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We present the largest values 𝛼
1
, 𝛼
2
, and 𝛼

3
and the smallest values 𝛽

1
, 𝛽
2
, and 𝛽

3
such that the double inequalities 𝛼

1
𝑀(𝑎, 𝑏) +

(1 − 𝛼
1
)𝐻(𝑎, 𝑏) < 𝐴(𝑎, 𝑏) < 𝛽

1
𝑀(𝑎, 𝑏) + (1 − 𝛽

1
)𝐻(𝑎, 𝑏), 𝛼

2
𝑀(𝑎, 𝑏) + (1 − 𝛼

2
)𝐻(𝑎, 𝑏) < 𝐴(𝑎, 𝑏) < 𝛽

2
𝑀(𝑎, 𝑏) + (1 − 𝛽

2
)𝐻(𝑎, 𝑏),

and 𝛼
3
𝑀(𝑎, 𝑏) + (1 − 𝛼

3
)𝐻𝑒(𝑎, 𝑏) < 𝐴(𝑎, 𝑏) < 𝛽

3
𝑀(𝑎, 𝑏) + (1 − 𝛽

3
)𝐻𝑒(𝑎, 𝑏) hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where𝑀(𝑎, 𝑏), 𝐴(𝑎, 𝑏),

𝐻𝑒(𝑎, 𝑏),𝐻(𝑎, 𝑏) and𝐻(𝑎, 𝑏) denote the Neuman-Sándor, arithmetic, Heronian, harmonic, and harmonic root-square means of 𝑎
and 𝑏, respectively.

1. Introduction

For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 the Neuman-Sándor mean𝑀(𝑎, 𝑏) [1]
is defined by

𝑀(𝑎, 𝑏) =

𝑎 − 𝑏

2 sinh−1 ((𝑎 − 𝑏) / (𝑎 + 𝑏))
, (1)

where sinh−1(𝑥) = log(𝑥 +√𝑥2 + 1) is the inverse hyperbolic
sine function.

Recently, the Neuman-Sándor mean has been the object
intensive research. In particular, many remarkable inequali-
ties for the Neuman-Sándor mean 𝑀(𝑎, 𝑏) can be found in
the literature [1–10].

Let 𝐻(𝑎, 𝑏) = √2𝑎𝑏/√𝑎
2
+ 𝑏
2, 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏),

𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐻𝑒(𝑎, 𝑏) = (𝑎 + √𝑎𝑏 + 𝑏)/3, 𝐿(𝑎, 𝑏) =

(𝑏 − 𝑎)/(log 𝑏 − log 𝑎), 𝑃(𝑎, 𝑏) = (𝑎 − 𝑏)/[4 arctan√𝑎/𝑏 −
𝜋], 𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2, 𝑇(𝑎, 𝑏) = (𝑎 − 𝑏)/ [2 arctan((𝑎 −

𝑏)/(𝑎 + 𝑏))], 𝑄(𝑎, 𝑏) = √(𝑎
2
+ 𝑏
2
)/2, and 𝐶(𝑎, 𝑏) =

(𝑎
2
+ 𝑏
2
)/(𝑎 + 𝑏) be the harmonic root-square, harmonic,

geometric, Heronian, logarithmic, first Seiffert, arithmetic,

second Seiffert, quadratic, and contraharmonic means of 𝑎
and 𝑏, respectively. Then it is known that the inequalities

𝐻(𝑎, 𝑏) < 𝐻 (𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏)

< 𝐻𝑒 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏)

(2)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Neuman and Sándor [1, 2] proved that the inequalities

𝜋

4 log (1 + √2)
𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <

𝐴 (𝑎, 𝑏)

log (1 + √2)
,

√2𝑇
2
(𝑎, 𝑏) − 𝑄

2
(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <

𝑇
2
(𝑎, 𝑏)

𝑄 (𝑎, 𝑏)

,

𝐻 (𝑇 (𝑎, 𝑏) , 𝐴 (𝑎, 𝑏)) < 𝑀 (𝑎, 𝑏) < 𝐿 (𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)) ,

𝐻 (𝑀 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)) < 𝑇 (𝑎, 𝑏) , 𝑀 (𝑎, 𝑏) <

𝐴
2
(𝑎, 𝑏)

𝑃 (𝑎, 𝑏)

,
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𝐴
2/3

(𝑎, 𝑏) 𝑄
1/3

(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <

2𝐴 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3

,

√𝐴 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < √𝐴
2
(𝑎, 𝑏) + 𝑇

2
(𝑎, 𝑏),

𝐺 (𝑥, 𝑦)

𝐺 (1 − 𝑥, 1 − 𝑦)

<

𝐿 (𝑥, 𝑦)

𝐿 (1 − 𝑥, 1 − 𝑦)

<

𝑃 (𝑥, 𝑦)

𝑃 (1 − 𝑥, 1 − 𝑦)

<

𝐴 (𝑥, 𝑦)

𝐴 (1 − 𝑥, 1 − 𝑦)

<

𝑀(𝑥, 𝑦)

𝑀 (1 − 𝑥, 1 − 𝑦)

<

𝑇 (𝑥, 𝑦)

𝑇 (1 − 𝑥, 1 − 𝑦)

,

1

𝐴 (1 − 𝑥, 1 − 𝑦)

−

1

𝐴 (𝑥, 𝑦)

<

1

𝑀(1 − 𝑥, 1 − 𝑦)

−

1

𝑀(𝑥, 𝑦)

<

1

𝑇 (1 − 𝑥, 1 − 𝑦)

−

1

𝑇 (𝑥, 𝑦)

,

𝐴 (𝑥, 𝑦)𝐴 (1 − 𝑥, 1 − 𝑦) < 𝑀(𝑥, 𝑦)𝑀 (1 − 𝑥, 1 − 𝑦)

< 𝑇 (𝑥, 𝑦) 𝑇 (1 − 𝑥, 1 − 𝑦)

(3)

hold for all 𝑎, 𝑏 > 0 and 𝑥, 𝑦 ∈ (0, 1/2] with 𝑎 ̸= 𝑏 and 𝑥 ̸= 𝑦.
All the results stated above are in fact particular cases of more
general and stronger results for the Schwab-Borchardt means
[1, 2]. Some of them are based on the sequential method of
Sándor [11]. In particular, Neuman and Sándor [1] also found
that the inequality

𝑀(𝑎, 𝑏) < 𝐿 (𝑎
𝑛
, 𝑏
𝑛
) (4)

holds for all 𝑛 ≥ 0 and 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏, where 𝑎
0
= 𝑄(𝑎, 𝑏),

𝑏
0
= 𝐴(𝑎, 𝑏), 𝑎

𝑛+1
= (𝑎
𝑛
+ 𝑏
𝑛
)/2, and 𝑏

𝑛+1
= √𝑎
𝑛
𝑏
𝑛
.

Li et al. [3] proved that the double inequality 𝐿
𝑝0
(𝑎, 𝑏) <

𝑀(𝑎, 𝑏) < 𝐿
2
(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where

𝐿
𝑝
(𝑎, 𝑏) = [(𝑏

𝑝+1
− 𝑎
𝑝+1

)/((𝑝 + 1)(𝑏 − 𝑎))]
1/𝑝

(𝑝 ̸= − 1, 0),
𝐿
0
(𝑎, 𝑏) = 1/𝑒(𝑏

𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎), and 𝐿

−1
(𝑎, 𝑏) = (𝑏 − 𝑎)/(log 𝑏 −

log 𝑎) is the𝑝th generalized logarithmicmean of 𝑎 and 𝑏;𝑝
0
=

1.843 ⋅ ⋅ ⋅ is the unique solution of the equation (𝑝 + 1)
1/𝑝

=

2 log(1 + √2).
In [4], Neuman proved that the double inequalities

𝛼𝑄 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽𝑄 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏) ,

𝜆𝐶 (𝑎, 𝑏) + (1 − 𝜆)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝜇𝐶 (𝑎, 𝑏) + (1 − 𝜇)𝐴 (𝑎, 𝑏)

(5)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ [1 − log(1 +
√2)]/[(√2 − 1) log(1 + √2)] = 0.3249 ⋅ ⋅ ⋅ , 𝛽 ≥ 1/3, 𝜆 ≤ [1 −

log(1 + √2)]/ log(1 + √2) = 0.1345 ⋅ ⋅ ⋅ , and 𝜇 ≥ 1/6.

Themain purpose of this paper is to find the largest values
𝛼
1
, 𝛼
2
, and 𝛼

3
and the smallest values 𝛽

1
, 𝛽
2
, and 𝛽

3
such that

the double inequalities

𝛼
1
𝑀(𝑎, 𝑏) + (1 − 𝛼

1
)𝐻 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝛽
1
𝑀(𝑎, 𝑏) + (1 − 𝛽

1
)𝐻 (𝑎, 𝑏) ,

𝛼
2
𝑀(𝑎, 𝑏) + (1 − 𝛼

2
)𝐻 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝛽
2
𝑀(𝑎, 𝑏) + (1 − 𝛽

2
)𝐻 (𝑎, 𝑏) ,

𝛼
3
𝑀(𝑎, 𝑏) + (1 − 𝛼

3
)𝐻𝑒 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝛽
3
𝑀(𝑎, 𝑏) + (1 − 𝛽

3
)𝐻𝑒 (𝑎, 𝑏)

(6)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. All numerical computations
are carried out using Mathematical software.

2. Lemmas

In order to establish ourmain results we need several lemmas,
which we present in this section.

Lemma 1 (see [12, Lemma 1.1]). Suppose that the power series
𝑓(𝑥) = ∑

∞

𝑛=0
𝑎
𝑛
𝑥
𝑛 and 𝑔(𝑥) = ∑

∞

𝑛=0
𝑏
𝑛
𝑥
𝑛 have the radius of

convergence 𝑟 > 0 and 𝑎
𝑛
, 𝑏
𝑛
> 0 for all 𝑛 ∈ {0, 1, 2, . . .}. Let

ℎ(𝑥) = 𝑓(𝑥)/𝑔(𝑥); then the following hold.

(1) If the sequence {𝑎
𝑛
/𝑏
𝑛
}
∞

𝑛=0
is (strictly) increasing

(decreasing), then ℎ(𝑥) is also (strictly) increasing
(decreasing) on (0, 𝑟).

(2) If the sequence {𝑎
𝑛
/𝑏
𝑛
} is (strictly) increasing (decreas-

ing) for 0 < 𝑛 ≤ 𝑛
0
and (strictly) decreasing

(increasing) for 𝑛 > 𝑛
0
, then there exists𝑥

0
∈ (0, 𝑟) such

that ℎ(𝑥) is (strictly) increasing (decreasing) on (0, 𝑥
0
)

and (strictly) decreasing (increasing) on (𝑥
0
, 𝑟).

Lemma 2. The function

𝑔 (𝑡) =

𝑡 [cosh (2𝑡) + 2 cosh (𝑡) − 3]
sinh (2𝑡) + 𝑡 cosh (2𝑡) − 3𝑡

(7)

is strictly decreasing on (0, log(1 + √2)), where sinh(𝑡) = (𝑒
𝑡
−

𝑒
−𝑡
)/2 and cosh(𝑡) = (𝑒

𝑡
+𝑒
−𝑡
)/2 denote the hyperbolic sine and

hyperbolic cosine functions, respectively.

Proof. Making use of power series sinh(𝑡) = ∑
∞

𝑛=0
𝑡
2𝑛+1

/(2𝑛 +

1)! and cosh(𝑡) = ∑
∞

𝑛=0
𝑡
2𝑛
/(2𝑛)!, the function 𝑔(𝑡) can be

written as

𝑔 (𝑡) =

∑
∞

𝑛=0
[(2
2𝑛+2

+ 2) / (2𝑛 + 2)!] 𝑡
2𝑛

∑
∞

𝑛=0
[(2𝑛 + 5) 2

2𝑛+2
/ (2𝑛 + 3)!] 𝑡

2𝑛
. (8)

Let

𝑎
𝑛
=

2
2𝑛+2

+ 2

(2𝑛 + 2)!

, 𝑏
𝑛
=

(2𝑛 + 5) 2
2𝑛+2

(2𝑛 + 3)!

. (9)

Then simple computation leads to
𝑎
𝑛+1

𝑏
𝑛+1

−

𝑎
𝑛

𝑏
𝑛

=

𝑐
𝑛

(2𝑛 + 5) (2𝑛 + 7) 2
2𝑛+3

, (10)
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where

𝑐
𝑛
= 2
2𝑛+5

− (12𝑛
2
+ 60𝑛 + 59) . (11)

It follows from (11) that

𝑐
0
= −27, 𝑐

1
= −3, (12)

𝑐
𝑛
≥ 128𝑛

2
− (12𝑛

2
+ 60𝑛 + 59) = 116𝑛

2
− 60𝑛 − 59 > 0

(13)

for all 𝑛 ≥ 2.
Equations (10) and (12) together with inequality (13) lead

to the conclusion that the sequence {𝑎
𝑛
/𝑏
𝑛
}
∞

𝑛=0
is strictly

decreasing for 0 ≤ 𝑛 ≤ 1 and strictly increasing for 𝑛 ≥ 2.
Then from Lemma 1(2) and (8) together with (9) we clearly
see that there exists 𝑡

0
∈ (0,∞) such that 𝑔(𝑡) is strictly

decreasing on (0, 𝑡
0
) and strictly increasing on (𝑡

0
,∞).

Let 𝑡∗ = log(1 + √2). Then simple computations lead to

sinh (𝑡∗) = 1, cosh (𝑡∗) = √2,

sinh (2𝑡∗) = 2√2, cosh (2𝑡∗) = 3.

(14)

It is not difficult to verify that

𝑔
󸀠
(𝑡
∗
) = −2𝑡

∗2

+ (2 − √2) 𝑡
∗
+ 1 = −0.03734 ⋅ ⋅ ⋅ < 0. (15)

From the piecewise monotonicity of 𝑔(𝑡) and inequality
(15) we clearly see that 𝑡∗ = log(1 + √2) < 𝑡

0
, which implies

that 𝑔(𝑡) is strictly decreasing on (0, log(1 + √2)).

Lemma 3. The inequality

√1 − 𝑡
2
> 1 −

𝑡
2

2

−

𝑡
4

8

−

𝑡
6

16

−

5𝑡
8

128

−

35𝑡
10

128

(16)

holds for all 𝑡 ∈ (0, 1).

Proof. Simple computations lead to

(1 −

𝑡
2

2

−

𝑡
4

8

−

𝑡
6

16

−

5𝑡
8

128

−

35𝑡
10

128

)

2

= 1 − 𝑡
2
−

𝑡
10

16384

× (8064 − 4704𝑡
2
− 1200𝑡

4
− 585𝑡

6
− 350𝑡

8
− 1225𝑡

10
)

< 1 − 𝑡
2
−

𝑡
10

16384

(8064 − 4704 − 1200 − 585 − 350 − 1225)

< 1 − 𝑡
2

(17)

for all 𝑡 ∈ (0, 1).

Lemma 4. The function 𝑓(𝑡) = [𝑡 − sinh−1(𝑡)]/[(1 −

√1 − 𝑡
2
)sinh−1(𝑡)] is strictly decreasing in (0, 1).

Proof. Differentiating 𝑓(𝑡) gives

𝑓
󸀠
(𝑡)

= (𝑡 (1 − 𝑡
2
− √1 − 𝑡

2
)

+√1 + 𝑡
2
[𝑡 sinh−1 (𝑡) + √1 − 𝑡2 − 1] sinh−1 (𝑡))

× ((1 − √1 − 𝑡
2
)

2

√1 − 𝑡
4
[sinh−1 (𝑡)]

2

)

−1

.

(18)

Making use of the power series

√1 + 𝑡
2
=

∞

∑

𝑛=0

(−1)
𝑛−1

(2𝑛)!

(2𝑛 − 1) 4
𝑛
(𝑛!)
2
𝑡
2𝑛

= 1 +

𝑡
2

2

−

𝑡
4

8

+

𝑡
6

16

−

5𝑡
8

128

+

7𝑡
10

256

− ⋅ ⋅ ⋅ ,

(19)

√1 − 𝑡
2
=

∞

∑

𝑛=0

(2𝑛)!

(1 − 2𝑛) 4
𝑛
(𝑛!)
2
𝑡
2𝑛

= 1 −

𝑡
2

2

−

𝑡
4

8

−

𝑡
6

16

−

5𝑡
8

128

−

7𝑡
10

256

− ⋅ ⋅ ⋅ ,

(20)

sinh−1 (𝑡) =
∞

∑

𝑛=0

(−1)
𝑛
(2𝑛)!

(2𝑛 + 1) 4
𝑛
(𝑛!)
2
𝑡
2𝑛+1

= 𝑡 −

𝑡
3

6

+

3𝑡
5

40

−

5𝑡
7

112

+ ⋅ ⋅ ⋅ ,

(21)

we get

√1 + 𝑡
2sinh−1 (𝑡) = 𝑡 +

𝑡
3

3

−

2𝑡
5

15

+

8𝑡
7

105

−

1091𝑡
9

13440

+ ⋅ ⋅ ⋅

< 𝑡 +

𝑡
3

3

−

2𝑡
5

15

+

8𝑡
7

105

,

𝑡sinh−1 (𝑡) + √1 − 𝑡2 − 1

=

𝑡
2

2

−

7𝑡
4

24

+

𝑡
6

80

−

75𝑡
8

896

+ ⋅ ⋅ ⋅ <

𝑡
2

2

−

7𝑡
4

34

+

𝑡
6

80

,

(22)

for 𝑡 ∈ (0, 1).
Let

𝑔 (𝑡) = 𝑡 (1 − 𝑡
2
− √1 − 𝑡

2
)

+ √1 + 𝑡
2
[𝑡sinh−1 (𝑡) + √1 − 𝑡2 − 1] sinh−1 (𝑡)

= − (1 − √1 − 𝑡
2
) [𝑡√1 − 𝑡

2
+ √1 + 𝑡

2sinh−1 (𝑡)]

+ 𝑡√1 + 𝑡
2
[sinh−1 (𝑡)]

2

.

(23)



4 Journal of Applied Mathematics

We divide the proof into two cases.
Case 1 (𝑡 ∈ (0, √10/5)). Then from Lemma 3, (22), and (23)
we have

𝑔 (𝑡) < 𝑡 [1 − 𝑡
2
− (1 −

𝑡
2

2

−

𝑡
4

8

−

𝑡
6

16

−

5𝑡
8

128

−

35𝑡
10

128

)]

+ (𝑡 +

𝑡
3

3

−

2𝑡
5

15

+

8𝑡
7

105

) × (

𝑡
2

2

−

7𝑡
4

24

+

𝑡
6

80

)

=

𝑡
2

201600

(24235𝑡
2
+ 50309𝑡

4
+ 192𝑡

6
− 17920)

<

𝑡
2

201600

[24235(

√10

5

)

2

+ 50309(

√10

5

)

4

+192(

√10

5

)

6

− 17920] < 0.

(24)

Case 2 (𝑡 ∈ [√10/5, 1)).Then from Lemma 3, (19), (20), and
(23) together with sinh−1(√10/5) = 0.5964 ⋅ ⋅ ⋅ we get

𝑔 (𝑡) < − [1 − (1 −

𝑡
2

2

−

𝑡
4

8

−

𝑡
6

16

)]

× [𝑡(1 −

𝑡
2

2

−

𝑡
4

8

−

𝑡
6

16

−

5𝑡
8

128

−

35𝑡
10

128

)

+0.596(1 +

𝑡
2

2

−

𝑡
4

8

)]

+ (0.596)
2
(1 +

𝑡
2

2

−

𝑡
4

8

+

𝑡
6

16

) :=

𝑔
1
(𝑡) = 0.356409𝑡 − 0.298𝑡

2
− 0.3217955𝑡

3
− 0.2235𝑡

4

+ 0.08448875𝑡
5
− 0.03725𝑡

6
+ 0.0847755625𝑡

7

− 0.0093125𝑡
8
+ 0.078125𝑡

9
+ 0.00465625𝑡

10

+ 0.03515625𝑡
11
+ 0.1455078125𝑡

13

+ 0.03662109375𝑡
15
+ 0.01708984375𝑡

17
.

(25)

Numerical computations show that

𝑔
1
(

√10

5

) = −0.0000435, 𝑔
1
(1) = −0.0510683 ⋅ ⋅ ⋅ ,

(26)

𝑔
󸀠

1
(

√10

5

) = −0.52459 ⋅ ⋅ ⋅ , 𝑔
󸀠

1
(1) = 2.4665 ⋅ ⋅ ⋅ , (27)

𝑔
󸀠󸀠

1
(

√10

5

) = −1.86198 ⋅ ⋅ ⋅ , 𝑔
󸀠󸀠

1
(1) = 43.2711 ⋅ ⋅ ⋅ ,

(28)

𝑔
󸀠󸀠󸀠

1
(

√10

5

) = 4.63578 ⋅ ⋅ ⋅ , (29)

𝑔
(4)

1
(𝑡)

> (−5.364 + 9.653865𝑡)

+ 𝑡
2
(−13.41 + 71.2114725𝑡 − 15.645𝑡

2
)

> [−5.364 + 9.653865 × (

√10

5

)]

+ 𝑡
2
[(−13.41 + 71.2114725 × (

√10

5

) − 15.645)]

= 0.7416 ⋅ ⋅ ⋅ + 𝑡
2
× 15.9830 ⋅ ⋅ ⋅ > 0.

(30)

It follows from (29) and (30) that 𝑔󸀠󸀠
1
(𝑡) is strictly increas-

ing in [√10/5, 1).Then (28) leads to the conclusion that there
exists 𝑡

0
∈ (√10/5, 1) such that 𝑔󸀠

1
(𝑡) is strictly decreasing in

[√10/5, 𝑡
0
] and strictly increasing in [𝑡

0
, 1).

From (27) and the piecewise monotonicity of 𝑔󸀠
1
(𝑡) we

clearly see that there exists 𝑡
1
∈ (𝑡
0
, 1) such that 𝑔

1
(𝑡) is

strictly decreasing in [√10/5, 𝑡
1
] and strictly increasing in

[𝑡
1
, 1). Therefore,

𝑔 (𝑡) < 𝑔
1
(𝑡) < 0 (31)

for 𝑡 ∈ [√10/5, 1) follows from (25) and (26) together with
the piecewise monotonicity of 𝑔

1
(𝑡).

Lemma 5. Let 𝑝 ∈ (0, 1), 𝜆
0
= log(1 + √2)/[3 − 2 log(1 +

√2)] = 0.7123 ⋅ ⋅ ⋅ , and

𝜑
𝑝
(𝑡) =

3𝑝√1 − 𝑡
2

(𝑝 − 1) 𝑡 + 2𝑝 − 1

− sinh−1 (√1 − 𝑡2) . (32)

Then 𝜑
1/2
(𝑡) < 0 and 𝜑

𝜆0
(𝑡) > 0 for all 𝑡 ∈ (0, 1).

Proof. We first prove that 𝜑
1/2
(𝑡) < 0 for 𝑡 ∈ (0, 1). From (32)

one has

𝜑
1/2

(1) = 0, (33)

𝜑
󸀠

1/2
(𝑡) =

4𝑡 − 2𝑡
2
+ (1/4) 𝑡

3
− (3𝑡 − 3/4)√2 − 𝑡

2

√1 − 𝑡
2√2 − 𝑡

2
(2 − (1/2) 𝑡)

2
. (34)

Let

𝑓 (𝑡) = 4𝑡 − 2𝑡
2
+

1

4

𝑡
3
− (3𝑡 −

3

4

)√2 − 𝑡
2
. (35)

Then
𝑓 (1) = 0,

𝑓
󸀠
(𝑡) =

24𝑡
2
− 3𝑡 − 24 + (16 − 16𝑡 + 3𝑡

2
)√2 − 𝑡

2

4√2 − 𝑡
2

.

(36)
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We divide the proof into two cases.
Case 1 (𝑡 ∈ (0, 0.7)).Then we clearly see that

24𝑡
2
− 3𝑡 − 24 + (16 − 16𝑡 + 3𝑡

2
)√2 − 𝑡

2

√2 − 𝑡
2

< 24𝑡
2
−

3𝑡 + 24

√2

+ (16 − 16𝑡 + 3𝑡
2
)

= 27𝑡
2
− (

3

2

√2 + 16) 𝑡 + 16 − 12√2

= 27(𝑡 −

3√2 + 32 + √5376√2 − 5870

108

)

×(𝑡 −

3√2 + 32 − √5376√2 − 5870

108

)

= 27 (𝑡 − 0.72105 ⋅ ⋅ ⋅ ) (𝑡 + 0.04985 ⋅ ⋅ ⋅ ) < 0.

(37)

Case 2 (𝑡 ∈ [0.7, 1)).Then we get

[24𝑡
2
− 3𝑡 − 24 + (16 − 16𝑡 + 3𝑡

2
)√2 − 𝑡

2
]√2 − 𝑡

2

= (24𝑡
2
− 3𝑡 − 24)√2 − 𝑡

2
+ 32 − 32𝑡 − 10𝑡

2
+ 16𝑡
3
− 3𝑡
4

< 24𝑡
2
− 3𝑡 − 24 + 32 − 32𝑡 − 10𝑡

2
+ 16𝑡
3
− 3𝑡
4

= − (1 − 𝑡) (27𝑡 + 13𝑡
2
− 3𝑡
3
− 8) < 0.

(38)

It follows from (32) and (33) together with Cases 1 and 2
that 𝑓(𝑡) < 0 for 𝑡 ∈ (0, 1). Then from (34) and (35) we know
that 𝜑

1/2
(𝑡) is strictly decreasing in (0, 1).

Therefore, 𝜑
1/2
(𝑡) < 0 for 𝑡 ∈ (0, 1) follows from (33) and

the monotonicity of 𝜑
1/2
(𝑡).

Next, we prove that 𝜑
𝜆0
(𝑡) > 0 for 𝑡 ∈ (0, 1). From (32) we

clearly see that we only have to prove that

𝜑
𝜆0
(√1 − 𝑡

2
) =

3𝜆
0
𝑡

(𝜆
0
− 1)√1 − 𝑡

2
+ 2𝜆
0
+ 1

− sinh−1 (𝑡)

> 0

(39)

for all 𝑡 ∈ (0, 1).
Inequality (39) can be rewritten as

𝜆
0
>

(1 − √1 − 𝑡
2
) sinh−1 (𝑡)

3𝑡 − (2 + √1 − 𝑡
2
) sinh−1 (𝑡)

. (40)

Let

ℎ (𝑡) =

(1 − √1 − 𝑡
2
) sinh−1 (𝑡)

3𝑡 − (2 + √1 − 𝑡
2
) sinh−1 (𝑡)

=

1

1 + 3 [𝑡 − sinh−1 (𝑡)] / [(1 − √1 − 𝑡2) sinh−1 (𝑡)]
.

(41)

Then inequality (40) follows fromLemma 4 and (41) together
with ℎ(1) = 𝜆

0
.

3. Main Results

Theorem 6. The double inequality

𝛼
1
𝑀(𝑎, 𝑏) + (1 − 𝛼

1
)𝐻 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝛽
1
𝑀(𝑎, 𝑏) + (1 − 𝛽

1
)𝐻 (𝑎, 𝑏)

(42)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
1
≤ 6/7 =

0.8571 ⋅ ⋅ ⋅ and 𝛽
1
≥ log(1 + √2) = 0.8813 ⋅ ⋅ ⋅ .

Proof. Since𝐻(𝑎, 𝑏),𝑀(𝑎, 𝑏), and 𝐴(𝑎, 𝑏) are symmetric and
homogeneous of degree one, without loss of generality, we
assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏) and 𝑡 = sinh−1(𝑥).
Then 𝑥 ∈ (0, 1), 𝑡 ∈ (0, log(1 + √2)), and

𝐴 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

𝑀 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

=

𝑥
2

𝑥/sinh−1 (𝑥) − (1 − 𝑥2)

=

𝑡 cosh (2𝑡) − 𝑡
2 sinh (𝑡) + 𝑡 cosh (2𝑡) − 3𝑡

.

(43)

Let

𝑓 (𝑡) =

𝑡 cosh (2𝑡) − 𝑡
2 sinh (𝑡) + 𝑡 cosh (2𝑡) − 3𝑡

. (44)

Then 𝑓(𝑡) can be rewritten as

𝑓 (𝑡)

=

𝑡∑
∞

𝑛=0
(2
2𝑛
/ (2𝑛)!) 𝑡

2𝑛
− 𝑡

2∑
∞

𝑛=0
(𝑡
2𝑛+1

/ (2𝑛 + 1)!) + ∑
∞

𝑛=0
(2
2𝑛
/ (2𝑛)!) 𝑡

2𝑛+1
− 3𝑡

=

∑
∞

𝑛=1
(2
2𝑛
/ (2𝑛)!) 𝑡

2𝑛

∑
∞

𝑛=1
[(2 + (2𝑛 + 1) 2

2𝑛
) / (2𝑛 + 1)!] 𝑡

2𝑛+1

=

∑
∞

𝑛=0
(2
2𝑛+2

/ (2𝑛 + 2)!) 𝑡
2𝑛

∑
∞

𝑛=0
[(2 + (2𝑛 + 3) 2

2𝑛+2
) / (2𝑛 + 3)!] 𝑡

2𝑛

:=

∑
∞

𝑛=0
𝑎
𝑛
𝑡
2𝑛

∑
∞

𝑛=0
𝑏
𝑛
𝑡
2𝑛
,

𝑎
𝑛+1

𝑏
𝑛+1

−

𝑎
𝑛

𝑏
𝑛

=

(12𝑛 + 34) 2
2𝑛+2

[(2𝑛 + 3) 2
2𝑛+2

+ 2] [(2𝑛 + 5) 2
2𝑛+4

+ 2]

> 0

(45)

for all 𝑛 ≥ 0.
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It follows from (45) together with Lemma 1(1) that 𝑓(𝑡) is
strictly increasing in (0, log(1 + √2)). Note that

lim
𝑡→0

𝑓 (𝑡) =

𝑎
0

𝑏
0

=

6

7

,

𝑓 (log (1 + √2)) = log (1 + √2) .
(46)

Therefore,Theorem 6 follows from (43) and (44) together
with (46) and the monotonicity of 𝑓(𝑡).

Theorem 7. The double inequality

𝛼
2
𝑀(𝑎, 𝑏) + (1 − 𝛼

2
)𝐻 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝛽
2
𝑀(𝑎, 𝑏) + (1 − 𝛽

2
)𝐻 (𝑎, 𝑏)

(47)

holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if 𝛼
2
≤ log(1+√2) =

0.8813 ⋅ ⋅ ⋅ and 𝛽
2
≥ 9/10.

Proof. Since𝐻(𝑎, 𝑏),𝑀(𝑎, 𝑏), and 𝐴(𝑎, 𝑏) are symmetric and
homogeneous of degree one, without loss of generality, we
assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏) and 𝑡 = sinh−1(𝑥).
Then 𝑥 ∈ (0, 1), 𝑡 ∈ (0, log(1 + √2)), and

𝐴 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

𝑀 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

=

(√1 + 𝑥
2
+ 𝑥
2
− 1) sinh−1 (𝑥)

𝑥√1 + 𝑥
2
− (1 − 𝑥

2
) sinh−1 (𝑥)

=

𝑡 [cosh (2𝑡) + 2 cosh (𝑡) − 3]
sinh (2𝑡) + 𝑡 cosh (2𝑡) − 3𝑡

.

(48)

Simple computations lead to

lim
𝑡→0

𝑡 [cosh (2𝑡) + 2 cosh (𝑡) − 3]
sinh (2𝑡) + 𝑡 cosh (2𝑡) − 3𝑡

=

9

10

,

lim
𝑡→ log(1+√2)

𝑡 [cosh (2𝑡) + 2 cosh (𝑡) − 3]
sinh (2𝑡) + 𝑡 cosh (2𝑡) − 3𝑡

= log (1 + √2) .

(49)

Therefore, Theorem 7 follows from Lemma 2, (48), and
(49).

Theorem 8. The double inequality

𝛼
3
𝑀(𝑎, 𝑏) + (1 − 𝛼

3
)𝐻𝑒 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝛽
3
𝑀(𝑎, 𝑏) + (1 − 𝛽

3
)𝐻𝑒 (𝑎, 𝑏)

(50)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
3
≤ 1/2 and

𝛽
3
≥ log(1 + √2)/ [3 − 2 log(1 + √2)] = 0.7123 ⋅ ⋅ ⋅ .

Proof. Since𝐻(𝑎, 𝑏),𝑀(𝑎, 𝑏), and 𝐴(𝑎, 𝑏) are symmetric and
homogeneous of degree one, without loss of generality, we

assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (0, 1), 0 < 𝑝 < 1,
and 𝜆

0
= log(1 + √2)/[3 − 2 log(1 + √2)]; then

𝐴 (𝑎, 𝑏) − 𝐻𝑒 (𝑎, 𝑏)

𝑀 (𝑎, 𝑏) − 𝐻𝑒 (𝑎, 𝑏)

=

(1 − √1 − 𝑥
2
) sinh−1 (𝑥)

3𝑥 − (2 + √1 − 𝑥
2
) sinh−1 (𝑥)

, (51)

𝑝𝑀(𝑎, 𝑏) + (1 − 𝑝)𝐻𝑒 (𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)

=

𝐴 (𝑎, 𝑏)

3

[

3𝑝𝑥

sinh−1 (𝑥)
− (𝑝 − 1)√1 − 𝑥

2
− (1 + 2𝑝)]

=

𝐴 (𝑎, 𝑏) [(1 + 2𝑝) − (1 − 𝑝)√1 − 𝑥
2
]

3 sinh−1 (𝑥)
𝜑
𝑝
(√1 − 𝑥

2
) ,

(52)

where 𝜑
𝑝
(𝑡) is defined as in Lemma 5.

Note that

lim
𝑥→0

(1 − √1 − 𝑥
2
) sinh−1 (𝑥)

3𝑥 − (2 + √1 − 𝑥
2
) sinh−1 (𝑥)

=

1

2

,

lim
𝑥→1

(1 − √1 − 𝑥
2
) sinh−1 (𝑥)

3𝑥 − (2 + √1 − 𝑥
2
) sinh−1 (𝑥)

= 𝜆
0
.

(53)

Therefore, Theorem 8 follows from (51)–(53) together
with Lemma 5.
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