and the realization of FT on service-based systems. Section 3
describes the proposed system reliability model for SOA sys-
tems and presents the reliability sensitivity analysis. Section 4
is the experiment results and analysis. Then in Section 5, there
are discussions of factors that should receive attention when
the results of this research are extended to other systems.
Finally, Section 6 concludes the paper. Supplements such as
ReB reliability formulation, sensitivity analysis derivation,
and manual path-based reliability computation are presented
in the appendixes.

2. Related Works

SOA systems generally run in open and distributed envi-
ronments, which introduces new sources of failures against
traditional software systems such as interface changes, work-
flow inconsistency, time-outs, service-level agreement (SLA)
constraints, and QoS constraints. Chan et al. [11] presented
a fault taxonomy for service-oriented systems. In addition
to the basic enabling protocols for SOA such as SOAP
[12] and WSDL [13], protocols to enhance reliability on
SOA systems have been proposed. WS-ReliableMessaging
[14] allows SOAP messages to be delivered between ser-
vices reliably. WS-coordination [15] describes a framework
enabling coordination of transaction and workflow to operate
in a heterogeneous environment. However, these protocols
have not yet formed a complete SOA reliability solution
and sometimes it is inevitable to interact with services
without the support of those protocols. As mentioned in the
preceding section, fault tolerance is suitable for applications

Journal of Applied Mathematics

that require high reliability, and various FT implementations
under service-oriented environments are available such as
[16-18], which makes it a viable option for SOA system
engineers.

It is also noted that some models for evaluating the
reliability of SOA systems have been proposed. Some focus
on the reliability assessment of a single Web service. For
example, Zheng et al. [19] designed a framework to retrieve
the information of a large number of Web services worldwide,
autogenerate testing modules, make testing invocations, and
finally analyze the feedback from Web services to retrieve
their reliability values. Other work, such as [20], evaluates
the reliability of a composite service based on its structural
information or considers basic FT behaviors on SOA systems,
such as [4]. Existing models are helpful in understanding
the QoS of service-oriented systems though improvements
in the SOA reliability models are still desired, including
more detailed considerations of FT mechanisms as well
as uncertainties of communication links. This paper cov-
ers three major fault-tolerance designs, namely, Recovery
Block (RcB), N-version Programming (NVP), and Retry Block
(RtB), without assuming the implementation details. Basic
introduction considerations of their exceptional behavior are
briefly presented in the following.

Recovery block (RcB) [3] is a backward recovery tech-
nique that uses the acceptance test (AT) to check the outputs
of a module; the next alternative is invoked once the former
alternative fails the AT. The executive in RcB is responsible for
checkpoint establishment, checkpoint restoration, invocation
of the alternatives, and successful return of RcB. RcB is
vulnerable to failure under conditions such as when (1)
checkpoint establishment fails, (2) checkpoint restoration or
invocation of the next alternative fails, or (3) the AT itself fails
or no alternative passes the AT.

N-version programming (NVP) [3] is a forward recovery
technique that uses the decision maker (DM) to vote for the
outputs of all the involved alternative modules. The executive
is responsible for input distribution and successful return of
the NVP block. NVP is vulnerable to failure under conditions
such as when (1) input distribution to the alternatives fails, (2)
less than [#1/2 + 1] consistent and correct results successfully
reach the DM, or (3) the DM itself fails.

Retry block (RtB) [3] is a backward recovery technique
that also uses AT like RcB to check the outputs of a module.
Contrary to RcB, RtB retries the same module rather than
using another module once the AT evaluation fails. The
original design of RtB requires a data reexpression algorithm
(DRA) to change the form of inputs before reusing the same
module [3], but since in the Web applications or SOA systems
failures may be caused by temporary service busy or network
congestion (Heisenbug) and it is not always possible to tailor
the DRA for the application, some designs eliminate DRA
and use the same inputs on retry, and this simplified retry
mechanism is widely supported in modern SOA execution
environments. This paper considers the latter designs. RtB
is vulnerable to failure under conditions such as when (1)
checkpoint establishment fails, (2) checkpoint restoration
fails, or (3) the AT itself fails or the retry limit is exceeded
before the AT passes.

Journal of Applied Mathematics

FIGURE 1: SOA service flow graph.

It should be noted that although the main function
is protected by the redundant designs/executions in the
fault-tolerance blocks, the executive and the AT/DM are
not protected and may be a potential reliability bottleneck.
Several modified designs of RcB and NVP such as [21, 22] also
introduce redundancy at these points, resulting in even more
complex fault-tolerance design and higher costs. Therefore
such improvements are not considered in this paper.

3. SOA System Reliability
Modeling and Analysis

Before the introduction of the proposed model, several
definitions of SOA systems and reliability modeling are listed
here.

3.1. Framework of the Model. Without loss of generality, an
SOA system may be viewed as a flow of services (called
workflow) and be depicted by a BPMN diagram [23] as in
Figure 1, which contains the single start event (the thin-
lined circle), n abstract services (round rectangles), message
transmission between services (arrows), branching points
(diamonds), and the single end event (the thick-lined circle).
Specifically, this research takes the viewpoint of on-demand
business process rather than long running process, where at
the request of a client, the system starts at the virtual start
event, passes control to the next abstract service along the
message path, and finally stops normally and transfers to the
success state when the control reaches the virtual end point.
The workflow may branch and converge at some points.

In the realization of the SOA system, an abstract service
is often fulfilled by one or more physical services, which could
be an atomic Web service or a composite Web service which
invokes one or more atomic/composite services internally,
and messages travel in the network under the protocols such
as SOAP [12]. Services may also be protected by the FT
techniques in the form of a composite Web service. It should
be noted that in the real world, failures (or exceptions) may
originate from any service, control point, or communication
path. Unhandled failures interrupt the normal process flow
and turn the system into a failure state.

A number of notations in this paper are defined as follows.

Reliability. This paper views the operation of SOA systems
as an on-demand business process, and the reliability is
the probability of successful executions. This kind of time-
invariant reliability definition is used in traditional software
reliability estimation [7, 24] and later widely adopted in exist-
ing research on SOA reliability modeling that also considers
on-demand cases, such as [1, 25, 26].

System Reliability (R). 1t is the probability of a system
execution that finally reaches the success state, estimated by

R =1- f/t, where t is the total number of system executions
and f is the number of system executions that ended up in
failure states.

Service Reliability (r;). 1t is the probability of successful
executions of physical service i, estimated by r; = 1 - f,/t;,
where t; is the total number of service invocations and f;
is the number of service executions that threw unhandled
exceptions.

Link Reliability (I;;;). It is the probability of successful mes-
sages passing from physical service i to physical service j,
estimated by [;; = 1 - f; ;/t; j, where t; ; is the total number
of messages passing from service i to service j and f; ; is the
total number of unsuccessful messages passing from service
i to service j.

System Reliability Model. The SOA system reliability model is
denoted by a 5-tuple (Q, , s, s, M) [9, 10], where

(i) Q: a finite set of k states {s,s,,...,St};

(ii) &: state transition mapping Qx E — Q, and E is a set
of triggering events;

(iii) s;: the virtual initial state with reliability 1, which
transits to all the real initial states with their cor-
responding initiating probabilities, and if there is
exactly one initial state, s; can be replaced by that state
for simplicity;

(iv) s: the virtual success final state with reliability I,
which is reached from all the real final states with their
corresponding terminating probabilities;

(v) M: a k x k Markov transition matrix for the states in
Q, whose entries are defined by

= Py if Je € Est. 8(s,e) =s; W
"0, otherwise,

where p; ; is the transition probability from state i to

state j.

To estimate the reliability of an SOA system, one may
apply the following steps (Figure 2).

(1) Identify the workflow of the system and the physical
services that realize each abstract service within
the workflow. This may be obtained from process
specifications, such as WS-BPEL [27] documents.

(2) Determine the reliability of each physical service
and message link within the system. This may be
estimated from the service access logs if they are
available or be collected and estimated from user
feedback.

(3) Determine the transition probabilities (or frequency)
between abstract services. Existing techniques for
building operational profiles [28] may apply here.

(4) Identify the internal states and construct the Markov
transition matrix M from the information collected
in Steps 1-3. This is explained further in Section 3.2.

omdm.

System workflow

Reliability report

]

Further analysis and

SOA
reliability
model

Service reliability
I

Link reliability
—, |
Pik

Transition probability —

action

FIGURE 2: Framework of the model.

(5) Derive the reliability estimation of the whole SOA
system.

(6) Optionally, perform further analysis (such as sensitiv-
ities) and action based on the results of Step 5.

Note that, as reported by Zheng and Lyu [1], different
users may actually experience different performance from the
same service, since the service performance is influenced by
the communication links substantially, and some SOA system
may provide different localized physical services depending
on the users’ preferences or location. Therefore, in Steps 2
and 3, the information may be collected together (from the
viewpoint of the system operator) or be classified in groups
of users individually (from the viewpoint of specific user
groups) depending on the purpose of the reliability analysis.

3.2. Construction of Markov Transition Matrix M. In the
system reliability model, the internal states are derived from
abstract services. Each abstract service is mapped to a distinct
macro-state. A macro-state consists of only one microstate
unless its corresponding abstract service is guarded by fault
tolerance, in which more than one tightly coupled microstate
may be generated for that service. It should be noted that each
microstate belongs to exactly one macro-state; each macro-
state has exactly one entry micro-state and one exit micro-
state and the two may overlap. Also remember that macro-
state 1 is the initial state while the last macro-state is the final
state as stated in Section 3.1. The transition matrix is obtained

by
st; sp; ; sl it A, Bst.i=w, AN j=apg
M=[m;]=1fGj), else if JAst.ie AAje A,
0, otherwise.

i

2)

In (2), sr;, sp; j» and sl; ; denote state reliability, state transition
probability, and state message link reliability, respectively; the
entry and exit micro-states of a macro-state K are denoted
by ay and wg; and the inclusion relation of microstate i to
macro-state K is denoted by i € K.

In the first condition of (2), assuming that the corre-
sponding physical services to micro-states i and j are services
m and n respectively, then sr; = r,, (It is the default case

Journal of Applied Mathematics

unless redefined later in this section.), sp; ; Pmn» and
sl; j = L, »- The method for retrieving the p; ; and; ; values has
been briefly explained earlier, and [9] has the interpretation
of [; ; in detail under two major service composition schemes
in SOA systems. The major problem left is to define f(i, j)
for the macro-states whose corresponding abstract services
are realized in more complicated way, especially in various
FT blocks.

Generally, for nonfault-tolerant services, either atomic or
composite, it is intuitive to define a macro-state with a single
micro-state, which reduces to the first condition and it is
therefore not required to define f(i, j) for them.

For any abstract service implemented in RcB, two
approaches may be used. One way is to define micro-states
separately for the executive, the AT, and each alternative.
Assume that there are » alternatives in total, and both the
microstate numbers as well as the corresponding physical
service numbers for (executive, alternatives from the first to
last, AT) are (d,d + 1---d + n, d + n + 1). Then within the
domaind <i,j<d+n+1, f(i, j) is defined as follows:

£ j)

-

Ta> i=d, j=d+1,
(1 - Sd,i,d+n+1) Taldin+1> d+1<i<d+n,
_ j=i+1, €)
N Sajdint1> d+1<i<d+n,
j=d+n+1,
L0, otherwise.

Here a convenient substitution S, ;. = [, 1], is used to
simplify the formula. Further note that sr,,,,,; = r4,,,;- The
second approach is to equivalently define a single microstate
k with the state reliability computed by

n i-1

ii
Sry = Z Sd,d+i,d+n+lrdrd+n+11_[(1 - Sd,d+j,d+n+1) . (4)
i=1 j=1

The first approach is more intuitive while the second
one results in more compact transition matrix. Refer to
Appendix A for more on the RcB reliability formulation.

For any abstract service implemented in NVP, assuming
that there are n alternatives in total and the corresponding
physical service numbers for (executive, alternatives from the
first to last, DM) are (e, e+1 - - - e+n, e+n+1), then one can also
define a single microstate k with the state reliability computed
by

Sr, = 1,7 Z H SFe
k — Teletn+1 eetietn+l
F.e2" 1<i<n
1-F,, n
X (1 - Se,e+i,e+n+l) [chl > E >
(5)

where [X] is an indicator function such that for condition X,

X] = {1, if X is true, ©)

0, otherwise,

Journal of Applied Mathematics

and F. denotes a configuration set ¢ of n binary values
representing the outcomes F_; of each alternative i defined as
follows:

1)
Fc,i = 0,

if alternative i successfully passes DM,
otherwise;

|Fc| = Z[Fc,i = 1]'

7)

For any abstract service implemented in RtB, assuming that
the retry limit is y and the service numbers for (executive, the
retry alternative, AT) are numbered (h, h + 1, h + 2), then its
operation is equivalent to an RcB where there are y duplicates
of the alternative 4. One may create y + 2 micro-states and
define f(i, j) as in (3) or otherwise define a single microstate
k with the state reliability computed by

Y

i-1 i i
Iy = Z (Sh,h+1,h+2(1 = Spnrips2) Th’h+2)- (8)
i=1

Finally, once the transition matrix M is completed, the
system reliability R is computed by

k+1 |(I B M)k,1|

R=C0 Ay

,)

according to [7], where I is the identity matrix of dimension
k x k and (I — M), , is the minor matrix eliminating the last
row and the leading column of I — M.

3.3. Sensitivity Analysis. Based on the previous reliability
modeling, this section tries to explore the system more deeply
and identifies the critical services with respect to their impact
on the overall reliability of an SOA system.

Here the sensitivity analysis is made at two levels [10]: a
coarse-grained level (L1, denoted by sc) and a fine-grained
level (L2, denoted by sf). L1 involves the sensitivity of each
macro-state within the reliability model, while L2 involves the
sensitivity of each service within the SOA system. Substantial
modifications of the original sensitivity analysis have been
made for SOA systems, and link reliabilities are also included
in this study. For convenience of analysis, here it is assumed
that each macro-state consists of exactly one microstate and
no physical services are shared among different abstract
services.

A number of notations are defined as follows:

Hw= [wi,j] =I-M,
(i) E = [e,‘,]‘] =(- M)k,l’
(iii) o j: cofactor of w j,
(iv) B; it cofactor of ¢; i

In L1, (9) can be rewritten as

|E|
R= (-1, (10)
W
W|=6,+ (02‘1- + 93,,) ST, (11)

where 0,; = a;;, 0,; = —a;;sp;;sl;, and 65, = =), j<k,j#i
o; ;sp; ;8l; ;. It is noted that none of 6, ;, 6, ;, or 65 ; is a function
of sr;. In addition,

|E| = 0, + (0, + 03;) s1;, (12)

where o,; Bii-1> 02 ~Bii-15pi;sli;» and o3; =
= Qocjekji Bij-18p; sl j for 1 < i < k. Itis also noted that
none of oy ;, 0, ;, or 03 ; is a function of sr;.

Then,

0y; t (Uz,i + ‘73,1) ST;
01, + (0, +05) st) (13)

R= (—l)k“srk
for1<i<k,

and the sensitivity for microstate i is

. - OR
P Osr;

0, (05 +03;) = (0,; + 05;) 0y; (14)
(Gl,i + (92,1‘ + 93,;‘) Sfi)z

_ (—l)kHSl’k

for1<i<k.

sc; isonly defined over 1 < i < k because macro-states 1 and k
are virtual states. Related derivations of |W| and |E| are given
in Appendix B.

Next in L2, the sensitivity analysis is made by different
categories of the abstract services connected to each macro-
state.

For a nonfault-tolerant service k, since there is only one
physical service p associated with the macro-state, the state
sensitivity is consistent with the service sensitivity. That is,

st, = s¢i. (15)

For a service k implemented in RcB, assuming the same
service number settings in Section 3.2 and recalling the state
reliability for RcB in (4), then the sensitivity of the executive
dis

of, = IR _ OR Osmi
47 dr, Osr or,

n i—1
. i-1 i
= Sckz (lsd,d+i,d+n+1rd Tdin+1 (1 - Sd)dJrj,dJr”*l)) >

i=1 =1
(16)
the sensitivities of the alternativesd + 1---d + n are
OR OR Osry
s = B~ B5r, 0
Td+a STy OTg4q 17)

= ¢y dralaradine (A+ B),

Journal of Applied Mathematics

Give up rental

End

FIGURE 3: BPMN diagram.

6
Vehicle available?
where
a—1
a a
A = 1T H (1 - Sd,d+j,d+n+1)
j=1

i i
B=- Z Sadridins1tal din1 H (1_Sd,d+j,d+n+l) >

a<i<n 1<j<i,j#a

(18)
and the sensitivity of the AT d + n + 1 is

OR OR Osry
ard+n+1 asrk ard+n+1

Sfd+n+1 =

i-1

(1 - Sd,d+j,d+n+1)

n
_ S i i1
= SCk g d+idint17d dent1
i=1 j=1

(19)

For a service k implemented in NVP, note that (5) is not
in a simple closed form. To simplify the discussion, here it
is assumed that 3 alternatives in total are in the NVP block.
Equation (5) then reduces to

ST = Teleta [Se,e+1,e+4se,e+2,e+4 (1 - Se,e+3,e+4)

+ Se,e+1,e+4 (1 - Se,e+2,e+4) Se,e+3,e+4

(20)
+ (1 - Se,e+l,e+4) Se,e+2,e+4se,e+3,e+4
+Se,e+1,e+4Se,e+2,e+4Se,e+3,e+4] .
The sensitivity of the executive e is
OR OR Osr SC;. ST
of, = — = — —k - Zk°k (21)
or, Osry Or, 7,

The sensitivities of the alternativese + 1---e + 3 are

R _ OR sy

sf,,, = ——= ,
are+a asrk are+a

et+a

(22)

where
Osry,

or = Telera [le,e+1le+1,e+4se,e+2,e+4 (1 - Se,e+3,e+4)
e+l

- le,e+lle+1,e+4 (1- Se,e+2,e+4) se,e+3,e+4 (23)
+ le,e+ 1 le+ let+4 Se,e+2,e+4 Se,e+3,e+4

+le,e+ 1 le+1,e+4se,e+2,e+4se,e+3,e+4]

and 0sr; /0r,,, as well as 0sr; /0, 5 can be derived similarly.
The sensitivity of the DM e + 4 is

of OR _a_Rasrk

(4

STy
O il T Pl e (24)
Teta ST OTerq Teta

Equations for the sensitivities of the RtB services are
similar to those for the RcB services.

4. Experiments and Discussion

In this paper, results and discussions for a vehicle rental sys-
tem adapted from industrial practices [29] are presented. The
workflow diagram (Figure 3) for the system has sequences,
branching, and looping, common in real-world projects.
According to the diagram, when a customer uses the service,
a rental agreement is prepared in the system, and then, based
on the customer’s preferences, the system searches for vehicle
choices from the database. The customer may either accept
a choice, call for more choices, or drop the service directly.
Upon accepting the rental choice, the system then assists
the user in contacting the insurance company and paying
the security deposit through a third-party payment service.
Finally, the system activates the rental agreement and the
customer is guided to take his car.

Two scenarios based upon this workflow specification
are incorporated: scenario no. 1 is the fault-tolerance-free
version where each abstract service is fulfilled by one physical
(either internal or external) service, while scenario no. 2 uses
RcB to ensure higher reliability for the payment operation.
For each scenario, Tablel displays the physical services
involved and their reliabilities, Table 2 displays the transition
(branching) probabilities between the abstract services, and
Table 3 displays the link reliabilities between the physical
services.

Journal of Applied Mathematics 7
TABLE 1: Service configuration.
Abstract srv. Scenario no. 1 Scenario no. 2
’ Physical srv. Srv rel. Physical srv. Srv rel.
1. RA init. Int srv (1) 0.99 Int srv (1) 0.99
2. Veh. listing Int DB srv (2) 0.97 Int DB srv (2) 0.97
3. Higher-grp.-veh. Asgmnt. Int DB srv (3) 0.97 Int DB srv (3) 0.97
4. Insurance order Ext srv (4) 0.91 Ext srv (4) 0.91
Int exec (5) 0.99
ExtaltI (6) 0.91
5. Payment Ext srv (6) 0.91 ExtaltII (7) 0.88
Ext alt IIT (8) 0.85
Int AT (9) 0.99
6. RA activation Int DB srv (10) 0.97 Int DB srv (10) 0.97
TABLE 2: Abstract service transition probability.
Abstract srv trans. Prob Miena
009 0 0 0 0 0 0 0 0 0]
2. -3 0.25 0 0 0242 038 0 0 0 0 0 0 0339
0099 0 0 0 0 0O 0 0 0 0
2. -4 0.40 000 0 0 099 0 0 0 0 0 0
2. — End 0.35 0 0 0 0 0 09 0 0 0 0 0
={o o 0 0 0 0 01240874 0 0 0
000 0 0 0 0 0 0845 0152 0 0
TABLE 3: Physical service link reliability. 8 8 8 g 8 g 8 0_?83 8 0'39 8
000 0 0 0 0 0 0 0 0 09
Physical srv Ink Rel L0 0 0 o 0 0 0 0 0 0 0]
Start — (1) 1.00 (26)
1) - (2 1.00 Ten simulations of the system where each run contained
(2) > 3) 1.00 100,000 system calls were executed for each scenario. Com-
(2) — (4) 0.98 paring the experimental results and the values from the
(2) — End 1.00 proposed model in Table 4. In Table 4, the 1st row is the
3) -) L00 reliability estimation by the proposed model, the 2nd row
@) — (5) 100 is from the manual probability computation as explained in
@) - (6) O. 08 Appendix C, the 3rd row contains the statistics of simulation,
- : and the last row is the relative error between the simulation
(6) — (10) 0.98 results and the theoretical values in the 3rd row. It can be
(5) = (6) 0.98 seen that the proposed SOA reliability model has identical
5 = (@ 0.98 values to those computed from probability theory, and the
(5) — 8 0.96 average simulation results are very close to the theoretical
(6) — (9) 0.98 values. Comparing the two scenarios, it can also be seen
(7) — (9) 0.98 that the introduction of RcB in the payment service (abstract
8) — (9) 0.96 service 5) improves the local service reliability by 11.36%
9) — (10) 100 (Considering both the service invocation and the service
(10) — End 100 execution, the payment service reliability is 0.874 in scenario

4.1. Reliability Modeling. Applying the Steps in Section 3.2,
one can derive the transition matrix for scenario no. 1

009 0 0 0 0 0
0 0 0242038 0 0 0339
0097 0 0 0 0 O
M,,=|0 0 0 0 082 0 0 | (25
00 0 0 0 082 0
00 0 0 0 0 097
oo o o o0 0 0 |

and the transition matrix for scenario no. 2

no. 1and is 0.973 in scenario no. 2.) and improves the overall
system reliability by 5.2%.

It is also clarified that the 0.00% simulation relative error
in Table 4 is only the statistical value for certain scenario
in certain precision level and should not be otherwise
interpreted as 100% simulation accuracy.

4.2. Sensitivity Analysis. Results of the sensitivity analysis for
both scenarios are displayed in Tables 5 and 6, respectively.
The sensitivity value of a state/service indicates its impact
on the overall system reliability. It could also be observed
from Figure 4 that abstract services with higher execution
probabilities (such as abstract services 1 and 2) have higher
sensitivity values. In abstract service 5 in scenario no. 2, it

8
TABLE 4: System reliability model validation results.
Scenario no. 1 Scenario no. 2

SOA reliability model 0.819 0.862

Probability computation 0.819 0.862

Simulation results 0.819 0.865

Simulation relative error 0.00% 0.35%

TABLE 5: Sensitivity analysis for scn. no. 1.
Level 1 Level 2

State no. Val. Physical srv no. Val.

L 0.827 1) 0.827

2. 1104) 1.104

3, 0.260 3) 0.260

4. 0.417 (4) 0.417

5. 0.417 (6) 0.417

6. 0.391 (10) 0.391

TABLE 6: Sensitivity analysis for scn. no. 2.
Level 1 Level 2

State no. Val. Physical srv no. Val.

L 0.871 1) 0.871

2. 1162) 1162

3, 0.273 3) 0.273

4 0.465 (4) 0.465
(5) 0.485
(6) 0.023

5. 0.434 %) 0.012
(8) 0.007
) 0.485

6. 0.436 (10) 0.436

is also noted that the executive service and the AT service
actually dominate the reliability of RcB, as one observes the
sub-graph within Figure 4. Such result is reasonable since
both services are always on the execution paths for all the
alternatives. On the other hand, the sensitivity values of
the alternatives are significantly reduced (94% for physical
service 6) in the RcB because their failures are largely masked
by invoking the succeeding alternatives. Sensitivity analysis
effectively quantifies the importance of each part within the
system, which may be very useful for system engineers in
determining reliability bottlenecks of the system and making
further system improvement plans.

5. Threats to Validity

Users who adopt the proposed SOA reliability model and
sensitivity analysis technique should be aware of the potential
threats to validity. Factors limiting the generalizability of the
results include the following.

Reliability Model. The proposed reliability model assumes
independent failure occurrences between services. The

Journal of Applied Mathematics

1.2

1.1+

1.0} 2 06
@ Z 05Ff
3 2
= s 04
2 2
= =5 03t
] 1
g o 02
izl S
E =]

a

S g _— e .
2.
£
o
O

0.1 1
0.0 - -
E\‘cc 1 I 111 AT

Higher-grp-veh. :’

5 o0 = —
£ < 0z %
SR E g5
é o 8 E L

O] =] &
> e
2
I Scnno. 1 g
3 Scnno.?2

FIGURE 4: Component sensitivities. The main figure shows com-
ponent sensitivity comparisons of scenarios no. 1 and no. 2. The
subfigure shows the RcB internal sensitivities of the payment service
in scenario no. 2.

Markovian property [30] also implies history independent
system behavior. Possible bias should be taken into account
when these assumptions do not hold in application.

Sensitivity Analysis. The derivative-based sensitivity analysis
adopted in this paper is efficient to calculate sensitivity values
at the current computing point. The major limitation of
such technique lies on the narrow parameter input space,
and higher-order sensitivity indices are also not explored
[31]. Care must be taken when there are uncertainties of
model inputs or when there is strong interaction/dependency
between the constituent services within the SOA system.

Subject Systems. The experiments are performed on a set
of scenarios based on real-world project presented in [29],
and the settings of service reliability, link reliability, and
transmission probability are constructed in this research. To
the best of our knowledge, no public reliability data source
for SOA systems is available. Researches on SOA reliability
modeling such as [4, 8, 20, 25] generated their own scenarios
for validation either by simulation or by operating their own
example systems. Therefore, care must be taken in applying
the model to other subject systems or system configuration.

Performance Evaluation. The restrictions of the proposed
model also apply in the experiments. Additionally, failures are
generated binomially in the simulation. The evaluation results
are valid only with respect to the conditions and system scales
in the experiments.

6. Conclusions

This paper presents a Markov-based system reliability model
for SOA systems. Starting from the workflow specification of

Journal of Applied Mathematics 9
oL Executive Alt. 1 AT
: sets up
check pt. suc. passes
. Executive Alt. 1 AT Executive Alt. 2 AT
' sets up fails fails restores suc asses
check pt. check pt. ' P
Executive Alt. 1 AT Executive Alt. 2 AT
Pr: sets up fails fails restores fails fails
check pt. check pt.
Executive Executive
Alt.n—1 AT Alt. n AT
restores fail — fails restores SuC. asses
check pt. atls check pt. P

FIGURE 5: RcB Path Set.

an SOA system, we have shown how to map each part in the
workflow to the model. The proposed reliability model also
considers the internal mechanisms of three well-known fault-
tolerance strategies such that the execute node, the AT/DM
node, the alternatives, and the interactions between them
are well reflected in the reliability model. Sensitivity analysis
at two grain levels is also incorporated in this paper, which
enables the SOA system engineers to identify the reliability
critical blocks or internal services effectively and efficiently.
Experimental results show that the proposed SOA model and
methods give very close results to theoretical and simulation
values and how the sensitivity analysis quantizes the effects
of system structure as well as fault tolerance on the overall
reliability.

Appendix
A. RcB Reliability Formulation

It is possible that the reliability formulation depends on
different design variations. Since the implementation is not
the focus of this paper, we assume the basic RcB scheme
as described in Section 2, where an RcB with 7 alternatives
will successfully execute in one of the paths in Figure 5 (“AT
passes” blocks in Figure 5 mean that the AT itself is functional
and returns true positive result. On the other hand, “AT fails”
blocks mean that the AT itself is still functional but returns
true negative or false results.). Equation (4) can then be
derived from summing the probabilities of all the above paths
together.

On the other hand, in (3), the first condition is for the
checkpoint establishment, which is made by the executive
(d). The second one is for shifting the execution to the next
alternative (i + 1), conditioning on the AT (d + n + 1)
successfully identifying the failure of the current alternative
(i), and successful checkpoint restoration by the executive
(d). The third one is for successful execution of the current
alternative (i) and passes of AT (d + n + 1). The last one is for

all remaining exceptional operations that cannot be guarded
by the RcB.

An example is presented here to show the equivalence
of (3) and (4). For a system with exactly one 3-RcB, where
the executor, the three alternatives, and the AT are numbered
from1to 5, respectively, by applying (3), the transition matrix
M, is

07 0 0 0 0
0 0 rrs(1-S8,5) 0 Siz5 0
M. = 00 0 s (1=S135) Sizs 0
1710 0 0 0 Sias O
00 0 0 0 g
00 0 0 0 0
(A1)
By applying (4), the transition matrix M, is
Si125M17s + 31,3,5rf"§ (1-S8125)
M, = (A.2)

+Sl,4,5’"fr§ (1- 51,2,5) (1- 51,3,5)
0 0

It can be verified that R, = (—1)k+1(|(1 = My)g,|/1I=M,])
and R, = (—1)k+1(|(1 — M), |/II = M,]) are equal.

B. Derivation of Sensitivity Analysis

Let M = [mi)j] = (—1)k+1|E|/|W| be the transition matrix in
the reliability modeling of an SOA system. Then,

Wl = Z‘xi,jwi,j
j=1
oG Wi + Z &G, Wi
1<j<n,j#i
=0y (1- mi,i) + Z &ij (_mi,j)

1<j<mj#i

10

Journal of Applied Mathematics

FIGURE 6: Example system path set.

Z o ;ST;Sp;, jsli) j
1<j<k,j#i

=o;t <—“i,iSPi,i51i,i - Z

1<j<k,j#i

= oG — oy;Srsp; sl —

o; ;Sp;, jsli,j> SI;

=0, + (02,1‘ + 93,;‘) ST;.
(B.1)

The derivation of |E| is similar, and therefore some of the
steps are eliminated. For 1 <i < k,

n
|E| = Zﬁi,jei,j
=1

n
=B (1 - srispi,iSIi,i) + Z Bij-1 (_Srispi,jSIi,j)
2<j<k,j#i

n
Z ﬁi,lePi,jSIi,j> ST;

2<j<k,j#i

=i+ <‘/3i,i15Pi,i51i,i -

=0yt (‘72,1' + ‘73,1') ST;.
(B.2)

C. Reliability Analysis by Probability
Computation

The execution of the example system in Section 4 (Figure 3)
can be broken down into a set of execution paths as follows
(Figure 6).

Suppose that the physical services corresponding to
abstract services 1-6 are numbered sl-s6, respectively. For
scenarioN0. 1,7y = 1,1y =1, = I3, Ty =Ty, T5 = T, and
s = 110 as in Table 1. For scenario no. 2, r is replaced by the
reliability of the RcB composite service consisting of physical
services 5-9, whose value can be derived from (4).

Then, the following probabilities are computed:

Pr [P1 successful | P1 taken]
= rsllsl,52r52
x Z(P2,3152,s3rs3153,52r52)n (1-p23)
n=0

1-ps3

,
Paslosralanrs

= rsllsl,52r52 1—

Pr [P2 successful | P2 taken]

= rsl lSl,SZrSZ

(o)
n
X Z (Prslassrslasrsa)

n=0
x(1- P2,3) Ly saTsabsa ssTshss,567 s6

1-ps3

1- P2,3 152,53 T3 ls3,52 Tsy

=Tq lsl,sz”sz

X l52,s4 Tsa ls4,sS Tss lsS,sG Ts6>

Pr[P1 taken] = Pr[2 — End | 2 -» 3]

pZ,End
—)
1-ps3

Pr[P2 taken] = Pr[2 — 4| 2 -» 3]

Paa

1-ps3 '
(C1)

In the previous equations, x — y denotes transferring to
abstract service y upon completion of abstract service x, and
x —» y denotes not transferring to abstract service y upon
completion of abstract service x.

Finally, the system probability is obtained by summing
the probabilities of successful execution of each path as
follows:

R= Z Pr [p successful | p taken] - Pr[p taken].
pepath set

(C2)

Through manual path-based reliability computation, one
potential advantage of our Markov-based method would be
discovered that it avoids the complexities of path analysis
involving branches and loops, which may be tricky to auto-
mate in some cases.

Conflict of Interests

The authors have no financial relations with the commercial
identities related to the technologies or standards covered in
this paper.

Journal of Applied Mathematics

Acknowledgments

The work described in this paper was supported by the
National Science Council, Taiwan, under Grants NSC 101-
2221-E-007-034-MY2 and NSC 101-2220-E-007-005. Further,
the authors would like to thank the anonymous referees for
their critical review and valuable comments.

References

(1] Z.Zhengand M. R. Lyu, “Collaborative reliability prediction of
service-oriented systems,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE ’10), pp.
35-44, May 2010.

[2] H. M. Sneed, “Integrating legacy software into a service oriented
architecture,” in Proceedings of the 10th European Conference on
Software Maintenance and Reengineering (CSMR ’06), pp. 11-14,
March 2006.

[3] M. Lyu, Software Fault Tolerance. Trends in Software, Wiley,
1995.

[4] Z.Zhengand M. R. Lyu, “An adaptive QoS-aware fault tolerance
strategy for web services;,” Empirical Software Engineering, vol.
15, no. 4, pp. 323-345, 2010.

[5] K.Goseva-Popstojanova, A. P. Mathur, and K. S. Trivedi, “Com-
parison of architecture-based software reliability models,” in
Proceedings of the 12th International Symposium on Software
Reliability Engineering, pp. 22-31, IEEE, November 2001.

[6] S. S. Gokhale and K. S. Trivedi, “Analytical models for archi-
tecture-based software reliability prediction: a unification
framework,” IEEE Transactions on Reliability, vol. 55, no. 4, pp.
578-590, 2006.

[7] R.C.Cheung, “A user-oriented software reliability model,” IEEE
Transactions on Software Engineering, no. 2, pp. 118-125, 1980.

[8] V. Grassi, “Architecture-based reliability prediction for service-
oriented computing,” in Architecting Dependable Systems III, pp.
279-299, Springer, 2005.

[9] K.-L. Peng and C.-Y. Huang, “Reliability assessment and analy-
sis of incorporating fault tolerance into service-oriented archi-
tectural systems,” in Proceedings of the IEEE Internation Con-
ference Industrial Engineering and Engineering Management
(IEEM ’12), 2012.

[10] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based
software reliability modeling,” Journal of Systems and Software,
vol. 79, no. 1, pp- 132-146, 2006.

[11] K. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea, “A
fault taxonomy for web service composition,” in Proceedings of
the Workshops of Service-Oriented Computing (ICSOC 707), pp.
363-375, Springer, 2009.

[12] Soap Version 1.2—part 1: Messaging Framework, 2nd edition,
2007.

[13] Web Services Description Language (Wsdl) Version 2.0—part 1:
Core Language, 2007.

[14] Web Services Reliable Messaging (Ws-ReliableMessaging) Version
1.2,2009.

[15] Web Services Coordination (Ws-Coordination) Version 1.2, 2009.

[16] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, “Fault tolerant web
services,” Journal of Systems Architecture, vol. 53, no. 1, pp. 21-38,
2007.

[17] P.P. W. Chan, M. R. Lyu, and M. Malek, “Reliable web services:
methodology, experiment and modeling,” in Proceedings of the

1

IEEE International Conference on Web Services (ICWS °07), pp.
679-686, July 2007.

[18] S. Subramanian, P. Thiran, N. C. Narendra, G. K. Mostefaoui,

and Z. Maamar, “On the enhancement of BPEL engines for self-

healing composite Web services,” in Proceedings of the Interna-

tional Symposium on Applications and the Internet (SAINT 08),

pp. 33-39, August 2008.

Z.Zheng, Y. Zhang, and M. R. Lyu, “Distributed QoS evaluation

for real-world Web services,” in Proceedings of the IEEE 8th

International Conference on Web Services (ICWS ’10), pp. 83-90,

July 2010.

[20] B. Li, X. Fan, Y. Zhou, and Z. Su, “Evaluating the reliability of
web services based on BPEL code structure analysis and run-
time information capture,” in Proceedings of the 17th Asia Pacific
Software Engineering Conference: Software for Improving Quality
of Life (APSEC ’10), pp. 206-215, December 2010.

[21] K. H. Kim and H. O. Welch, “Distributed execution of recovery
blocks: an approach for uniform treatment of hardware and
software faults in real-time applications,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
38, no. 5, pp. 626-636, 1989.

[22] R. K. Scott, J. W. Gault, and D. F. McAllister, “Fault-tolerant
software reliability modeling,” IEEE Transactions on Software
Engineering, vol. 13, no. 5, pp. 582-592, 1987.

[23] Business Process Model and Notation (Bpmn), 2011.

[24] E. Nelson, “Estimating software reliability from test data,
Microelectronics Reliability, vol. 17, no. 1, pp. 67-73, 1978.

[25] W.T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao, ‘A
software reliability model for web services,” in Proceedings of the
8th IASTED International Conference on Software Engineering
and Applications, pp. 144-149, November 2004.

[26] V. Cortellessa and V. Grassi, “Reliability modeling and analysis
of service-oriented architectures,” in In Test and Analysis of Web
Services, pp. 339-362, Springer, 2007.

[19

[27] Web Services Business Process Execution Language Version 2.0,
2007.

[28] J. Musa, “Operational profiles in software-reliability engineer-
ing,” IEEE Software, vol. 10, no. 2, pp. 14-32,1993.

[29] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer, Applied
SOA: Service-Oriented Architecture and Design Strategies, Wiley,
2008.

[30] D.Gross, Fundamentals of Queueing Theory, John Wiley & Sons,
Hoboken, NJ, USA, 3rd edition, 2008.

[31] A. Saltelli, M. Ratto, T. Andres et al., Global Sensitivity Analysis.
The Primer, John Wiley & Sons, Chichester, UK, 2008.

